
7. SUMMARY
This paper has presented a general model for

machine-generated representations of information useful
for awareness. This model uses logging information
about user activities, and has a number of interesting
properties relative to other awareness schemes.

One of the strengths of the activity-based approach is
that it makes awareness information available in a
format that is easily machine-parsable and -storable,
unlike some other media, such as video. This trait makes
activity-based awareness useful as input to applications,
in addition to as input to users, which has been the
traditional use of machine-augmented awareness.

We have presented an implementation model that
can be used to capture, store, and disseminate awareness
information. This model captures activity as a set of
tuples representing users, their actions, and the objects
of those actions. The object framework, in particular, is
extremely flexible and can represent a wide array of data
types useful to either application-dependent or -
independent awareness.

Finally, we have compared the activity-based
approach to a number of other schemes, including the
awareness information we are presented with in the
physical world. The information available in the
activity-based model can be leveraged by other
approaches to awareness to “fill in the gaps” in the
information presented to users and applications.

REFERENCES
Bly, S.A., Harrison, S.R., and Irwin, S. (1993). “Media

Spaces: Bringing People Together in a Video,
Audio, and Computing Environment.”Communica-
tions of the ACM, 36: 1.

Curtis, P., Dixon, M. Frederick, R., and Nichols, D.
(1995). “The Jupiter Audio/Video Architecture:
Secure Multimedia in Network Places.”Proc., Third
International Multimedia Conference, ACM.

Edwards, W.K. (1994). “Session Management in Collab-
orative Applications.”Proc., Conference on Com-
puter-Supported Cooperative Work (CWCW’94),
ACM.

Edwards, W.K. (1995).Coordination Infrastructure in
Collaborative Systems. Ph.D. Dissertation, Georgia
Institute of Technology.

Edwards W.K. (1996). “Policies and Roles in Collabora-
tive Applications.”Proc. Conference on Computer-
Supported Cooperative Work (CSCW’96),ACM..

Fish R.S., Kraut, R.E., Chalfonte, B.L. (1990). “The
VideoWindow System in Informal Communica-
tions.” Proc. Conference on Computer-Supported
Cooperative Work (CSCW’90),ACM.

Grudin, J. (1988). “Why CSCW Applications Fail: Prob-
lems in the Design and Evaluation of Organizational
Interfaces.” Proc., Conference on Computer-Sup-
ported Cooperative Work (CSCW’88), ACM.

Gutwin, C., and Greenberg, S. (1996). “Workspace
Awareness for Groupware,”Proc., Conference on
Computer-Human Interaction (CHI’96),ACM.

Manandhar, S. (1991). “Activity Server: You Can Run
But You Can’t Hide.”Proc., USENIX Conference,
USENIX Association.

Mantei, M.M, Baecker, R.M., Sellen, A.J., Buxton,
W.A.S., Milligan, T., Wellman, B. (1991) “Experi-
ences in the Use of a Media Space.”Proc., Conf. on
Computer-Human Interaction (CHI’91), ACM.

McGuffin L, Olson, G. (1992). “ShrEdit: A Shared Elec-
tronic Workspace,” CSMIL Technical Report, Cog.
Sci. and Machine Intelligence Lab., U. of Michigan.

Newman, W., Eldridge, M., Lamming, M. (1991). “Pep-
sys: Generating Autobiographies by Automatic
Tracking,” Proc. European Conference on Com-
puter-Supported Cooperative Work (ECSCW).

Neuwirth, C. M., Kaufer, D. S., Chandhok, R., and Mor-
ris, J. (1990). “Issues in the Design of Computer
Support for Co-authoring and Commenting.” Proc.,
Conference on Computer-Supported Cooperative
Work (CSCW’90), ACM.

Root, R.W. (1988). “Design of a Multi-Media Vehicle for
Social Browsing,”Proc., Conference on Computer-
Supported Cooperative Work (CSCW’88), ACM.

Rouncefield, M, Hughes, J.A., Rodden, T., and Viller, S.
(1994). “Working with Constant Interruption:
CSCW and the Small Office.”Proc. Conference on
Computer Supported Cooperative Work
(CSCW’94),ACM.

Smith, I., and Hudson, S. (1995). “Applying Crypto-
graphic Techniques to Problems in Media Space
Security.” In Proc., Conference on Organizational
Computing Systems (COOCS’95), ACM.

Want, R., Hopper, A., Falcao, V., and Gibbons, J. (1992).
“The Active Badge Location System.”ACM Trans-
actions on Information Systems, 10:1, Jan. 1992.

“coverage” and more robust solutions may be obtained.
The activity approach supports integration through the
use of “controller” applications that directly modify the
resource database whenever some condition occurs. In
essence, controllers act as proxies on behalf of non-
Intermezzo-aware applications. For example, an “active
badge controller” can update the location slots of subject
resources with physical position information.

6. NOTES ON AWARENESS
As we have seen, the activity-based approach to

awareness is capable of bringing a wealth of information
into the application domain so that it can be presented to
users. There are other interesting repercussions implicit
in the activity-based approach that may not be
immediately obvious however. This section investigates
these.

6.1. Input to Applications, Not Just Users
In most awareness systems to-date, awareness data

hastypically been used directly by users. For example,
in most mediaspaces, activity is not captured in a
machine-readable form. Rather, it is displayed as video
and left for humans to interpret. The salient components
of awareness are not directly represented in any
computer-based form; they must be extracted by users
from the video.

A number of “activity monitor” applications have
been built that are similar in principle to the awareness
approach used by Intermezzo (Manandhar, 1991, and
Newman, 1991), but still these systems generate data for
direct human consumption only. Typically the activity
data is sent to a client application which presents it in a
window on the user’s desktop.

In contrast, one of the goals of the activity-based
approach used by Intermezzo is to make it possible for
applications to behave intelligently in the presence of
information about user activity. That is, just as users are
aware of the presence and activity of other humans, so
can applications be made aware of their users.

As an example, consider a computer-based
teleconferencing application that could be made aware
when one of its users is on the phone. The application
could mute the audio from the conference, and notify
other participants that the user is engaged in another task
that demands auditory attention.

As another example, consider a collaborative editing
system in which a user invites another to join the
session. The editing tool could be written to analyze the
potential collaborator’s location and tasks in an effort to

determine if the recipient should be disturbed, or if the
request for collaboration should be delayed.

Further, the collaborative toolkit itself can use
awareness information to enhance its functionality.
Intermezzo uses awareness data as an input to regulate
its policy (Edwards, 1996), access control, and session
management mechanisms (Edwards, 1994).

6.2. Policy and Access Control is Essential
One obvious concern about bringing awareness into

the environment is that the availability of such
information is potentially a huge privacy violation.
Capturing and potentially storing detailed information
about the whereabouts and activities of users requires
provisions for strong security guarantees about access to
this information.

Acknowledgment of the security risks inherent in
awareness systems has been noted many times,
particularly in the case of mediaspace systems (Smith,
1995). In almost all mediaspace studies, there are a
number of potential users who refuse to use the system
even though (a) there is strong physical security (users
can simply cover the camera), and (b) storage and
machine processing of mediaspace data is not feasible
with current technology.

Certainly the security concerns present in
mediaspace systems are present in an activity-based
awareness system. If anything, the concerns are greater
since a machine-parsable representation of the
information is readily available. Thus, security and
access control schemes are of paramount importance in a
coordination support system that makes awareness data
available to users and applications. Intermezzo uses a
novel approach in which the awareness system itself is
used to regulate access control to awareness data objects.
This scheme is discussed in detail in (Edwards, 1995).

6.3. Persistence Adds Value
A third point to make about activity-based modeling

is that persistence can significantly increase the power of
the system. The activity-based approach is particularly
useful for capturing the real-time aspects of awareness:
the instantaneous condition of the collaborative world
and the users in it. The ability to support some persistent
data (subjects, for example) is quite useful, and
persistence has other uses that have not been fully
explored by this research. Two obvious uses are the
collection of user statistics, and a form of organizational
memory “on the cheap” (by remembering who within an
organization has written to a document, for example).

be able to capture some of these complex user states,
although even they still have limitations, due to artifacts
in the quality of video and audio for example.

A final limitation is that the computer must still
decide how to present and use awareness information
once it has been collected. In the real world, collection
and presentation of awareness information are
synonymous, at least when performed first-hand: a user
sees a coworker and is instantly aware of a wealth of
information. The Intermezzo model only specifies a
structure for the representation of awareness data. It does
not specify how this information will be presented, or
even when or if it will be presented. Again, applications
must make intelligent decisions about the presentation of
awareness for the information to be usable at all.

5.2. Comparison with Other Computer-
Based Approaches

Comparison with other computer-mediated
awareness systems is also useful. While the activity-
based approach has certain limitations and benefits with
respect to “real world” awareness, we shall see that it has
a different set of strengths and weaknesses relative to
other computer-based schemes.

Two common approaches to computer-supported
awareness have been investigated. The first and most
common is awareness through computer-mediated audio
and video. The second is the use of active badges. Each
approach has its own strengths and weaknesses relative
to the activity-based scheme, and yet these approaches
can be integrated together to complement one another.

Video monitoring systems, generally characterized
as mediaspaces, support awareness of the locations and
actions of others through a near-constant video presence
(Cavecat (Mantei,1991), and so on). Some go beyond
the simple connected-office approach to provide a
locality-based metaphor for interaction (Cruiser (Root,
1988), Jupiter (Curtis, 1993)). In these systems,
awareness is regulated and filtered by co-presence in a
virtual space.

Video-based systems, rather obviously, provide
high-quality indications of events and situations in the
physical world: physical location, physical tasks, facial
expressions, and so forth. Such systems, however,
provide few if any cues about computer-based tasks and
activities. Information about the virtual world can only
be inferred from physical side effects.

Another difference is that the awareness information
received from a video monitoring system is readily
available to humans, but difficult to mechanically parse
and store. Activity-based approaches have an opposite

set of trade-offs. They provide information that is easily
machine-representable, but applications must bear the
burden of parsing and presenting the data to users.

The second common computer-based approach to
awareness is the use of active badges (Want, 1992).
Active badges are devices worn by users which update a
global location database as the position of the wearer
changes. Rooms in the work area must be equipped with
sensor devices to receive the data transmitted by the
badges.

Information about physical location and co-presence
is the onlydirect information provided by active badges.
Other types of awareness information must be inferred
from location. For example, the location of a coworker
in a boss’s office may be an indication of interruptibility.

An advantage of active badge systems over video
monitoring is that the information is available in a
convenient machine-parsable format.

5.3. Summary of Comparisons
A summary of the three computer-based awareness

approaches, video monitoring, active badges, and
activity-based, as well as “real world” awareness, is
presented in Table 3 below. The last row in the table

indicates how amenable the approach is to automated
machine-parsing. Some approaches generate data that is
more easily represented and stored by computer; the
aspect of parsability will be discussed more fully in the
next section.

Together, the strengths and weaknesses of the
activity-based approach along with those of other
approaches suggest that an augmentation may be
effective—by combining multiple approaches better

Activity
Based

Active
Badges

Video
Monitor

“Real
World”

Location

Tasks

Interrupts

Co-pres

Parsable?

= Supported

= Not Supported

= Partially Supported

Table 3: Comparison of Awareness Approaches

directory of the file, as well as the file itself, will be
generally useful to a number of applications.

Other layers will be domain-dependent. Practically
anything below the granularity of “file” will only be
understood by applications that have the domain
knowledge to interpret the object. For example, the
notion of figures in a drawing only has meaning to
drawing applications; other tools do not have the domain
knowledge or infrastructure to interpret such constructs.

The Intermezzo model represents objects as a list of
resources that model the particular artifact at a range of
granularities. The toolkit supports several domain-
independent layers, namely files, directories, and hosts.
Applications are responsible for supporting new layers
of the artifact hierarchy that represent domain-dependent
views of the artifact—the toolkitcannot provide this
support, since it is domain-dependent.

Table 2 shows an example of an object list
representing the hierarchy used to model a particular
artifact, in this case a figure in a drawing. The first

column denotes the artifact, viewed at a particular
granularity. The second column provides a description
of the artifact viewed at this granularity. The third
column represents whether the view is domain-
dependent or domain-independent. The example shown
here uses a number of layers to represent the artifact: the
network domain containing the host the artifact resides
on, the host itself, the components of the path leading to
the file containing the figure, the document containing
the figure, and the figure itself.

Note that there are any number of possible additional
layers in this hierarchy. Coarser-grained interpretations

Artifact Description Domain

Network domain of
host.

Environment

Host fileserver Environment

Directory path. Environment

Document. Environment

Figure within file. Application

Table 2: Example of Object Hierarchy

parc.xerox.com

chagall

/

paper

figure 3-7

are possible, as are domain-specific intermediary layers
representing constructs such workgroups and projects.

The hierarchical representation of artifacts provides
information needed by applications to interpret user
activity. Applications can decide at what granularity a
given artifact is relevant to them, and interpret the
artifact accordingly.

5. EVALUATION
5.1. Comparison with the “Real World”

Comparing the activity-based approach to awareness
with the non-machine augmented, “everyday” awareness
of others that we commonly experience is instructive,
because the comparison offers a common point of
reference, and can help identify deficiencies in the
activity-based approach.

The most problematic limitation with the activity-
based approach is that information is not “free for the
taking.” In the real world, users simply look around to
gather a rich array of information about user activities,
locations, and so forth. Humans are adept at determining
interruptibility, and other socially-influenced aspects of
awareness. As Rouncefield,et al., (Rouncefield, 1994)
state, the “ecology of the office provides, to those who
know it, the ‘at-a-glance’ availability of what people are
doing, what state they are at, how quickly they are
getting the work done, and so on.”

In comparison, the activity-based approach requires
extensive application cooperation to function
effectively. In fact, awareness is one of those situations
in which nearly total “buy-in” is required for maximum
utility. Similar effects are seen in group calendar tools,
where virtually everyone in a work group must use the
system without fail for it to function at all (Grudin,
1988). With the Intermezzo approach, applications must
cooperate with the runtime system to facilitate
awareness.

This requirement for application cooperation is not
present in some other computer-based awareness
systems, notably mediaspaces, where there is only one
stand-alone application that must be run to enable
awareness. Users do not have to change their behavior to
take part in the system, since mediaspaces essentially
“transplant” the remote physical space, along with its
associated cues, to the user.

A second important limitation is that some user states
are not well-captured by activity. For example, user
moods cannot be modeled by this approach. Physical
location must be inferred from where applications are
being run. Systems that are more like mediaspaces may

Object Resources
Objects represent the focus of a task: the “thing” on

which the task is operating. Objects can represent an
essentially infinite set of entities on which applications
can operate. Common types of objects include files,
calendars, database selections, and so forth.

Because of the need for flexibility in representation,
objects are more complex than either subjects or verbs
For any given task, Intermezzo must be able to generate
an object instance that uniquely identifies the thing on
which the task is operating, no matter what the type of
that thing may be.

We require objects to have the property that there is a
one-to-one mapping between an instance of an object
resource and the physical entity to which it refers. That
is, given an object, one can determine the physical thing
it is modeling; and given any physical artifact, it is
possible to generate a unique object for it.

The Intermezzo toolkit provides support for objects
in the form of a framework for generation, comparison,
and retrieval of objects. Individual applications must
implement code to generate unique objects for the
particular data types on which they operate. Since the
object of a given application is domain-dependent,
Intermezzo cannot knowgenerally how to interpret a
given artifact, or even how to generate a one-to-one-
mapping to an object instance.

Intermezzo does provide support for generating
objects for the most common artifact type: files. The
system can uniquely generate objects for any file
anywhere in the network. Note, however, that because of
application requirements, even the interpretation of files
varies from application to application. Developers are
free to interpose their own interpretations into the object
generation sub system. The section “Granularity and
Hierarchy” has more information on defining objects.

Many of the slots in objects are domain-dependent,
based on the type of the object. Hence conventions about
the definition of these slots are left to the applications
that use them. The generic framework established by
Intermezzo does enforce a set of slots that are present in
all objects and are used for generation and comparison.

The “namespace” of an object defines a particular
type of object. For example, files, calendars, and
database selections are all represented by different
namespaces. Within a given namespace, the name slot
uniquely identifies the object as distinct from “siblings”
that share its namespace (that is, they are different
instances of things with the same type).

The common slots in the generic object framework
are represented in Table 1 below.

Comparison of object resources requires comparison
of both the namespace and the name. The namespace
ensures that no “apples and oranges” comparisons are
performed (files and calendars for example); names
ensure distinction within a particular type of object
(“file1” and “file2” for example).

4. GRANULARITY AND HIERARCHY
One consideration when generating a resource that

represents the focus of a task is that applications differ in
what aspect of that focus is relevant. For example,
consider a user editing a file with a drawing tool.
Applications may consider any of a number of
characteristics of the object (the file) salient. A project
manager tool may need to track when changes are made
to any files within a certain directory. Tools specifically
built for collaboration may have an even finer-grained
focus: a collaborative drawing tool may consider the
particular figure within the file currently being
manipulated a salient feature of awareness.

Because of the fact that different applications may
consider any number of attributes of an artifact salient,
simply representing objects as single entities is
insufficient. We need a scheme that represents the
artifact at a number of granularities: from the machine
the artifact resides on, to any containers the artifact may
be embedded in (directories in the case of files), to
individual components of the artifact that represent the
user’s current focus (such as figures in a drawing).
Objects are represented as hierarchies, with each layer in
the hierarchy providing aview of the object at a given
granularity. As we descend the hierarchy, features
hidden in the “large-scale” view become apparent.

In many cases, layers in the hierarchy will be
domain-independent. For example, many applications
manipulate files. An infrastructure that can generate
objects representing the host the file resides on, and the

Attribute Description

Namespace The type of the object, represented as a
string.

Name A domain-dependent identifier for the
object, valid within its given namespace.

Printable
Name

A human-readable string which can be
used to identify the object.

Activities Back-links to the activities containing this
object resource.

Table 1: Object Resource Attributes

resources, which represent a space that may be searched
using sophisticated search operations (see). Figure 1
shows an application running on a client machine
publishing an activity record on the Intermezzo server.

3.2. Activity Components in Detail
In large part, the degree to which the Intermezzo

model satisfies the facets of awareness mentioned in
Section 2 depends on two factors:

• The information associated with each resource.
• The conventions followed by applications and users

for publishing activity records.
By pushing a large amount of information about user

activity into the environment, we can satisfy a wider
range of awareness needs. A richer array of information
means that more applications can benefit from the data
collected by the awareness system. This section details
the information that Intermezzo stores in the global
environment as represented by the resources used by the
awareness system.

Activity Resources
The Activity resource captures the notion of a single

user engaged in a single task on some particular artifact.
Activity resources serve as containers for the individual
components of an activity: Subjects, Verbs, and Objects.
The individual attributes of an Activity resource are
links to instances of these resource types, which are
described in more detail below.

Subject Resources
Subject resources represent single users of the

system. The slots in a subject resource constitute a

Figure 1: An Application Publishes an Activity
Record

keith 12% emacs ~/.plan

Client

Server

Resource Database

Subject Verb Object

“keith” emacs ~/.plan

“single-source” repository of information about a user,
and can be used by a variety of applications.
Applications are free to access and, given authorization,
update slots in subjects.

The slots present in the resource are extensible—
applications that need to associate new data with users
can add slots as needed. By convention a number of slots
are always present—their availability is guaranteed
when Intermezzo generates subject resources.

Subject slots include general identifying information
such as name, email address, and so on. Subjects also
include “back links” to the activities that contain it.
From the activity resource, current tasks and objects may
be derived. Thus it is possible to generate a complete list
of current applications and open files from a given user.

Note that subject resources represents fairly static
data. With the exception of the activities slot which, by
convention, is updated whenever new activities are
created, the data maintained by subjects represent rarely-
changed attributes of a given user. For this reason,
subject resources are persistent by default (they are long-
lived, and survive the termination of any given session
or user program). Without persistence it is impossible to
refer to a user who is not engaged in any activities.

Other resources in the activity record—verbs and
objects—are not persistent by default, since they
represent transient states. Human beings, in contrast, are
by-and-large long-lived entities, at least in the time span
represented by computer applications.

Verb Resources
Verbs represent single tasks. A user engaged in

multiple tasks will have multiple activity records, each
containing a unique verb representing the task. Multiple
verbs will be instantiated if the user is running multiple
instances of the same task.

Verbs capture information associated with a single
active process in the system. Like subjects, the slots
associated with verbs can be extended by applications. A
set of common slots are agreed upon by convention and
implemented by Intermezzo. Common slots include the
application name, start time, idle time, location
(hostname), and a back link to the activity resource
containing the verb.

Some of this information is static and can be
determined at application start-up time (application
name, start time, location). Other information, namely
idle time, requires application intervention to maintain.

Both the sheer volume and the richness of prior work
illustrate the perceived value of augmented awareness
by the research community. Perhaps more importantly,
the reported experiences of users when participating in
such systems is indicative of their value—userslike
working with these awareness systems (Fish, 1990).

This paper presents a model of human awareness
based onactivity monitoring which is useful in either
application-dependent or -independent settings.
Activity-based awareness can provide a wealth of useful
information for coordination. Further, it can deliver
information that is complimentary to other approaches.
This model has been implemented using the Intermezzo
collaboration support environment (Edwards, 1995). We
present a systematic format for representing activity,
examine the utility of this approach to awareness, and
compare it to other awareness schemes.

2. AWARENESS THROUGH ACTIVITY
Gutwin and Greenberg report in (Gutwin, 1996) a set

of facets of awareness that should be considered when
developing computer-augmented awareness systems:

• Presence. Who is participating in the activity?
• Location. Where are they working?
• Activity Level. How active are they in the workspace?
• Actions. What are they doing?
• Intentions. What will they do next?
• Changes. What changes are they making and where?
• Objects. What objects are they using?
• Extends. What can they see? How far can they reach?
• Abilities. What can they do?
• Sphere of Influence. Where can they make changes?
• Expectations. What do they need me to do next?

The activity-based awareness approach used by
Intermezzo can facilitate a number of these components
of awareness. In particular, this approach provides
information about presence, location, activity level,
actions, changes, and objects.

This work presents a model in which applications
cooperate to capture activity information. That
information is then represented in a form that makes it
readily available to other applications—and to users via
applications—that need awareness of others.

3. AWARENESS IN INTERMEZZO
This research takes the approach of promoting

awareness by modeling user activities. Activities are
represented as a tuple called anactivity record:

S is theSubject, or the user involved in the activity.V
is theVerb, or the current task the user is engaged in.O
is the Object, or the “thing” being operated on. The
activity record tuple captures the notion of one user
engaged in a single particular task, on an object or set of
objects.

This approach has a number of important benefits:

• Information can be collected by a relatively minor set
of extensions to applications or toolkits.

• Activity-based awareness satisfies many of the facets
of awareness.

• Activity information is easily parsed and stored, and
access can be controlled at a fine granularity.
This model has been implemented and explored

using the Intermezzo collaboration support environment.

3.1. Implementation
Intermezzo presents to application writers a simple

replicated object store. Intermezzo objects, called
resources, can be shared, searched, and protected via
access control lists. A server process coordinates access
to shared resources from client applications. The abstract
activity model presented in this paper has been
implemented directly atop the Intermezzo object
foundation: subject, verb, and objects are represented as
types of Intermezzo resources. Each of these types has
its own set of slots (member data) that maintain
information relevant to instances of that type.

As we shall see, the generation of subjects and verbs
is quite simple. Reliable and semantically-meaningful
generation of objects, on the other hand, requires much
support from the runtime environment.

By convention, all Intermezzo-aware applications
publish activity records when they run. Thus,
applications are responsible for keeping the “picture” of
the user up-to-date. Users are known in terms of their
activities, and the objects of those activities. In essence,
users are modeled in terms of their behaviors.

Consider an example: the user “keith” edits a file
using an Intermezzo-aware editor. The editor retrieves
the information needed to construct resources
representing the user, the application, and the edited file.
These resources are combined into an activity record and
is published to the Intermezzo runtime service. Once
published, the activity record and its components are
available to any application that has the proper
authorization to examine them.

The global “context” in which collaborative
applications are operating comprise a number of

An Sn Vn On, ,{ }=

Representing Activity in Collaborative Systems

W. Keith Edwards

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

+1-415-812-4405
kedwards@parc.xerox.com

computer-augmented approaches have proven useful for
promoting awareness information among participants
and potential participants in a collaborative endeavor.

Computer-mediated awareness can be roughly
categorized into two forms: awareness inapplication-
dependent andapplication-independent contexts.

In the application-dependent domain, programs must
convey a sense of the actions of users within the
application: what objects are they manipulating, and
what actions are they taking, in the space of objects and
actions provided by the application. Examples of
systems that provide this form of awareness include
ShrEdit (McGuffin, 1992), and PREP (Neuwirth, 1990).
For example, in the ShrEdit shared editor, users are
presented with a “Gestalt” view, which shows the
(virtual) location of participants in the editing session,
and highlights their foci in the document.

In the application-independent domain, awareness
systems try to convey a sense of the user’s place within
the world, instead of the user’s place within an
application. The goals of this form of awareness closely
resemble those of “real world” awareness: provide
information about location and activity to support
coordination, and be useful in a pan-application context.
Most current examples of application-independent
awareness aremediaspace-like (Bly, 1993) systems in
which the computer is used as a facilitating device for
propagating video from cameras mounted in the physical
work space. We can see and hear the context of users in
the physical world, and these real-world cues are
translated into the computer-mediated world.

ABSTRACT. Awareness is an important concept in
coordination and collaboration at large. Based on prior
research in awareness for collaboration, this work
presents a data model for representing information about
user activity. Fine-grained activity information can be an
important tool for facilitating awareness in workgroups.
Further, unlike some forms of information used for
awareness, activity data is easily stored and parsed. This
representational model is implemented atop the
Intermezzo collaboration framework and provides a
systematic approach to capturing information about
users spread across a network.

KEYWORDS: computer-supported cooperative
work, awareness, coordination, Intermezzo.

1. INTRODUCTION AND PRIOR ART
Collaborative software, by definition, involves the

interaction of multiple people working together to
accomplish some task. In most current collaborative
settings, these users are likely to be distributed in space
or, in the case of asynchronous systems, even distributed
in time. To interact more effectively, users need to be
aware of others: their presence, actions, and so forth.
The goal of awareness is to promotecoordination among
users: making their interactions more efficient and fluid.

In the “real world,” users maintain an awareness of
others through a number of sources: peripheral sounds,
quick glances, information passed along from others. In
an attempt to provide some of the benefits of real-world
awareness in the computer domain, a number of

