
Space-Code Bloom Filter for Efficient Traffic Flow
Measurement ∗

Abhishek Kumar Jun (Jim) Xu
College of Computing

Georgia Institute of Technology
{akumar,jx}@cc.gatech.edu

Li Li
Bell Labs
Lucent

erranlli@lucent.com

Jia Wang
AT&T Labs - Research

jiawang@research.att.com

ABSTRACT
Per-flow traffic measurement is critical for usage accounting, traffic
engineering, and anomaly detection. Previous methodologies are
either based on random sampling (e.g., Cisco’s NetFlow), which
is inaccurate, or only account for the “elephants”. Our paper in-
troduces a novel technique for measuring per-flow traffic approx-
imately, for all flows regardless of their sizes, at very high-speed
(say, OC192+). The core of this technique is a novel data structure
called Space Code Bloom Filter (SCBF). A SCBF is an approxi-
mate representation of a multiset; each element in this multiset is
a traffic flow and its multiplicity is the number of packets in the
flow. SCBF employs a Maximum Likelihood Estimation (MLE)
method to measure the multiplicity of an element in the multiset.
Through parameter tuning, SCBF allows for graceful tradeoff be-
tween measurement accuracy and computational and storage com-
plexity. SCBF also contributes to the foundation of data streaming
by introducing a new paradigm called blind streaming. We eval-
uated the performance of SCBF on packet traces gathered from a
tier-1 ISP backbone and through mathematical analysis. Our pre-
liminary results demonstrate that SCBF achieves reasonable mea-
surement accuracy with very low storage and computational com-
plexity.

Categories and Subject Descriptors
C.2.3 [COMPUTER-COMMUNICATION NETWORKS]: Network
Operations - Metwork Monitoring
E.1 [DATA STRUCTURES]

General Terms
Measurement, Theory

Keywords
Network Measurement, Traffic Analysis, Data Structures, Statisti-
cal Inference, Bloom Filter
∗This paper was supported in part by the National Science Foun-
dation under Grant ANI-0113911 and under NSF CAREER Award
Grant ANI-0238315.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’03, October 27–29, 2003, Miami Beach, Florida, USA.
Copyright 2003 ACM 1-58113-773-7/03/0010 ...$5.00.

1. INTRODUCTION
Accurate traffic measurement and monitoring is critical for net-

work management. For example, per-flow traffic accounting has
applications in usage-based charging/pricing, security, per-flow QoS,
and traffic engineering [1]. While there has been considerable re-
search on characterizing the statistical distribution of per-flow traf-
fic [2] or on identifying and measuring a few large flows (ele-
phants) [3, 1, 4], little work has been done on investigating highly
efficient algorithms and data structures to facilitate per-flow mea-
surement on very high-speed links.

To fill this gap, we propose a novel data structure called Space-
Code Bloom Filter (SCBF) and explore its applications to network
measurement in general, and to per-flow traffic accounting in par-
ticular. A (traditional) bloom filter [5] is an approximate repre-
sentation of a setS, which given an arbitrary elementx, allows
for the membership query “x ∈ S?”. A Space-Code Bloom Filter
(SCBF), on the other hand, is an approximate representation of a
multisetM , which allows for the query “how many occurrences of
x are there inM?”. Just as a bloom filter achieves a nice tradeoff
between space efficiency (bits per element) and false positive ratio,
SCBF achieves a nice tradeoff between the accuracy of counting
and the number of bits used for counting.

SCBF has several important applications in network measure-
ment. This paper focuses on its application to performing “per-
flow” traffic accounting without per flow state on a high-speed link.
Given a flow identifier, SCBF returns the estimated number of pack-
ets in the flow during ameasurement epoch. Here, a flow identifier
can be an IP address, a source and destination IP address pair, the
combination of IP addresses and port numbers, or other indices that
can identify a flow.

Per-flow accounting is a challenging task on high-speed network
links. While keeping per-flow state would make accounting straight-
forward, it is not desirable since such a large state will only fit on
DRAM and the DRAM speed can not keep up with the rate of a
high-speed link. While random sampling, such as used in Cisco
Netflow, reduces the requirement on memory speed, it introduces
excessive measurement errors for flows other than elephants, as
shown in Section 2. The scheme by Estan and Varghese [1] only
needs a small amount of fast memory. However, it allows the mon-
itoring of only a small number of “elephants”.

Previous attempts at using bloom filters to answer multiset queries
have produced a number of variations ofcounting bloom filter[6].
In its most basic form, a counting bloom filter has a counter asso-
ciated with each bit in the array. When an elementx is inserted
in a counting bloom filter withk hash functionsh1, · · · , hk, each
of thek counters associated with the bitsh1(x), · · · , hk(x) are in-
cremented by one. Unfortunately, quantitative estimates based on
counters might be a long way off the correct value of the frequency

of occurrence of any element in counting bloom filters. Approaches
like conservative update[1] have been proposed to counter this
problem to some extent. Such heuristics fail to provide any bounds
on the estimation error and are not amenable to analysis. Counting
bloom filters are not suitable from the implementation perspective
either. They require a large number of counters, each of them capa-
ble of counting up to the largest possible multiplicity, thus wasting
both space and computation cycles. Attempts to improve the space
efficiency of counting bloom filters have resulted in the proposal of
variable size counters [7]. Unfortunately, the mechanism required
to implement variable size counters is complex, and cannot match
the rate of a high speed link.

Our approach is to perform traffic accounting on a very small
amount of high-speed SRAM, organized as anSCBF page. Once
an SCBF page becomes full (we formalize this notion later), it is
eventually paged to persistent storages such as disks. Later, to find
out the traffic volume of a flow identified by a labelx during a mea-
surement epoch, the SCBF pages corresponding to the epoch can be
queried usingx to provide the approximate answer. The challenges
facing this approach are threefold. First, the amount of persistent
storage to store SCBF pages cannot be unreasonably large, even for
a high-speed link like OC-192+ (10+ Gbps). Second, the computa-
tional complexity of processing each packet needs to be low enough
to catch up with the link speed. Third, the accounting needs to be
fairly accurate for all the flows, despite the aforementioned storage
and complexity constraints.

SCBF is designed to meet all these challenges. Our design can
easily scale to maintaining approximate per-flow counts at an OC-
192+ link using a limited amount of fast memory. The storage cost
for a full-speed OC-192 link is tolerable: about 2 bits per packet or
9 GB per hour. Such a cost is manageable for Tier-1 ISPs as the
storage cost right now is about 1 dollar per GB. In addition, it is
very amenable to pipelined hardware implementation to facilitate
high-speed processing.

Here we describe the conceptual design of SCBF, deferring its
detailed description to Section 3. An SCBF is essentially a large
number of statistical estimators running in parallel. Each estima-
tor tracks the traffic volume of a certain flow. SCBF nicely codes
and compresses the current “readings” of these estimators within
a small memory module so that they do not interfere with each
other. Like space-time coding allows signals to multiplex on both
space and time domains, SCBF allows “signals” to multiplex on
both space and code domains, hence the nameSpace-Code. The de-
multiplexing operation for obtaining the “reading” of a given flow
in an SCBF employs a Maximum Likelihood Estimation (MLE)
process. We show through careful analysis that the “readings” of
all flows will be accurate to a certain ratio with high probability.

SCBF not only has important applications in network measure-
ment, but also contributes to the foundation ofdata streaming[8,
4]. Data streaming is concerned with processing a long stream of
data items in one pass using a small working memory in order to
answer a class of queries regarding the stream. The challenge is to
use this small memory to “remember” as much informationperti-
nent to the queriesas possible. The contributions of SCBF to data
streaming are twofold. First, it is among the earliest work in the
networking context [4]. Although data streaming has emerged as
a major field in database [8, 7, 9], the techniques invented in the
database context generally cannot be “ported” to networking be-
cause they are much more expensive in computational complexity.
Second, SCBF introduces a new paradigm calledblind streaming
in which incrementing the reading of an estimator does not require
the decoding of its current reading, and hence theblindness. This
significantly reduces the computational and hardware implementa-

tion complexity of each operation, as discussed in Section 2.2.
The rest of this paper is organized as follows. In the next section,

we revisit the motivation of this work and identify objectives and
constraints specific to per-flow measurement on high-speed links.
Section 3 describes the design of SCBF. We provide some mathe-
matical details of SCBF in Section 4. Section 5 presents a prelim-
inary evaluation over a number of large packet header traces from
a tier-1 ISP IP backbone network. We conclude in Section 6 with
pointers to future work.

2. ARCHITECTURE, PERFORMANCE MET-
RICS, AND BLIND STREAMING

The proposed SCBF scheme is motivated by the need to provide
per-flow traffic accounting at very high speed (e.g, OC192+). A
naive solution to this problem would be to maintain per-flow coun-
ters that are updated upon every packet arrival. However, as shown
in [1], this approach cannot scale to the link speed of OC192+ since
fast SRAM modules can only hold a tiny fraction of per-flow state
due to their size limitations, yet large DRAM modules cannot sup-
port such speed. Random sampling with a small rate such as 1%
may make the speed requirement for keeping the per-flow state af-
fordable for DRAM. However, they lead to intolerable inaccuracies
in network measurement [1]. In particular, sampling will typically
miss the majority of small flows (containing only a few packets).
Ignoring these mice altogether may lead to wrong conclusions in
applications such as estimation of flow distribution and network
anomaly detection.

CPU

SRAM
Module 1

SRAM
Module 2

Persistent
Storage

1. Process
header

2. Write
to SCBF

3. Paging
to disk
once "full"

4. Query

5.Answer

SCBF Module0. New
packet
arrival

Header

Figure 1: The system model for using SCBF for traffic mea-
surement.

Our vision is to design a synopsis data structure that keeps ap-
proximate track of the number of packets in each flow regardless
of its size, yet is small enough to fit in fast SRAM. The proposed
SCBF scheme is a brainchild of this vision. The overall architecture
of using SCBF to perform per-flow accounting is shown in Figure 1.
SCBF is updated upon each packet arrival (arcs 1 and 2 in Figure 1)
so that it will not fail to record the presence of any flow, small or
large. When the SCBF becomes full, it will be paged to persistent
storage devices (arc 3). Typically, two “ping-pong” SCBF modules
will be used so that one can process new packets while the other is
being paged, as shown in Figure 1. In other words, these two SCBF
modules store approximate flow accounting information in alternat-
ing measurement epochs. In addition, SCBF succinctly represents
a large number of counters so that paging is infrequent enough to
fit within the disk bandwidth even for OC-192+ link speed. Finally,
a query concerning the size of a flow can be made to a SCBF page
stored on the disk (arc 4). The result of the query (arc 5) is the ap-
proximate number of packets in the flow during the measurement
epoch an SCBF page records.

2.1 Performance Metrics
The key challenge of designing SCBF is to achieve a nice trade-

off between the following three key performance metrics.
1. Storage complexity. This refers to the amount of space con-
sumed on persistent storage to store the SCBF pages. This can
be equivalently characterized as the traffic rate between the SCBF
module and the disk. Our goal is to make this complexity as small
as possible, given a fixed link speed. At least this rate should not
exceed the disk bandwidth. We will show that this complexity is
manageable even at OC192+ speed since SCBF takes advantage
of the “Quasi-Zipf Law” of the Internet traffic: a small number of
flows contribute to the majority of Internet traffic and the majority
of flows are small.
2. Computational complexity. We are also concerned with the
number of memory accesses to the SCBF module for each packet.
This has to be minimized. We show that our scheme will incur no
more than 6 bits of write per packet to the memory. We will see
later that most of these writes overwrite bits that are already 1, thus
filling up the SCBF page at a much slower rate.
3. Accuracy of estimation. We would like our estimation of the
traffic volume in a measurement epoch to be as close to the actual
value as possible. In this paper, our goal isconstant relative error
tolerance, i.e., for the estimatêF to be within[(1− ε)F, (1+ ε)F]
with high probability. HereF is the actual size of the flow. This is
achieved using a maximum likelihood estimator (MLE).

Clearly, very high accuracy can be achieved if one is willing
to spend more storage and computational complexity. Therefore,
there is an inherent tradeoff between the complexities and the ac-
curacy. This tradeoff is exploited through a sophisticated parameter
tuning process, which will be described in Section 5.

2.2 Blind Streaming
A careful reader may notice that in Figure 1, we do not have

an arc from the SCBF module to the CPU. One may also wonder
whether this is a mistake, since when a new packet arrives, its flow
identifier should be used to look up a corresponding entry for up-
date. In fact, our SCBF is designed to avoid such a read before
update, i.e., the SCBF data structure is write-only! We refer to this
feature asblind streaming, in the sense that reading and decoding
data in the SCBF is not required before updating it.

Blind streaming is a new paradigm of data streaming that is es-
pecially suitable for high-speed networks for the following reasons.
First, in blind streaming, we do not need to deal with the race con-
dition between read and write operations, making a pipelined hard-
ware implementation extremely simple. Note that in traditional
data processing, a datum has to be locked after read and unlocked
after write to ensure consistency. Second, blind streaming also dou-
bles the streaming speed by eliminating the reading process. Third,
the loss of accuracy due to this blindness is tolerable, as we will
show in Section 5.

3. DESIGN DETAILS

3.1 Space-Code Bloom Filter
The core of our scheme is a novel data structure called Space-

Code Bloom Filter (SCBF). It approximately represents a multiset,
extending the capability of a traditional Bloom Filter (BF) to rep-
resent a set. Given an elementx, it not only allows one to check if
x is in a multiset, but also counts the number of occurrences ofx.
In the following, we describe the design of both BF and SCBF.

A traditional bloom filter representing a setS = {x1, x2, .., xn}
of sizen is described by an arrayA of m bits, initialized to 0. A
Bloom filter usesk independent hash functionsh1, h2, ..., hk with

1. Insertion phase (givenx):
2. i = rand(1, l);
3. Set bitsA[hi

1(x)], ...,A[hi
k(x)] to 1;

4. Query phase (giveny):
5. θ̂ = 0;
6. for(i = 1; i ≤ l; i + +)
7. if (bits A[hi

1(x)], ...,A[hi
k(x)] are all 1)

8. θ̂ = θ̂ + 1;
9. return MLE(̂θ);

Figure 2: Insertion and Query in SCBF

range{1, ..., m}. We refer to this set of hash functions as agroup.
In the insertion phase, given an elementx to be inserted into a set
S, we set the bitsA[hi(x)], 1 ≤ i ≤ k, to 1. In thequery phase,
to check if an elementy is in S, we check the value of the bits
A[hi(y)], i = 1, 2, ..., k. The answer to the query isyesif all these
bits are 1, andnootherwise.

A bloom filter guarantees not to have any false negatives, i.e.,
returning “no” while the set contains the element. However, it may
contain false positives, i.e., returning “yes” while the element is not
in the set. There is a convenient tradeoff between the false positive
and the number of elements the filter tries to hold. It was shown
in [5] that fixing a false positive thresholdγ, the filter can hold the
highest number of elementsn when the parameterk is set to around
(− log2 γ). In this case the completely full filter contains exactly
half 1’s and half 0’s. We refer to this as the “50% golden rule”.

The insertion and query algorithms of SCBF are shown in Fig-
ure 2. In a traditional bloom filter, once an elementx is inserted,
later insertions ofx will write to the same bitsA[h1(x)], A[h2(x)],
· · · , A[hk(x)], and will not result in any change toA. SCBF, on
the other hand, uses a filter made up ofl groups of hash func-
tions {h1

1(x), h1
2(x), ..., h1

k(x)}, {h2
1(x), h2

2(x), ..., h2
k(x)}, · · · ,

and {hl
1(x), hl

2(x), ..., hl
k(x)}. Each group can be viewed as a

traditional bloom filter. In the insertion phase, one group of hash
functions{hi

1(x), hi
2(x), ..., hi

k(x)} is chosen randomly, and the
bits A[hi

1(x)],A[hi
2(x)], ..., A[hi

k(x)] are set to 1. In the query
phase, to find out the number of occurrences of elementy in the
set, we count the number of groups thaty has matched. An element
y matches a group{hi

1, h
i
2, ..., h

i
k} if the bitsA[hi

1(y)], A[hi
2(y)],

· · · , A[hi
k(y)] are all 1. Based on the number of groups thaty has

matched, denoted aŝθ, we use a maximum likelihood estimation
(MLE) procedure to estimate its multiplicity in the SCBF, return-
ing MLE(θ̂). We can precompute an MLE table for all possible
values ofθ̂ so that later decoding involves only a straightforward
lookup. However, the theory behind the computation of the MLE
table is involved and will be discussed in Section 4. We refer to
the scheme as Space-Code Bloom Filter because each group can
be viewed as a code for an element, and in SCBF, multiple groups
spread codes of an element to a larger space.

3.2 Multi-Resolution Space-Code Bloom Fil-
ter

In the Internet, the potential size of a flow can be very high. By
the famous coupon collector problem, alll groups in a SCBF will
be matched at least once after about(l ln l) copies ofx are inserted.
Accurate estimation of the number of occurrences ofx will not be
possible beyond this threshold. Makingl very large does not solve
this problem for two reasons. First, the number of false positives
(noise) become large with largerl, and if the multiplicity of an ele-
menty (signal) is small, the noise will overwhelm the signal. Sec-

1. Insertion phase (givenx):
2. for(j = 1; j ≤ r; j + +)
3. Insertx into SCBFj with probabilitypj

4. /*shown in Figure 2.*/

5. Query phase (giveny):
6. Checky′s occurrences in SCBF 1, 2, ...,r

7. and obtain countŝθ1, θ̂2, ..., θ̂r respectively;
8. returnMLE(θ̂1, θ̂2, ..., θ̂r);

Figure 3: Insertion and Query Algorithms in MRSCBF

Multiplicity

Resolution 1

Resolution 2

Resolution 3

Resolution 4

Resolution 5

Legend

Range of accurate coverage

 Range of coverage

0

Figure 4: The conceptual design of MRSCBF

ond, the storage efficiency of the scheme becomes low as multiple
occurrences of an element are spread to a very large space.

Our solution to this problem is Multi-Resolution SCBF (MRSCBF).
It employs multiple SCBFs, operating at different resolutions. Its
insertion and query algorithms are shown in Figure 3. The inser-
tion algorithm for MRSCBF is a simple extension of that of SCBF.
When a packet arrives, it will result in an insertion into SCBFi
with a sampling probabilitypi. Suppose there are a total ofr fil-
ters. Without loss of generality, we assumep1 > p2 > ... > pr.
The higherpi value corresponds to higher resolution. Our goal is
that elements with low multiplicities will be estimated by filter(s)
of higher resolutions, while elements with high multiplicities will
be estimated by filters of lower resolutions. In the query algorithm,
we count the number of groups thatx matches in filters1, 2, ..., r,
denoted aŝθ1, θ̂2, ..., θ̂r respectively. The final estimate will be
MLE(θ̂1, θ̂2, ..., θ̂r), the result of a joint MLE procedure based on
the observations. Like in SCBF, the decoding table for this MLE
procedure again will be precomputed. However, without any ap-
proximation, its precomputation would take years. We developed
techniques,discussed in section 4.2, to reduce this complexity to
acceptable ranges without sacrificing accuracy.

Tuning the sampling probabilitiesp1, p2, ..., pr, and the num-
ber of groupsl is closely related to the level of estimation accu-
racy we would like to achieve. To achieve theconstant relative
error tolerance(discussed in Section 2.1), the probabilities are set
aspi = ci−1, i = 1, 2, ..., r, i.e., a geometric progression. Here
c < 1 is a constant, which is a function of the number of groups
l. The philosophy behind setting parameters this way is captured
in Figure 4. Each group covers a certain multiplicity range and in
part of this range, it has accurate coverage. When the parameters
p′is are set as above, the accurate coverage ranges of these groups
“touch” each other on the borders and jointly cover the whole mul-
tiplicity range. In an operating MRSCBF we use throughout the
rest of the paper, we setl = 32 andc = 1

4
.

This multi-resolution design works very well for Internet traffic,
in which the majority of the flows are mice but a small number of

large flows (elephants) account for the majority of the packets (the
aforementioned “quasi-Zipf” law). Our design ensures that each
flow will have a resolution that measures its count with reasonable
accuracy. Its storage efficiency is reasonable since the small flows
will not occupy too many bits and the bits occupied by large flows
will grow only logarithmically with their size. However, MRSCBF
pays a little price on storage efficiency for blind streaming, which
is that the high multiplicity elements will completely fill up all the
high resolution filters so that these filters do not carry much infor-
mation1. Nevertheless, this price is moderate because the fraction
of large flows is very small in the Internet traffic.

3.3 Performance Guarantees
In this section, we evaluate the performance of a MRSCBF con-

figured with aforementioned parameters, according to the three per-
formance metrics discussed in Section 2.1, namely, computational
complexity, storage complexity, and accuracy. Letki be the num-
ber2 of hash functions used in a group belonging to filteri. The
computational complexity of the scheme is clearly

Pr
i=0 ki ∗ pi

bits per packet. Whenpi follows geometric progression as above,
this value tends to be small. In our MRSCBF scheme, we setk1 to
4, andk2,...,kr to 6. With other parameters shown above (l = 32,
c = 1

4
), the total complexity is no more than 6 bits per packet.

This would allow us to comfortably support OC-192+ speed using
10ns SRAM. The storage complexity is to a certain extent traffic-
dependent. Experimental results show that we achieve high storage
efficiency on backbone traffic. For example, on one Tier-1 ISP
backbone trace, we found that the storage efficiency is about 2 bits
per packet with an array of size 1MB. In other words it takes about
2 million packets to fill up half of the bits (according to the “50%
golden rule”) in an array of size 1MB. As to accuracy, our estimates
are on the average within 15% of the actual value for flows of all
sizes according to mathematics analysis shown in Section 4.

4. MAXIMUM LIKELIHOOD ESTIMATION
AND ANALYSIS

In this section, we study the mathematics behind the MLE proce-
dure and its accuracy. We also discuss the impact of various design
parameters on the complexity-accuracy tradeoff.

4.1 MLE with observations from one SCBF in
MRSCBF

We first describe the MLE procedure for one SCBF in a MRSCBF.
Let Θ be the set of groups that are matched by an elementx in
SCBFi. We know from the design of MRSCBF that elements are
inserted into SCBFi with sampling probabilitypi. To find out
the number of occurrences ofx from the observationΘ, we use
the principle of MLE, i.e., we would like to findf that maximizes
Pr(F = f |Θ). In other words,F̂ = argmax

f
Pr(F = f |Θ).

However, to computePr(F = f |Θ), we need to prescribe an a
priori distribution forF . We found that, whenF is assumed to
have a uniform a priori distribution,argmax

f
Pr(F = f |Θ) =

argmax
f

Pr(Θ|F = f). In this case, MLE usingPr(F = f |Θ)

produces the same value as MLE usingPr(Θ|F = f)! This sig-

1Note that flows with distinct labels hash to different location in
the filter array. Though a high multiplicity element fills up the high
resolution filter for itself, it does not have any impact at all on the
accuracy of the same filter for other elements.
2Group sizes can be different from one SCBF to another in
MRSCBF.

nificantly simplifies the MLE process sincePr(Θ|F = f) has a
closed form solution (albeit sophisticated).

Now we explain why argmax
f

Pr(F = f | Θ) =

argmax
f

Pr(Θ|F = f), when F has a uniform a priori distri-

bution. By Bayes’ rule,Pr(F = f |Θ) = Pr(Θ|F=f)∗Pr(F=f)
Pr(Θ)

.
Since the valuePr(Θ) on the denominator is a constant, thef
that maximizesPr(F = f |Θ) has to maximizePr(Θ|F = f) ∗
Pr(F = f), the numerator. WhenF has uniforma priori distri-
bution,Pr[F = f] becomes a constant with respect tof and the
result follows.

How to prescribe the defaulta priori distribution (the belief be-
fore any observation) has always been a controversial issue in statis-
tics [10]. It is however a widely acceptable practice to use uniform
as the default when there are no obviously better choices. Assum-
ing uniform as the default is reasonable also for the following rea-
son. It can be shown quantitatively that the evidenceΘ in gen-
eral significantly outweighs the skew caused by any a priori dis-
tribution that is slowly varying. A distribution is slowly varying if
|Pr[F = f]−Pr[F = f +1]| ≤ ε whenε is a very small constant.
Clearly there is no reason to believe that the a priori distribution of
F is not slowly varying.

Now that maximizingPr(F = f |Θ) is the same as maximizing
Pr(Θ|F = f), we can use the following theorem that character-
izes how to computePr(Θ|F = f). Its proof is involved, and
omitted here due to space limitations.

THEOREM 1. Let θ = |Θ| andα be the percentage of “1” in
the MRSCBF. ThenPr[Θ|F = f] is equal to

�
1− αk

�l−θ
fX

q=0

f

q

!
pq(1− p)(f−q)

θX
β=0

"�
θ

l

�q

.

θ

β

!

�
αk
�β �

1− αk
�θ−β

(
1−

θ − β

1

!�
θ − 1

θ

�q

+

θ − β

2

!�
θ − 2

θ

�q

− · · · + (−1)θ−β

θ − β

θ − β

!�
β

θ

�q
)#

(1)

4.2 MLE with observations from multiple SCBF’s
in MRSCBF

Now we describe the MLE process for MRSCBF. LetΘ1, Θ2,
..., Θr be the set of groups that are matched by the elementx in
SCBF 1, 2, ...,r respectively. SinceΘ1, · · · ,Θr are independent,
when independent hash functions are used in SCBF’s, we have

Pr[Θ1, · · · , Θr|F = f] =

rY
i=1

Pr[Θi|F = f] (2)

ThereforeMLE(Θ1, · · · , Θr) = argmax
f

Qr
i=1 Pr[Θi|F = f].

Note thatPr[Θi|F = f] can be computed from Equation 1.
However, although above MLE decoding formula is in principle

correct, it cannot be used in practice since the complexity of pre-
computing the decoding table is prohibitive. We solve this problem
by choosing the observations from the “best three consecutive res-
olutions”, namely,Θj−1, Θj , Θj+1 for a certainj depending on
the specific values of|Θi|, i = 1, 2, ..., r. Our analysis shows that
MLE(Θj−1, Θj , Θj+1) will achieve accuracy very close to MLE
based on all the observations. The theory behind selecting the “best
three” is involved and omitted here due to space limitations.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1-
δ

f

ε=1
ε=0.5

ε=0.25

ε=0.2

Figure 5: Probability that the estimate F̂ is within a factor of
(1± ε) of the actual frequencyF for various values ofε.

5. EVALUATION

5.1 The accuracy of MLE decoding
The accuracy of estimation by a MRSCBF is a function of the

various design parameters, including the number of groups(li),
the sampling rate(pi) (resolution), and the number of hash func-
tions (ki), used in each SCBFi, i = 1, 2, ..., r. The accuracy
of the MLE decoding for a single group can be characterized by
the probability of the estimated valuêF being within the interval
[(1 − ε)F, (1 + ε)F], whereF is the real value. It can also be
characterized as the mean of the difference between the the real
and estimated valuesE[|F̂ − F |]. Both characterizations can be
computed from Equation 2 in a straightforward way.

Figure 5 shows the plot of(1−δ) for different values off , where
1 − δ = Pr[(1 − ε)F ≤ F̂ ≤ (1 + ε)F]. The parameters used
for the MRSCBF arer = 9 virtual SCBFs,l = 32 groups in each
bloom filter, sampling frequencies of1, 1/4, 1/16, · · · , 1/4r−1 for
ther SCBFs andk = 4 hash functions per group in the first SCBF
andk = 6 for the rest. Each curve corresponds to a specific level of
relative error tolerance (i.e. a specific choice ofε), and represents
the probability that the estimated value is within this factor of the
actual value. For example, the curve forε = 0.25 shows that about
80% of the time, the estimate is within 25% of the actual value. The
mean of the difference between the the real and estimated values
(E[|F̂ − F |]) is about 15% of the actual valueF .

5.2 Packet header trace measurements
To evaluate the performance of MRSCBF on real-world Internet

traffic, we experiment on a set of three packet header traces ob-
tained from a tier-1 ISP backbone. These traces were collected by
a Gigascope probe [11] on a high speed link leaving a data center
in April, 2003. Among them two were gathered on weekdays and
one on a weekend. Each of the packet header traces lasts a few
hours and consists of 588∼632 million packet headers and carries
280∼329 GB traffic. The number of unique IP addresses observed
in each trace is around 10 million.

We ran MRSCBF on the packet header traces to estimate the
length of each flow, identified by either the source or the desti-
nation IP address. We observe that MRSCBF is able to process
∼2 million packets before paging to disk with a filter array of size
1MB. According to the “50% golden rule” (Section 3.1), a filter is
consideredfull when half the bits in the array have been set to 1. As
mentioned in the previous subsection, the number of virtual SCBFs
in the MRSCBF used in our experiments is 9. With sampling fre-
quencies of1, 1/4, 1/16, · · · , 1/48, this configuration covers the

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

E
st

im
at

ed
 fl

ow
 le

ng
th

 (
pa

ck
et

s)

Original flow length (packets)

estimated
original

(a)

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

E
st

im
at

ed
 fl

ow
 le

ng
th

 (
pa

ck
et

s)

Normalized rank of flows

estimated
original

(b)

Figure 6: The original and estimated flow length distributions
(both x and y axis are in log scale). (a) Original vs estimated
flow length; (b) Distribution of the original and estimated flow
length.

range of flow sizes from 1 to approximately48 = 65536. To ex-
tend this range of coverage, one simply needs to add more virtual
SCBFs with smaller sampling frequencies to the MRSCBF. Fig-
ure 6 shows the distribution of actual and estimated flow size, in
terms of the number of packets in the flow, in a trace segment con-
taining 2 million packets taken from the large packet header trace
obtained on April 17, 2003. The MRSCBF over-estimated the total
number of packets by about 3%. We obtained similar results over
various segments taken from all three packet header traces. Fig-
ure 6(a) agrees with our theoretical analysis shown in Figure 5. It
shows that MRSCBF achieves a constant relative error tolerance.
Each point in the graph corresponds to a flow, with itsx coordinate
being the actual number of packets in this flow, and itsy coordi-
nate the number estimated by MRSCBF. Note that both axes are
in logarithm scales. The fact that all the points are concentrated
within a narrow band of fixed width along they = x line indicates
that our estimates are consistently within a constant factor of the
actual frequency. Figure 6(b) shows the distribution of the original
and estimated flow sizes (both of them are sorted by the number
of packets in a flow). We found that MRSCBF gives near perfect
flow volume distribution. This is very useful in applications such
as network anomaly detection.

6. CONCLUSIONS
Per-flow traffic accounting is important in a number of network

applications. However, current solutions such as maintaining per-
flow state or random sampling are either not scalable or not accu-
rate. We propose a novel data structure called Space Code Bloom
Filter that performs approximate yet reasonably accurate per-flow
accounting without maintaining per-flow state. It is very amenable
to pipelined hardware implementation since its logic is simple and

it is a write-only data structure (blind streaming). We developed
procedures for estimating the flow volume from observations of
MRSCBF based on the Maximum Likelihood Estimation (MLE)
principle. Our analysis shows that our estimation procedure will
guarantee constant relative error with high probability. We also ex-
periment MRSCBF and its MLE algorithm on Tier-1 ISP backbone
traffic traces. The experimental results agree very well with our
theoretical analysis. In our future work, we will explore the fun-
damental tradeoff between measurement accuracy and complexity,
and apply the SCBF data structure to other network measurement
problems.

7. REFERENCES
[1] C. Estan and G. Varghese, “New Directions in Traffic

Measurement and Accounting,” inProc. ACM SIGCOMM,
Aug. 2002.

[2] “http://www.caida.org,” .
[3] M. Charikar, K. Chen, and Farach-Colton, “Finding frequent

items in data streams,” inICALP. Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, Germany, 2002, pp.
693–703.

[4] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple
algorithm for finding frequent elements in streams and bags,”
ACM Transactions on Database Systems (TODS), vol. 28,
pp. 51–55, 2003.

[5] Burton H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,”CACM, vol. 13, no. 7, pp. 422–426, 1970.

[6] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary
cache: a scalable wide-area Web cache sharing protocol,”
IEEE/ACM Transactions on Networking, vol. 8, no. 3, pp.
281–293, 2000.

[7] S. Cohen and Y. Matias, “Spectral bloom filters,” in
Proc. ACM SIGMOD Conference on Management of Data,
2003.

[8] N. Alon, Y. Matias, and M. Szegedy, “The space complexity
of approximating the frequency moments,” inProceedings of
the ACM Symposium on Theory of Computing, 1996.

[9] E.D. Demaine, J.I. Munro, and A. Lopez-Ortiz, “Frequency
estimation of internet packet streams with limited space,” in
European Symposium on Algorithms (ESA). Lecture Notes in
Computer Science, Springer-Verlag, Heidelberg, Germany,
2002.

[10] P. J. Bickel and K. A. Doksum,Mathematical Statistics,
Basic Ideas and Selected Topics, Prentice Hall, 2001.

[11] Chuck Cranor, Theodore Johnson, and Oliver Spatscheck,
“Gigascope: a stream database for network applications,” in
Proceedings of SIGMOD 2003, Jun 2003.

[12] Cristian Estan, George Varghese, and Mike Fisk, “Bitmap
algorithms for counting active flows on high speed links,”
Tech. Rep., UCSD, 2003.

