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Background: Object Recognition

Training Images

Hoffman et. al. (UC Berkeley) Discovering Latent Domains WiML December 3, 2012 2 / 13



Background: Object Recognition

Test Image: Correct!
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Background: Object Recognition

Test Image: Incorrect
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Background: Domain Adaptation

Domain adaptation helps bridge performance gap when test data is
drawn from different distribution (domain) than training data.

Previous Methods Include

Feature Transformation Techniques: Saenko (ECCV 2010), Kulis
(CVPR 2011), Gopalan (ICCV 2011), Gong (CVPR 2012), . . .

Parameter Adaptation Techniques: Yang (ACM Multimedia 2007),
Duan (CVPR 2009), Bergamo (NIPS 2010), Ayatar (ICCV 2011), . . .

All previous methods require datasets separated into
homogeneous domains
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Goal: Separate heterogeneous data into homogeneous
domains

Hoffman et. al. (UC Berkeley) Discovering Latent Domains WiML December 3, 2012 4 / 13



Method 1/4: Separate by category label
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Method 2/4: Cluster each category independently
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Method 3/4: Constrained clustering algorithm
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Method 4/4: Iterate steps (2-3) - Output domains
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Hierarchical Gaussian Mixture Model
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Figure 1: Graphical model for domain discovery.
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The joint probability is a product of the conditional probabilities in the model.
Let ZL = {zL

i }, ZG = {zG
j }, and X = [x1, ...,xn]. Then p(ZG, ZL, X | m, µ, πG, πL) =
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We may think of this model in a generative manner as follows: for all local
clusters j = 1, ..., J = S · K, we determine its underlying domain via the πG

mixing weights. Given this domain, we generate µj , the mean for the local
cluster. Then, to generate the data points xi, we first determine which local
cluster j the data point belongs to using πL, and then we generate the point
from the corresponding µj .

At this point, we still need to add the constraints discussed above, namely
that the local clusters only contain data points from a single category and
that domain clusters contain only a single local cluster from each category.
Such constraints can be difficult to enforce in a probabilistic model, but are
considerably simpler in a hard clustering model. For instance, in semi-supervised
clustering there is considerable literature on adding constraints to the k-means
objective via constraints or penalties (cite papers by Sugato Basu). Thus, we
will utilize a standard asymptotic argument on our probabilistic model to create
a corresponding hard clustering model. In particular, if one takes a mixture of
Gaussian model with fixed σI covariances across clusters, and lets σ → 0, the
expected log joint likelihood approaches the k-means objective, and the EM

2

x feature vector
(with known
label y)

µ mean of local
cluster

ZL assignments for
local clusters

ZG assignments for
global clusters

m mean of global
cluster
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Optimization Formulation

min
ZG ,ZL,µ,m
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J∑

j=1

S∑

k=1

ZG
jk(µj −mk)2
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ij ∈ {0, 1}
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ZG
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Results

Office dataset with three known domains: amazon(a), webcam(w),
dslr(d)

31 Categories, 10-20 images per category
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Results

Bing web search data set. Heterogeneous and weakly-labeled data.

30 Categories, 50 Images per Category, Set Number of Domains = 3

(a) “Cartoon Images” (b) “Cluttered Scenes” (c) “Product Images”
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Results
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J. Hoffman, B. Kulis, T. Darrell, K. Saenko. “Discovering Latent Domains for Multisource Domain Adaptation.” European

Conference in Computer Vision (ECCV), 2012.
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Conclusion

Domain adaptation algorithms can bridge the performance gap when
train and test data are drawn from different domains.

Current multisource adaptation methods require known domain
labels.

Using a constrained hierarchical gaussian mixture model we are able
to learn latent domain labels.

See our EECV paper for more details and our full multisource domain
adaptation algorithm.

Thank you!
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