Designing and Implementing Asynchronous
Collaborative Applications with Bayou

W. Keith Edwards, Elizabeth D. Mynatt, Karin Petersen,
Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
{kedwards, mynatt, petersen, spreitzer, terry, theimer}@parc.xerox.com

ABSTRACT Asynchronous systems, however, present a number of
Asynchronous collaboration is characterized by the degregnique challenges to designers and builders of collaborative
of independence collaborators have from one another. Igystems, from both the human and the technological
particular, collaborators working asynchronously typicallyperspectives. Asynchronous systems are appealing because
have little need for frequent and fine-grained coordinatiorthey allow their users to manipulate time and space to their
with one another, and typically do not need to be notifiedwn advantage—users can work when and where they
immediately of changes made by others to any sharguease, without being constrained by the schedules or
artifacts they are working with. We present an infrastructurdpcations of others. This style of work, and the settings
called Bayou, designed to support the construction ofvhere asynchronous systems are deployed, have
asynchronous collaborative applications. Bayou provides mnplications for the design of infrastructure and applications.
replicated, weakly-consistent, data storage engine tAsynchronous systems must accommodate groups of largely
application writers. The system supports a number ochutonomous users, perhaps only loosely connected to each
mechanisms for leveraging application semantics; usingther at any given time.

these mechanisms, applications can implement complef(h

conflict detection and resolution policies, and choose thﬁ1 general, and asynchronous systems in particular. We

level of consistency and stability they WI.|| see in the'rexamine the reasons that users opt for asynchronous
databases. We present a number of applications we ha

built or are building using the Bayou system, and examin?fﬁeractlon, and the implications of those choices for

. ‘aesigners of collaborative infrastructure and applications.
how these take advantage of the Bayou architecture. We also present a system, called Bayou, designed to support

. data sharing by groups of individuals working together.
KEYWORDS: computer-supported cooperative work

is paper explores design issues for collaborative systems

asynchronous interaction, distributed systems, Bayou. ~ Bayou is an infrastructure for supporting distributed and
collaborative applications in which all user interaction
INTRODUCTION involves reading and writing a shared, replicated database.

Collaboration involves sharing: the sharing of data, artifactsJnlike many infrastructures for collaboration, Bayou is

context, and ultimately ideas. The CSCW community hagapable of operating over a range of connectivity
often categorized collaborative systems based on tHEArameters, from high-bandwidth and constant connectivity,
temporal aspect of sharing: applications in which users shaf@ |0W-bandwidth and only occasional —or unreliable
some “thing” at the same time are called synchronou§9nneCt'V'ty' as in the case of mobile users. Bayou is a true

Applications in which the users share that thing at differenfiStributed - system—meaning that there is no single
times are called asynchronous. centralized location at which data is stored—with weak

consistency among replicated data.
Synchronous applications, typified by such systems aa id hani f lication build
ShrEdit [15][18] and SASSE [1], are highly-interactive, 2YOU Provides mechanisms for application builders to

“real-time” systems in which a group of possibly distributeddescribe the semantic constraints of their applications to the
users interact together to achieve some result. Much of theY

stem. These mechanisms allow applications to supply their
recent research into collaboration, with the exception of

wn data-integrity constraints, conflict detection and

electronic mail [7] and occasionally group editing studieg©solution procedures, and data propagation policies.

[17] has focused on new tools and techniques to suppaih the following section, we discuss some of the

synchronous collaboration. characteristics of asynchronous work, and the properties of
asynchronous work that make it desirable for many forms of
collaboration. Next, we examine the impact of these

Copyright © 1997, Association for Computing characteristics on infrastructure and application design—of

Machinery. Published in Proceedings of Tenth necessity, any system for supporting asynchronous work

ACM Symposium on User Interface Software and must be informed by the properties of such work
Technology (UIST'97), Banff, Alberta, Canada. y brop '

October 14-17, 1997.

Then, we describe the Bayou infrastructure. We detail thEurther, asynchronous tasks that center around some shared
goals of the system, how it works, and the implications ofrtifact do not typically require that all participants
Bayou for application builders. To demonstrate how Bayoummediately know about changes to that artifact. In fact, in
supports the design of asynchronous systems, we describe@ne cases such knowledge may be detrimental because it
set of applications built on top of Bayou. These applicationsdlisrupts individual efforts and may incur coordination
span a range of complexity and interactivity, and eacloverhead, when such operations may be more profitably
presents a set of lessons for infrastructure builders ardeferred to later.
application writers.

SUPPORTING ASYNCHRONOUS COLLABORATION
CHARACTERIZING ASYNCHRONOUS COLLABORATION The properties of tasks, work practice, and technology that
Asynchronous collaboration is typically characterized adend themselves to asynchronous interaction point to
“different place/different time” collaboration. This infrastructure traits that can support applications for
characterization is often too simplistic, however. For manyasynchronous tasks.

asynchronous systems, the defining characteristic is not the,o o qence points to the need to “insulate” collaborators
fact that the collaboratiodoesn'thappen at the same time, from the actions of others—collaborators should be able to

frar:ihser dtiggaclzttri]grfdir; t Qgtcessi?ﬁmllhagper; di[niihce iﬁgii:'rﬁgsoperate with limited interference from or coordination with
implications for designers ofarl)ylicati%ns and infrastructureomers' In_particular, they should ‘be able dontinue
P 9 PP working, regardless of the actions taken by coworkers.

In an asynchronous setting, the reason that collaboration c&eplication of data is often a useful means for achieving

happen at different times is because the users do not neednidependence of work. Replication can separate the actions
coordinate with one another interactively, and do not need tof users from their colleagues, providing performance, fault-

be notified in “real time” of each other's changes to theolerance, and the ability to locally integrate changes before
artifacts they are sharing. Certain collaborations may lenteleasing them to the world at large.

themselves to this style of interaction because of the natu
of the task itself, the work practices of the participants, or th
state of the technology at hand.

Gne of the strongest forms of independence is the ability to
fork completely disconnected from the network and, by
implication, other users. The desire to support disconnected
Tasks that are suitable for this style of work often requireise means that users must be able to view, update, and add to
little interactive coordination and sharing of work. their own private replicas of data even when they are not on
Collaborators typically can work independently for periodsthe network. This constraint requires us to support replicas
of time, and there is little need for instantaneous propagatiathat are only weakly consistent with one another. If we
of results. required strong consistency then all parties would have to be

Work practices that favor asynchrony are characterized bﬁ{)dnnectzd at ?" times, andhusers would lose a degree of
people exploiting time and space to work at their ependence from one another.

convenience and with limited disruption. Such practices mayVhile eventual consistency of replicas is desirable, users
come about because of setting (time zones that prevealso need to control when information is shared with other
collaborators from working at the same time, for instance)sers. Applications such as word processing or software
or personal desire (minimization of interruption by lettingdevelopment might require explicit control over information
telephone calls “roll over” to voice mail for example). propagation. For example, in the case of collaborative
software development, users often wish to ensure that

Technological constraints may also favor asynchrony:; : ;
Common examples of these include limited networkupdates are withheld until a complete, coherent, and stable

bandwidth that prevents fine-grained or timely sharing opicture of the code is available.

information, and disconnected use (such as using a laptop &mally, since asynchronous interaction often relies on the
an airplane) that separates collaborators. fact that collaboration can be achieved even in the face of
t1|1(1inimal coordination among users, support for automatic
résolution of conflicts can help reduce the need for
ﬁoordination. If we can mechanically deal with conflicts, we
can relieve uses of the burden of “by hand” coordination
about their shared artifacts. To be usable by a range of
In such work, the need for coordination—communicationapplications, the conflict facilities must be able to implement
aboutthe collaboration—is lessened, or at least less frequeapplication-specific policies about how to deal with
than it is in synchronous work. For example, collaborativeconflicts. Succinctly, applications must be able to provide
paper writing—at least in the non-computer mediated case-their own semantics about how to resolve conflicts
typically involves fairly infrequent coordination. Authors automatically.

work largely independently, “syncing up” only when
necessary to integrate results, or to reaffirm goals or pla
[17].

Independence is perhaps the key trait of asynchronous wo
In asynchronous interaction, collaborators, while still
operating on some shared set of data, context, informatio
or artifacts, do so largely independently of one another.

'1% the following section we describe a system called Bayou
at satisfies these requirements for supporting asynchronous
collaboration.

BAYOU OVERVIEW write operations and by providing propagation guarantees.
Bayou is a replicated, weakly consistent storage systef@ach write carries enough information so that a Bayou server
designed to support collaborative applications in distributedan apply the writes it has received in the correct order
computing environments with varying network connectivitywithout coordinating with any other server.

[22]. A typical example of such an environment is a system , , L ,

with mobile hosts that may disconnect over periods of timeBayou's Mechanisms for Application Semantics ,
connect only through low-bandwidth radio networks, orOne feature that distinguishes Bayou from previous
connect occasionally with expensive cellular modems. Itéeplicated storage systems including Ficus [12], Coda
model for replication and weak consistency—allowing[14][21], and Lotus Notes [13] is that applications can
disconnection of servers from the network—is designed t§NPOse their own semantics on the operations executed at a
support extreme scalability, up to “world wide” applications.'eplica. To this end, Bayou reads and writes are not the
Bayou relies only on pair-wise communications betweersimple operations supported by most databases. Instead they

ComputerS’ which allows the System to Cope with arbitrarg,nclude additional_ applicatio_n—supp_lied informa!:ion, which
network connectivity. ensures that applications will receive the required level of

_— . . service from the system.
Bayou applications can read from and write to any available

replica without the need for explicit coordination with otherBayou’s mechanisms for supporting application semantics
replicas. Every replica eventually receives updates from affll into six categories:

other replicas through a chain of pair-wise exchanges af Application-defined conflict detection.

data. To handle the update conflicts that naturally arise in L) . .
such a weakly consistent system, Bayou allows applications APPlication-defined conflict resolution.
to specify how to detect and resolve these conflicts. Im Selection of session guarantees.
addition, Bayou allows applications to select or specify g
number of other policies that control how and where read
and write operations get executed. * Replica selection.

Selection of committed or tentative data.

These characteristics make Bayou well suited for building Selectable anti-entropy (data propagation) policies.

wide-area asynchronous collaborative systems. _) _ , .
Conflict Detection and Resolution. The first two semantic

The Bayou System Model categories are provided through the Bayou write operation,
In Bayou, replication is managed by Bayou servers. Eachnd are designed to detect and resolve the conflicts that arise
server holds a complete replica of the data. The data model a weakly-consistent system. In Bayowyrite consists of
provided by the current implementation of Bayou is athree components:

relational database, although otlher data models could pe Dependency Check

used as well. We chose a relational model because of its
power and flexibility. In particular, it naturally supports fine- ®* Update Set

grained,_ structur_e_d access to the data_\, which is useful fc_)r the Merge Procedure

application-specific conflict detection and resolution . N

mechanisms described below. Higher-level application] hedependency cheslpecifies a set of conditions that must

defined data constructs can be created in terms of the ddigld so that thaipdate setan be applied to the replica’s
model provided by the relational database. database. A dependency check consists of a query to be

) . . performed at the database and the expected result of that
As mentioned above, Bayou replicas are weakly consisteryyery. If the actual result matches the expected result, then

That is, at any point in time different servers may have seee (pdate set in the write is applied to the database. The

different sets of updates and therefore hold different data igngate set consists of insertions, deletions, or modifications
their databases. Weak consistency distinguishes Bayou fro tuples in a relation.

many of the replicated systems designed in the CSCW . o -~
community [3][10]. Some -collaborative and distributed If th_e dependency check fails, an appllcatlon-spemﬂc.
systems infrastructures use fairly strong forms ofconflict has been detected and the merge procedure is
consistency, usually based on pessimistic locking. That i€xecuted. Thenerge procedureor “mergeproc” in short, is a
before data can be modified it must be locked to ensure thiggment of code in a high-level interpreted mergeproc
its access is serialized. Such strongly-consistent schemi)guage intended to generate an alternate update set to be
ensure that applications always see a consistent picture of tABPlied to the database. Mergeprocs support application-
data. However, they do not support weakly-connecteﬁ'ef'nEd conflict resolution, meaning that conflicts are

applications, and do not scale to the global applicationgssentially handled through application code, even though
envisioned by Bayou. that code is executed by the Bayou infrastructure itself. We

_ . shall see some examples of mergeprocs in our discussion of
Much like Lotus Notes [13], Bayou applications are free toapplications.

read and update replicas at will, without locking. Bayou ’ .]
guarantees that the distributed storage system will mov@ayou's use of mergeprocs differs from systems like Coda
toward eventual consistency by imposing a global order oR41[21] and Ficus [12], which also support application-

supplied conflict resolution, in that Bayou allows differentwhen no new writes will ever be received by the server that
resolution procedures to be associated with each individuatill have to be ordered before that write. When a write
write. Thus, Bayou provides applications with more fine-becomes stable at a server, its conflict detection and
grained control over conflict handling. Furthermore, becauseesolution mechanisms will not be executed again, which
the conflict resolution procedure propagates with the write imeans that its final effect on the database is known. On the
is available at each server when needed. other hand, a write that is not yet stable at a server is deemed

The mechanisms for automated conflict detection andfMtative Tentative writes may need to be re-executed if
resolution are important for supporting asynchronou&ther writes with earlier write-stamps are received by the

collaboration, because they eliminate situations where useggrver, and thus have a possibly changing effect on the

would otherwise be required to interact closely when face atabase.
with data conflicts. Hence, Bayou allows users to act mor&he distinction between tentative and stable data is
independently. important from the application’s perspective. An application

) . . _can be designed with a notion of “confirmation” or
Session Guarantees. The session guarantees mechanism iScommitment” that corresponds to Bayou’s notion of
used by an application to establish a required level ofiapijity. For example, color codes can be used in a graphical
consistency for its own operations. That is, while a set Ofiser interface to indicate whether a displayed item is

Bayou servers maintain data that is only weakly-consistent, @ntative, that is, may change later because of conflict, or is
running instance of an application can request that its VieWaple and will not change due to conflict,

of the world maintain a particular level of consistency.))
Different applications may have different requirements foBayou also allows clients to choose whether they will read
their desired level of consistency, and Bayou supports #om the database when tentative data has been applied, or
range of applications needs through this mechanism. only from the view of the database that corresponds to
. . . applying only stable writes. This ability allows clients to
A sessioris an abstraction for a sequence of reads and Wmf;de data availability for assurance of data stability—
performed during the execution of the application, angy,jications that can tolerate data that has not fully stabilized
session guarantees are implemented by constraining thgp read it immediately, without waiting for it to become
replicas that may be selected by the application during that;pje.

session. N))
Although stability does not equate with consistency, when a

Four session guarantees are supported by Bayou: collaborative application reads only the results of stable

* Read Your Writegnsures that the effects of any writeswrites, its users will perceive a different “sense” of
made within a session are visible to later reads within thagonsistency than if the application also reads tentative data.
session. In other words, reads are restricted to replicas
the database that include all previous writes in th
session.

geplica Selection. Another important feature that Bayou
provides to an application is the ability to select which
replica it will use for its operations. The ability to select from
* Monotonic Readpermits users to observe a database thaieveral replicas over the life-span of an application is
stays up-to-date over time. It ensures that reads are onparticularly important to collaboration:
made to database replicas containing all writes whosg

effects were seen by previous reads within the session. A particular replica can be selected to optimize certain

communication requirements. In particular, autonomous
* Writes Follow Readensures that traditional write/read users with a disconnected laptop can run a server for a
dependencies are preserved in the ordering of writes at all |ocal replica on that laptop. Applications can choose this
servers. That is, at every replica of the database, writes server, thus ensuring access to the database.
made during the session are ordered after any writes

whose effects were seen by previous reads in the session. Applications operating on behalf of different users on

different machines can be connected toshmereplica,

* Monotonic Writessays that writes must follow previous which enables all the application instances connected to
writes within the session. In other words, a write is only that replica to see updates as soon as they occur. In
incorporated into a replica’s database copy if the copy essence, the applications can work together in a tightly-
includes all previous writes from that session, and the integrated, strongly-consistent, synchronized fashion.
write is ordered after these previous writes. The ability of applications to connect to a single replica,

Session guarantees are described in more detail in [23], and andl_ later spIitbapart gnd communicate with dti)fferent
are not intended to ensure atomicity or serializability. '€Plicas, can be used to support transitions between

Instead, users of collaborative applications use session Synchronous and asynchronous styles of collaboration.

guarantees to maintain a self-consistent view_of the databa%ﬁ_emmpy Policies. Anti-entropy is the pair-wise process
even though they may read from and write to variouspy which the servers of two replicas bring each other's
potentially inconsistent, replicas over time. databases up to date. During the anti-entropy process two

Stable vs. Tentative Data. Bayou provides a mechanism that S€TVers exchange the sets of writes known to one server but
establishes when a write $&ableat a given server. That is,

not the other [4]. For a more detailed description of theéBibDB uses a simple algorithm to generate human-readable
reconciliation protocol and its performance, refer to [20]. citation keys: the key is a few letters of the author’'s last
|name with a postfix consisting of the last two digits of the
N : - .y : ublication year appended, and possibly an extra character in
supports client-supplied anti-entropy policies. Thus, client e case of multiple papers by the same author from the same

gg?aggzgque Ov':/# :rn stgrvzrrzpag(}gterrggtel; C:r(’]itri]—%er}]?rot;?y t?gear. If two users add entries that would result in the same

performed automatically at a set interval, or when manuall itation key, the conflict detection and resolution procedures

requested by an application.) The ability to regulate whejlll change the updates to ensure that keys are always

updates are propagated is important for applications likdn1aue.
collaborative software development where users must ensufdis scenario is an example, albeit simple, of how the Bayou
that a coherent picture of the code base is available aystem can incorporate application-specific integrity

Although not fully implemented yet, the Bayou mode

specific times. constraints. “Application intelligence,” in the form of a
Bayou merge procedure, always ensures semantically-

IMPLEMENTING COLLABORATIVE APPLICATIONS WITH meaningful keys. Merge procedures are also used to detect

BAYOU and merge duplicate entries in the database. Note that

This section describes a range of collaborative applicatiorgonflicts can be resolved without the need for “manual” user
we have built, or are building, on top of the Bayouintervention or coordination among users because of the

infrastructure. Three of the applications below—a sharethechanisms provided by Bayou.

bibliographic database, a group calendar system, and gyc4,se of weak consistency and the fact that BibDB reads
mobile electronic mail system—have been completed. Thg,ative writes, users must be aware that tentative citation
Bayou Project Coordinator system is still in the design staggeys may change until they become stable. So if a user refers
The final “application” 'is ~actually a higher-level 4% newly-added citation key in a paper, he or she must
collaborative toolkit. This toolkit exists currently but does .hack back once the update is stable to ensure that the key
not use Bayou. We are investigating porting the data storagg,s not changed. Users who are well-connected may opt to
portion of the toolkit to use Bayou. only read stable data. But users can choose to view tentative
All of these applications share the following characteristicsglata to maximize data availability when connection is poor.
they are highly asynchronous, requiring few, or in some_.)) o
cases no, synchronous updates from other users. They daRDB is an example of a highly asynchronous application

tolerate weakly-consistent data, and they can benefit frod@ Which only loose artifact sharing is required. And, because
mechanized conflict detection and resolution. of automated conflict detection and resolution, no user-level

i L) coordination is required. In other words, the application is an
We describe each of these applications, examine how Bay@cellent match for Bayou.

benefits the applications, and how the applications have

informed our designs and goals for Bayou. Group Calendar
) o) Like BibDB, Group Calendar helps users manage a shared
Collaborative Bibliographic Database resource, in this case, a shared calendar. One common usage

BibDB is a multi-user shared bibliographic database thagxample is conference room scheduling. This task has the
allows users to add and modify entries, and automatlcal%nowmg characteristics:

generates citation keys that are used to refer to those entries.)) o
The system is conceptually similar to, but simpler than® Users may expect conflicts since they are negotiating the
bibliographic database systems like RefDBMS [9]. BibDB is Use of a shared resource.
perhaps an asynchronous application in its purest form: use¥s Awareness of other users is not critical since scheduling
of the system never “see” other users of the application. policies can be provided by the application.
BibDB provides no awareness of others, even when several . . .
people are using the application at the same time. * The application data, that is, dates and times, are
structured, allowing the application to detect conflicts.
Consider a situation in which Alice and Bob maintain a o . .
bibliographic database for their research project usin§ 1€ task supports specifying alternative appointment
BibDB. Their style of interaction is extremely asynchronous: ~ imes for use when conflicts with other users occur.
even if Alice and Bob are updating the database at the samg a typical scenario, imagine that Jane uses Group Calendar
time, they have no knowledge that the other is using the toalb schedule a meeting in the conference room from 10:30 am
Further, the propagation and visibility of updates need naib 11:30 am on Monday. She also specifies Wednesday at
occur immediately: in most cases, Bob does not need the same time as an alternate. While working on the train,
know immediately if Alice adds a new entry, although theyKevin schedules a project meeting in the conference room
will eventually need to know about duplicate entries. Infrom 10:00 am to 11:00 am on Monday. He also specifies
other words, by its requirements, the system is tolerant dflonday from 12:00 pm to 1:00 pm as an alternate time.
weak consistency and does not require updates to be globallyhen Kevin connects his laptop to the network, his
visible immediately. modifications propagate through the system. As the writes
are transmitted between the database replicas for the

Bayou_Write(
update = {insert, Meetings, 12/18/95, 10:00am, 60min, “Project Meeting: Kevin},
dependency_check = {
query = “SELECT key FROM Meetings WHERE day = 12/18/95
AND start < 11:00am AND end > 10:00am”,
expected_result = EMPTY},
mergeproc = {
alternates = {12/18/95, 12:00pm};
newupdate = {};
FOREACH a IN alternates {
check if there would be a conflict
IF (NOT EMPTY (
SELECT key FROM Meetings WHERE day = a.date
AND start < a.time + 60min AND end > a.time))
CONTINUE;
no conflict, can schedule meeting at that time
newupdate = {insert, Meetings, a.date, a.time, 60min, “Project Meeting: Kevin};
BREAK;

IF (newupdate ={}) # no alternate is acceptable

newupdate = {insert, ErrorLog, 12/18/95, 10:00am, 60min, “Project Meeting: Kevin},
RETURN newupdate;}

FIGURE 1: A Bayou Write for Group Calendar

conference room calendar, a conflict is detected. Kevin latgc
receives a notification that due to a conflict, the conferend™
room has been reserved at the alternate time he specified

[T

Lhi Fleee Eeldeeih Dalerdar L Ty Pebak| Rl

(005 | e

The Bayou write resulting from Kevin’s input is shown inf ’“*""_‘_'”“"*"' i‘:m-_ Ter e

Figure 1. The write specifies that, given a conflict, if ng -

1 &£ 4 4

alternative reservation can be found, the update is written = @ = & &1 1 T Jn..........., e

the error log. In the Group Calendar interface, items in thf 1@ a =2 ==

error log are accessible, enabling users to determine wh s E]

their reservation requests have been unsuccessful. Decomber | ma, R B e A
= M (1! Fenjewi Heriss P -

Like BibDB, users must decide whether they want to onlf i i) =

see stable writes to the calendar. Tentative writes can | 2 4 5 & R

color-coded in the graphical interface as shown in Figure 2 1= it 15 = :I:,I —a

Group Calendar typifies applications that can provid il' il entasane

policies to minimize multi-user coordination. Since thd Rewiwler o Punla | SN mimes niee

experience of multiple people wanting to reserve the sar|f Jamuary | Bl W] I s e i

thing is common, users are familiar with the strategy ¢ N e

providing alternate requests. The advantages of not havingg 7 = ==« =

wait for the approval of other users, as well as being able| 2 = = = =) TFE o e e (1 ey e (80

work disconnected from the network, outweigh the cost ¢e————— ¢l #3oma Simring e irarg 1w

unresolved COI’lfliCtS. 7 : Crlarsdsr: Cormaor fesar: pasmn Cemmbned: Coreaied

Two planned modifications to Bayou will improve the -

usability of Group Calendar. First, strategies for serv

selection and anti-entropy will help ensure that tentative FIGURE 2: The Group Calendar Application

writes stabilize quickly. Second, notification facilities for .
failed requests will remove the need for users to confirnBut, even though messages are copied among collaborators

their reservations. using traditional (and existing) mail routing facilities, the
_ S state of aparticular user's mail folders can profitably be
Mobile Electronic Mail stored and shared in Bayou. Thus, we have implemented a

Electronic mail is often considered to be the “classical’mail user agent called BXMH on top of the EXMH mailer.
asynchronous collaborative application. Even so, electroniBXMH supports “mobile” access to electronic mail—a user
mail has very different characteristics than the othetan have access to his or her particular mail folders and
applications examined here. Perhaps most importantly, thergessages, whether at a desktop machine in the office, a
is very little shared state among participants, in the sense th@dmputer at home, or a laptop that is disconnected from the
when a message is “shared” with a collaborator, a copy of fietwork. Even though replicas of the data are stored across
is sent. There is typically no one single copy of a messagaultiple servers, changes made to any copy of the mail
that is simultaneously shared among collaborators. database will eventually be propagated to all other copies.

BXMH is implemented by replacing the file handling layer

of EXMH with an interface to the Bayou relational database. s |F Sk iy fe mees drish S | ey
Messages and mail folders are represented as sets of tuple

stored in relations in the database.

Cnarsr Canfliel Comvira
A BXMH user will typically run a Bayou server—containing . Lo Lol
. 5 (e e Lad] S repul sl it by
his or her mail—on each machine where mail will be read. e e e

Any machine with a Bayou server running on it can then be o g
disconnected from the network. So, for example, @ 1aPLOP |iewsue spersteen . Asd . mars dds - boss - soreiier . Hes
machine running a Bayou server can be taken “on the road.’ | Fesss spmmmen. . cose = Hossns . tasy
The user of this machine will still have access to all of his or = "rres=fstmmssi rmsy &b =i b e e S asy s
. . » Un el g il fekler pstiiins @5 ol name]

her_ emal_l. Further, chan_ges can be made to the n_1a|I databas | iiergs s mssmges buis s ol s e rams, s s e wih i s
while disconnected—filing messages, changing folder Firrimray Fre lniiny i Bar e e st el | e
hierarchies, renaming folders, and so on. Later, when the ' "= ===

. . Hrrarel pldrs skl rew] A Felder afil | be i noess alee ady relis
machine is reconnected to other Bayou servers, the states ¢ p, puseg
the mail database maintained at each server will be rectified |- ns i rmes
The Bayou anti-entropy protocols cause all servers to move = fer=me==i=t

. . Merarel rddesakd rew| e "ol iebder fees ros eoisd

toward a consistent state, and changes made while e rame
disconnected are propagated to the office and home . o=t
machines. Note also, that the anti-entropy protocols can be & feem stz
run across low-bandwidth connections, including dial-in "= ===t i s s e

modems, infrared, or simply by exchange of floppy disks. ——
. . . HEfadT gadla]
Inconsistencies can arise when a changes are made ¢ ~— —_—

multiple servers. One common example is when mail i £ RE 3: The BXMH Conflict Configuration
automatically incorporated on a desktop machine. This new Interface
information must be merged with changes made by a user on

a_laptop. Corr:flicts can alﬁo Iarise when a ﬁysef me;]lf%%pport the management of these resources. This application
inconsistent changes on both a laptop and an office maching,"vo primary functions. First, it maintains dependencies

perr;]aps firlli_ng a given message into two different folders abeyeen artifacts. For example, the system copies binaries
each machine. for servers and client applications to new laptops. Second, it

Mergeprocs come into play to resolve inconsistencies thgarovides awareness of the activities of group members.
may arise between the two mail databases when updates &igce a majority of tasks involve project artifacts, a
propagated between them. In BXMH, mergeprocs are usdeépresentation of the activities of project members is culled
to “push” mail application semantics into the Bayou system from artifact use.

BXMH defines a suite of mergeprocs that enforce particulafhis application exercises Bayou’'s conflict detection and
policies about how the system should behave when certaigsolution facilities in three ways. First, consistency among
inconsistencies arise. Common inconsistencies includproject artifacts is maintained without user intervention. For
situations such as when the user renames a folder on o@sample, development platforms are kept up-to-date by
machine but continues to file messages under the old nardéstributing updated server kernels to Bayou machines
on another; the user deletes a folder on one machine whifgecond, Bayou supports asynchronous interaction when user
filing messages to it on another; the user disposes of orietervention is required. For example, when a new Bayou
messages in different ways on different machines, and so ouser is added, owners of specific applications
asynchronously approve the creation of security certificates
§0r the new user. Third, user interaction with Bayou servers

BXMH provides a conflict policy Ul that allows users to _ . : s ;
. . o .~ triggers logging of user activity. By creating a dependency
provide high-level guidelines about how to resolve confhctsCheck that will always fail, the mergeproc will always be

This interface allows users to favor one interpretation of all, ~luated and can specify what activity information to
inconsistency over another. Conflict resolutions are recorderc‘imOrd The Bayou Project Coordinator can then use this

In a _speC|aI mail folder in case the user wishes to know thl'?\{ormation to summarize the activities of project members.
details of what has transpired. Figure 3 shows a screensho

Rather than enumerating all possible choices to the us

of the BXMH conflict configuration interface. Consider the following scenario. Mike has been working for
)) the past week on modifications to the Bayou server kernel.
Bayou Project Coordinator (BPC) When he “checks in” changes that are ready for use by the

The Bayou project is a complex, multi-person effortother Bayou members, the modified kernel is propagated to
requiring the management of many shared artifacts. Some @feir machines. During this time, Keith has introduced a new
these artifacts are: the Bayou server binaries, Vafloﬁplicaﬂon and approved a set of users for this application.
application databases and their replicas, laptops anphe BPC distributes copies of the application binary and

modems, and per-application security certificates for usergecurity certificates to the set of approved users.
We are currently designing the Bayou Project Coordinator to

At the same time, Marvin has been traveling with aThe conflict management system used by Timewarp will
disconnected Bayou machine. When he reconnects himve to be extended to take advantage of the disconnected
machine to the network, the results of Mike and Keith’'soperation permitted by Bayou. Currently in Timewarp,
work are transmitted to his machine. Observing performanceonflicts are brought to the attention of the user and
differences in the behavior of the Bayou server, Marvin(potentially) resolved as soon as they occur. Consequently,
investigates the activity representations for group membeinflicts never “appear” in a timeline in which the user is not
in BPC. Noticing that Mike has spent the week working oractive. In a Bayou reimplementation of Timewarp, a given
the server, he is no longer surprised by the changes in sentgneline will not be assured of being conflict-free until all of
performance. Marvin also notices that Keith has introduced the data associated with it is committed. If a timeline
new application. He decides to experiment with using thelepends on state that is still tentative, updates may still be
application while writing an email message to Keith with hisreceived that will cause new Timewarp-level conflicts to
initial impression. occur. Mergeprocs will be used to integrate updates into

BPC supports strong artifact sharing without requiringtlmelmes; this code will essentially translate Bayou

explicit coordination among users. Specifications aboufdiabase-level conflicts into Timewarp-level conflicts, and
dependencies between project artifacts help maintain tH%otlfy the Timewarp infrastructure that new conflicts exist

integrity of the system including the propagation of newand must be dealt with.

project artifacts. Given the complexity of the Bayou projectWe believe that the facilities offered by these two toolkits—
without the use of the BPC, project members need tthigh-level” versioning, awareness, and coordination by
constantly “baby-sit” the state of the project. Timewarp, and true distribution, weak consistency, and
eqisconnected use by Bayou—will complement each other

BPC also demonstrates using mergeprocs to trigg X
0\‘s{hen the two are combined.

exploration of the shared data. In this case, the applicati
summarizes changes to the data to provide awareness of t

activities of project members. The same strategy could b MMQRY AND PR”O‘E)ECT_STATUS b ¢
used to trigger self-modifying data such as a word processgSynchronous collaborative systems present a number o

that automatically corrects spelling mistakes. challenging = problems, from Dboth the human design
perspective and the technological perspective. This paper

Timewarp has investigated a number of the characteristics of
The Timewarp system is not an application, but rathedsynchronous work, and the design challenges that must be
another toolkit for building collaborative applications [6]. It addressed when building infrastructure for this space.

is a “higher level” toolkit than Bayou, in the sense that itAsynchrony often arises when—whether through group

provides more functionality specifically designed to supportyqr practices, technology, or simply the nature of the tasks

collaboration. Timewarp provides mechanisms fory hang_collaborators need to work independently from one
awareness, coordination, multi-user access to data, a

o Yhother. The human dynamics of asynchronous work have
versioning. implications for designers of infrastructure and applications
The basic paradigm that Timewarp follows is that the historyor asynchronous collaboration.

of a shared artifact is allowed to be divergent—that is\ye nave presented a system called Bayou that addresses

collaborators at multiple sites may “see” different version§nany of these issues. Bayou has features that support both

of the artifact at any given time. Collaborators may work of,sers and writers of asynchronous applications. Below we
these versions independently, perhaps reconciling them intQ,\ymarize some of the features of Bayou we feel are

one result periodically throughout a collaboration. Th&mnortant for builders and users of asynchronous
history of the artifact itself becomes a shared artifact that c

; . . lications.

be used to mediate the collaboration. So participants cg%p o .

“travel” through the parallel timelines of an artifact and® Efficient anywhere/anytime access to data.

The current Timewarp implementation uses a single Synchronize in a pair-wise fashion, supporting a range of
centralized server to coordinate client applications that run at Work practices. For example, home and office machines
each collaborator's machine. We are investigating the use of can be synchronized through a laptop transported
Bayou as lower level infrastructure which would give us between locations; the home and office machines need
greater levels of independence, including the ability to never communicate directly with each other.

disconnect from the network, that this style of collaboration Thjs feature is used by BXMH to handle reading mail

favors. from any location, using exactly the same user interface
Timewarp is implemented using Java and its Remote €ven when disconnected. BibDB uses this feature for
Method Invocation (RMI) system. We have created a Java- Separation to support what is an intrinsically independent
language interface to the client-side Bayou APIs. Porting task.

Timewarp to use Bayou involves recoding the data structures

used internally as tuples suitable for storage in a relational

database.

Automatic management of conflicts. We have presented a number of asynchronous collaborative
plications built or designed using the Bayou infrastructure
at use these features. These applications span a range of

%teraction styles, both in terms of the amount of artifact
aring and the amount of coordination support they provide

o their users.

Dependency checks and mergeprocs provide a way f
applications to not only define for themselves wha
constitutes a conflict, but also to establish the proceduré
to take to resolve conflicts that occur. Thus, Bayo
applications can often resolve most conflicts
automatically, reducing the need for user intervention andhe Bayou architecture outlined in this paper has been
coordination, and enhancing independence. implemented and runs on Sun SPARCstations running

All of the current Bayou applications use this feature, an%‘éﬁgs.riean%esr’ algﬂ ?Jr; tsi_sb:jei?l s;gggogebeorgﬁnr:n:r;rég
most provide multiple resolution options to their users : query guag P

BXMH allows users to set general conflict resolutiondeloendency checks is a subset of SQL. The mergeproc

policies. The group calendar lets users specify faIIbacﬁg?usgen:Zn?gjid gn Ehe Tool Command Language, TCL
times for calendars that will be used in the event of »aug y SQL.

nflict.
conflict FUTURE RESEARCH

“Self consistency” and awareness of data status. We expect that further exploration of the design of

Session guarantees further support seamless transitiofgplications that transition between synchronous and

between older and newer states. All of our exampl@€rspectives. One key requirement for supporting
applications use this facility. synchronous applications is the ability for applications to

) o request notifications when data at a server changes. In the
Also, Bayou provides a means for applications to detetyrrent implementation, clients must poll the server to
the status of data in a database—whether it is tentative @icejve notification of changes, which makes the

committed. This information can be presented to the Us&lonstruction of synchronous applications difficult.
in a number of forms. In the group calendar, color is used ,)
to mark which entries will no longer change. In BXMH, ISsues we are planning to explore further in the context of

the interface highlights which messages are in conflicihe Bayou_infrastructure include; partial replication, polici_es
and need attention from users. for choosing servers for anti-entropy, server selection

) . . policies by applications, and fine grain access control.
One weakness is that the current implementation does not

notify applications (and hence users) when datfpur. most immediqte design focus is on suppo.rting p.artial
changes—applications must poll the database to detetgPlicas that contain subsets of a database. Partial replication

changes. is important for applications that run on laptops or PDAs,
, and raises a number of difficult problems ranging from
Flexible data model. characterizing a partial replica to resolving conflicts in a

Bayou provides a robust and flexible data model fo€onsistent manner across partial replicas.

applications. The system supports any granularity ofye are currently examining the design issues surrounding
shared data. So writers can modify a field of a tuple (suchorting the entire Bayou system to Java to enhance
as the time in a calendar entry), or entire sets of tuplgsortapility and ease-of-integration with applications. Such a
(such as new versions of source code or mail folders) &stem would most probably operate as a “replication layer”
once. on top of an existing relational database management

While the relational data model may not be a “natural” fitSystem.

for all applications, the model can be generalized fojye are also experimenting with wireless connectivity for
storages of other types of structured data fairly easily. servers and clients running on a laptop using the Metricom
Fluid transiton between synchronous and [16] wide-area radio network and point-to-point infra-red

asynchronous modes of operations. connections between laptops.

Multiple collaborators can connect to distinct servers for, ~ . NnoWLEDGEMENTS

typical asynchronous operation, or connect to the Same o yosign and development of Bayou have been a multi-
server for “tighter” synchronous operation.

year effort involving a number of people. Alan Demers, Carl
Users of the group calendar application typically connecHauser and Brent Welch were invaluable participants in
to a centralized Bayou server to quickly share operationsarlier stages of the Bayou design process. Mark Weiser,
entered while at the office, therefore diminishing theCraig Mudge, and John White, as managers of the Computer
opportunity for conflicts. But users can connect to localScience Lab, have been supportive throughout.

servers when disconnected, and still access and modify

their calendars.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10] Greenberg, S., and Marwood, D., “Real Time Group-

12
Baecker, R.M., Nastos, D., Posner, |.R., Mawby, K.L.,[)
“The User-centered Iterative Design of Collaborative
Writing Software.” Proceedings of the Conference on
Human Factors in Computing SysterAmisterdam, The
Netherlands: ACM. 1993. pp. 399-405.

Bly, S.A., Harrison, S.R., and Irwin, S., “Media Spaces:
Bringing People Together in a Video, Audio, and Com-
puting Environment.Communications of the AGMol.
36, No. 1 (January 1993), pp. 28-47.

Conklin, J., and Begeman, M.L. “gIBIS: A Hypertext
Tool for Exploratory Policy DiscussionProceedings of
the Conference on Computer-Supported CooperatiVﬁS]
Work(CSCW), Portland, OR: ACM, 1988, pp. 140-152.
Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J.
Shenker, S., Sturgis, H., Swinehart, D., and Terry, D.
“Epidemic Algorithms for Replicated Database Mainte-[16]
nance,”Proceedings of the Sixth Symposium on Princi:
ples of Distributed Computinyancouver, BC, Canada, [17]
August 1987, pp. 1-12.

Dourish, P., and Bly, S., “Supporting Awareness in a
Distributed Workgroup.Proceedings of the ACM Con-
ference on Human Factors in Computing SystemﬁS]
(CHI'92), Monterey, CA: ACM, pp. 541-547.

Edwards, W.K., and Mynatt, E.D., “Timewarp: Tech-
niques for Autonomous CollaboratiorPtoceedings of

the ACM Conference on Human Factors in Computing
SystemgCHI'97), Atlanta, GA: ACM, pp. 218-225. 19
Eveland, J.D., and Bikson, T.K., “Work Group Struc—[]
tures and Computer Support: A Field ExperimeRtd-
ceedings, ACM Conference on Computer—Supporte[g0
Cooperative WorkPortland, OR: ACM, 1988.]
Galegher, J., and Kraut, R.E., “Computer-Mediated
Communication for Intellectual Teamwork: A Field
Experiment in Group Writing.” IrProceedings of the
ACM Conference on Computer-Supported Cooperativ[% 1]
Work Los Angeles, CA: ACM, 1990, pp. 65-78.

Golding, R., Long, D., and Wilkes, J. “The RefDBMS
Distributed Bibliographic Database SysterRfoceed-
ings of Winter USENIX Conferencgan Francisco, CA,
January 1994, pp. 47-62.

[13]

[14]

[22]

ware as a Distributed System: Concurrency Control and
its Effect on the Interface.” Proceedings of the ACM
Conference on Computer Supported Cooperative Work,
Chapel Hill, NC: ACM, Oct. 22-26, 1994. pp. 207-217.

[11] Grief, 1., and Sarin, S. “Data Sharing in Group Work,"

. 3
Computer-Supported Cooperative Work: A Book 0#2]
Readings Irene Grief, ed. San Mateo, CA: Morgan
Kaufmann, 1988, pp. 477-508.

Heidemann, J.S., Page, T.W, Guy, R.G., and Popek, G.J.
“Primarily Disconnected Operation: Experiences with
Ficus,” Proceedings of Second Workshop on the Man-
agement of Replicated Datislonterey, CA, Nov. 1992.

Kalwell, L. Jr., Beckhardt, S., Halvorsen, T., Ozzie, R.,
and Greif, |., “Replicated Document Management in a
Group Communication SystemProceedings of the
ACM Conference on Computer-Supported Cooperative
Work Portland, Oregon, September 1988.

Kistler, J.J., and Satyanarayanan. “Disconnected Opera-
tion in the Coda File SystemACM Transactions on
Computer Systeni€)(1):3-25, February 1992.

McGuffin, Lola, and Olson, Gary, “ShrEdit: A Shared
Electronic Workspace,” CSMIL Technical Report, Cog-
nitive Science and Machine Intelligence Laboratory,
University of Michigan, 1992.

Metricom Inc. http://www.metricom.com.

Neuwirth, C. M., Kaufer, D. S., Chandhok, R., and Mor-
ris, J. “Issues in the Design of Computer Support for
Co-authoring and CommentingProceedings of the
Conference on Computer-Supported Cooperative Work,
Los Angeles, CA: ACM, 1990, pp. 183-195.

Olson, J., Olson, G. Storrgsten, M., and Carter, M.,
“How a Group Editor Changes the Character of A
Design Meeting as Well as its OutcomProceedings

of the Conference on Computer-Supported Cooperative
Work Toronto, Ontario: ACM, 1992, pp. 91-98.

Ousterhout, J., “Tcl: An Embeddable Command Lan-
guage.”Proceedings of the USENIX Conferendénter
1990.

Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer,
M.M., Demers, A.J. “Flexible Update Propagation for
Weakly Consistent ReplicatiorProceedings of the Six-
teenth ACM Symposium on Operating System Principles
(SOSP), Saint-Malo, Franco, October 1997
Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki,
M.E., Siegel, E.H., and Steere, D.C., “Coda: A Highly-
Available File System for a Distributed Workstation
Environment.”IEEE Transactions on Compute39(4):
447-459, April 1990.

Terry, D.B., Theimer, M.,M., Petersen, K., Demers,
A.J., Spreitzer, M.J., Hauser, C.H. “Managing Update
Conflicts in Bayou, a Weakly Connected Replicated
Storage System.Proceedings Fifteenth ACM Sympo-
sium on Operating Systems Princip(@&OSP), Cooper
Mountain, Colorado, December 1995, pp. 172-183.

Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M.J.,
Theimer, M.M., and Welch, B. “Session Guarantees for
Weakly Consistent Replicated DatRrfoceedings of the
International Conference on Parallel and Distributed
Information Systems (PDISAustin, Texas, September
1994, pp. 140-149.

