
The Case for Recombinant Computing

W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy

Computer Science Laboratory
Xerox Palo Alto Research Center
Palo Alto, California 94304, USA

{kedwards, mnewman, sedivy}@parc.xerox.com

Abstract. Interoperability among a group of devices, applications, and
services is typically predicated on those entities having some degree of prior
knowledge of one another. In particular, they must be written to understand
the type of thing with which they will interact, including the details of
communication as well as semantic knowledge such as when and how to
communicate. This paper presents a case for “recombinant computing”—a
set of common interaction patterns that leverage mobile code to allow rich
interactions among computational entities with only limited a priori
knowledge of one another. We have been experimenting with a particular
embodiment of these ideas, which we call Speakeasy. It is designed to
support ad hoc, end user configurations of hardware and software, and
provides patterns for data exchange, user control, and contextual awareness.

1 Introduction

Much of the focus of software support for ubiquitous computing has centered on isolat-
ed technologies, such as location sensing, multi-device user interfaces, ad hoc network-
ing protocols and so on. While these are essential technologies, we propose that there
are fundamental software architectural issues that are not being addressed by current re-
search in ubiquitous computing.

If we postulate a world in which we will be surrounded by numerous devices and
software services, this raises serious architectural questions. How will these devices be
able to interact with each other? Must we standardize on a set of common “ubicomp”
protocols? Must we agree on the semantics of every type of device or software that may
be encountered in order to have fluid interoperability?

Currently, if I want to enable my desktop PC to print to a new printer, I have to in-
stall a driver for it. Perhaps more fundamentally, my desktop PC—and all the applica-
tions on it—first had to understand even that there was such a thing as a printer, and
understand the semantics of such a device (the fact that documents can be printed to it,
when it is appropriate to do so, and so on). Software and devices that do not understand
the notion of a printer, and are not explicitly written to use such devices, will not be able
to print.

This simple example points to what we believe is perhaps the fundamental architec-
tural problem in ubiquitous computing: that current software infrastructures require that

Xerox Palo Alto Research Center Technical Report CSL-01-1. April 20, 2001
http://www.parc.xerox.com/csl/

2.

an application not only know about the things it will interact with, but also about the
types of the things it will interact with.

In the future world of ubiquitous computing, it is unreasonable to expect that every
device will have prior knowledge of every other type of device, software service, or ap-
plication that it may encounter. Such knowledge would require anticipation of the se-
mantics of such entities, and agreement on the means for communication with them. It
is precisely the richness of the computational elements in such a world that prohibits us
from building in a priori support for all such conceivable devices and software into all
applications.

And yet, if our software infrastructures cannot easily accommodate interactions
with previously unknown elements in the environment without being recompiled, up-
graded, or replaced, ubiquitous computing will certainly not support the “calm” inter-
actions envisioned by Mark Weiser [31]. It is more likely to be an endeavor fraught with
the frustrations of software incompatibility, communication problems, version mis-
matches, and driver installations.

In the remainder of this paper, we present the case for an approach to software in-
frastructures called “Recombinant Computing.” This approach points the way towards
enabling fluid interoperation in ubiquitous computing by allowing entities to interoper-
ate without having prior knowledge of each other. After presenting the essential fea-
tures of this approach, we introduce the Speakeasy framework, which is a connection-
oriented framework we have developed to explore the recombinant computing vision.
We give an overview of this framework and discuss our initial experiences with it.

2 Network Effects

Note that the situation in computing is far different from, say, that of the telephone net-
work. My rotary dial phone, circa 1975, still functions perfectly well and has never had
an upgrade. Despite this lack of administration and maintenance on my part, I am able
to place calls anywhere in the world. New functions, like call waiting, become available
to me without me having to do anything other than request them. And I can transparent-
ly use this same device to connect to devices that were not even in existence when my
phone was built, such as cellular telephones that exist on a variety of worldwide net-
works and use widely varying protocols.

The telephone system is perhaps the chief example of what has been called a “net-
work effect” [6]. A network effect is a property that exists in a distributed system when
a single component in the system increases in value as a result of actions elsewhere in
the system. To put this in terms of the telephone example, each telephone in the network
increases in value (utility) as other telephones come on line. This is because each tele-
phone becomes capable of reaching more people, on more devices, without any addi-
tional work on the part of the device’s owner. Network effects result because of combi-
natorial explosions of possible interconnections between the parts of the system.

Of course, there are architectural reasons why the telephone network has these
properties, not least of which was a decision to place as much intelligence as possible
in the network, rather than the handset. But another essential reason is that the tele-

3.

phone’s interface to that network—a four wire RJ-11 connection (in the US), along with
a simple signaling protocol to a central switch—is very standardized, and very narrow.
By standardized we mean that the interface is ubiquitous; by narrow we mean that it is
simple, easy to implement, and—once implemented—is capable of delivering the full
range of the network’s functionality to the connected device. There are numerous other
technologies that exhibit network effects, including the fax, the web, and the iMode sys-
tem in Japan, all of which have these same properties.

Our goal is to enable these same sorts of network effects in a much richer domain—
arbitrary computational devices and software. We believe that the presence of such net-
work effects is a requirement for making the ubiquitous computing vision practical. The
user experience of ubiquitous computing is predicated on the ability to easily, safely,
and fluidly interconnect and use arbitrary devices and software encountered in the en-
vironment. Architecturally, this experience depends on the ability of devices and soft-
ware to connect with each other without requiring prior knowledge of each other. Such
an architecture should provide the potential for a combinatorial explosion of possible
interactions among devices and software, increasing the utility of each, and the total
utility of the network.

3 Recombinant Computing

There are a number of approaches one might take to provide network effects for ubiq-
uitous computing. For example, one might standardize on a common handful of proto-
cols and device types into which all future work must fit. We believe such approaches
may be overly restrictive for the domain of arbitrary computational devices and servic-
es, however.

Another category of approaches, which we have termed recombinant computing,
allows the dynamic extension of computational entities through the use of mobile code.
We believe that such approaches can provide greater flexibility and power than, say,
agreement on a simple, static set of communication protocols. We describe our work in
terms of a set of “patterns” (to use the term loosely) that can allow a rich range of inter-
actions among arbitrary computational entities, particularly when coupled with the
presence of a user to provide semantic interpretations to given entities.

Our vision of recombinant computing is built atop previous work in software archi-
tecture. In particular, we use a component model in which each computational entity on
the network is treated as a separate component. The presence of new components is de-
tected through the use of dynamic discovery protocols, and we rely upon a mobile code
framework to deliver the implementations of components needed at runtime. The next
sections describe each of these foundation technologies, and motivate our discussion of
recombinant computing by illustrating why these technologies are necessary but, in
themselves, insufficient to support the network effects that must be our goal.

4.

3.1 Component Frameworks
Component frameworks such as JavaBeans [26] and COM [14] provide a very simple
form of recombination: they allow developers to use code that they did not themselves
write, and thus promote code reuse and modularity.

As an example, a word processing application such as MS Word does not itself pro-
vide built in support for every printer on the market. Instead, printing functionality is
isolated into a component (a driver), which is abstracted from the rest of the Word func-
tionality. This same driver is reused by the other applications on the operating system
that need to print, and isolates Word from having to understand the particulars of an in-
dividual printer.

Traditional component frameworks, however, are insufficient to enable arbitrary
software interconnection because they require the user of a component to have explicit
prior knowledge of not only the interface provided by that component, but also its se-
mantics. The users of such frameworks are application developers who use their under-
standing of the specialized interfaces as well as the semantics of use to create appropri-
ate interconnections among components. This “hard wiring” of entities does not enable
the sorts of arbitrary dynamic composition that produce network effects. Furthermore,
they typically support only static (compile time) associations among components. This
last limitation, however, can be overcome by the next essential feature of recombinant
computing, discovery.

3.2 Discovery Systems
Discovery allows applications to be notified when new components are needed or avail-
able, so that they can dynamically install components they are already equipped to use.
A very simple, non-networked form of discovery is Microsoft’s Plug and Play, or PnP
[18]. PnP can inform applications and the operating system when a new software com-
ponent is needed. So, for example, if a user plugs a new printer into her computer, and
the driver software component that supports that printer is available on the system, then
it will be loaded and used. In essence, the system itself takes responsibility for deciding
when new components are necessary to allow applications to function. Networked ver-
sions of discovery (such as the Simple Service Discovery Protocol portion of Mi-
crosoft’s Universal Plug and Play [10], UDDI [28], and Salutation [23]) extend this
ability to the network; they can discover services and devices that exist on remote hosts,
as opposed to only those services and devices installed locally.

Such discovery systems increase the utility of component frameworks, since partic-
ular components can be automatically selected and bound at runtime, rather than at
compile time. But, in themselves, they still fall short of supporting arbitrary, fluid inter-
connections among devices and software. To return to the Word printing example, PnP
may tell the system that a new printer has been installed and that a driver is needed to
support it. But if that driver component is not available locally, then the binding be-
tween application and component cannot be established, and explicit human interven-
tion—putting the component on a floppy and installing it manually—is required. So
while discovery allows the system to have some degree of automatic adaptability to new
situations, it is insufficient to allow arbitrary recombination.

5.

3.3 Mobile Code
The requirement that software components used to access network resources be pre-in-
stalled is overcome through mobile code-based systems. Mobile code is the ability to
move executable code across the network, to the place where it is needed, and then ex-
ecute that code securely and reliably. The Java runtime environment is the best-known
example of a system in which mobile code is used extensively, to support applets, for
example, and distributed polymorphism in the case of RMI [32]. Mobile code is also
possible using the bytecode language runtime which supports the languages in Mi-
crosoft’s .NET platform, such as C# [20].

Currently, Jini [30] is the only widely available platform that combines a compo-
nent framework with its own dynamic, network discovery protocols, and mobile code.
However, while platforms such as this address a real need, and can provide significant
benefits to users, they are not sufficient in themselves to enable the vision of ubiquitous
computing.

A mobile code-based architecture would enable Word to not only detect that a new
printer is available, but determine what code is needed to use it, and then deliver that
needed code on demand. This feature is one of the chief claimed benefits of Jini, that
services (such as printers) can be discovered by clients dynamically, that services carry
with them the code needed to use them, and that this code is dynamically downloaded
to clients as needed.

As powerful as this solution is, however, it doesn’t allow Word to do new things
other than print. It does not, for instance, allow the application to suddenly scan, or syn-
chronize with a PDA, or allow collaborative co-authoring. In short, while it can provide
a new way for Word to do things it already knows how to do, it cannot allow Word to
do new things it wasn’t explicitly written to do. A Jini-enhanced version of Word would
still need to be written against a specific and predefined API for printing.

4 Recombinant Interfaces

Powerful as the approaches illustrated above are, the problem is that all of these very
specific interfaces must be understood by the authors of the applications that will use
them. Applications must be specifically written to use every domain-specific compo-
nent interface (printing, file storage, image capture, and so on), meaning that new inter-
face types that appear in the future can only be supported by either (1) retrofitting them
into some other, previous interface, or (2) rewriting the application to accommodate the
new interface. We believe that it is impractical and implausible that applications can be
written to have explicit prior knowledge of the full range of components that they may
encounter.

This is the chief obstacle to enabling network effects—the lack of a small, fixed set
of interfaces that are both standardized (meaning that applications can expect them to
be supported by all components they may encounter) and narrow (meaning that they can
reasonably be supported by all applications, regardless of their semantics, and without
exorbitant work), and yet are expressive enough to capture a wide set of the functional-
ity of arbitrary devices and programs.

6.

Our solution is to develop a set of recombinant interfaces, which are programmatic
interfaces that specify the ways in which components interact with one another. These
are “trans domain” interfaces that describe the ways in which components can extend
one another's behavior at runtime, rather than describing the domain-specific function-
ality of the components (such as printing or file storage).

These interfaces establish the groundwork, or minimal agreed-upon language of in-
teraction, that all components are expected to support in order to be able to interact with
one another. In essence, they define the common syntax of interaction among compo-
nents. These interfaces do not express the domain-specific semantics of the component,
however. As we discuss next, much of the semantic understanding of when and why
components should interact can and should be provided by users.

5 The Importance of User-Provided Semantics

Fundamental to the vision of recombinant computing is the belief that it is users who
will provide the semantic understanding of what components actually do. In other
words, recombinant interfaces define how components interact with one another, and
reveal information designed to afford humans the ability to decide when and whether
such components should interact.

For example, a PDA that knows nothing about printers would be able to print, be-
cause aspects of the behavior of printers are represented using these interfaces. Of
course, without knowing the semantics of “printing,” a PDA would never simply use a
component that it encounters—it would not know whether that component printed the
data that was sent to it, stored it, or simply threw it away. Instead, the device would most
likely inform the user that a component calling itself a “printer” had been found, and
leave it to the user to make the decision about when and whether to use this device.

Put another way, the programmatic interfaces define the syntax of interaction, while
leaving it to humans to impose semantics. It is the stabilization of the programmatic in-
terfaces that enable network effects; humans can, presumably, “understand” new com-
ponents in their environment, and when and whether to use them, much more easily
than machines can (and, it should be noted, without the need to be recompiled). This
semantic arbitration happens at the user level, rather than at the developer level as in
traditional component frameworks.

Our emphasis on keeping the user “in the loop” is based on the recognition that in
order to enable network effects to take hold, it will be necessary to allow users to carry
out operations for which no application has yet been developed. Typical ubiquitous
computing environments will be profoundly heterogeneous and ad hoc in their compo-
sition, and it is infeasible to expect application developers to keep pace with the evolu-
tion of these environments and with the things that people will want to do with them.

It may be possible to offload some aspects of semantic interpretation from users to
other computational entities in order to make some aspects of recombination more fluid.
Machine learning techniques might be applied to individual users' patterns of use, for
example, in order to predict what types of configurations a user would be likely to at-
tempt in the future. While such techniques could add significant value to a recombinant

7.

infrastructure such as the one we propose, we do not think it advisable to rely on the
success of such techniques. Even the most “intelligent” infrastructures of this type
would likely have to defer to users on some occasions, such as when they do not have
enough information to make a decision. By focusing on the basic syntax of interaction
and separating out the semantics, the recombinant computing approach enables user-
driven interaction among arbitrary computing elements in the near term and leaves
room for growth in the domain of making such interactions more intelligent.

Of course, there will still be applications for which an application developer has
foreseen a need and for which a richer, domain-specific interaction between compo-
nents will be desirable. Note that nothing in our description of recombinant computing
rules out the possibility that components will also implement domain-specific interfac-
es. To paraphrase Freud, sometimes a printer is just a printer. By implementing a set of
recombinant interfaces in addition to its native printer interface, the printer component
can increase its value as well as the value of all of the other recombinant components
with which it can now communicate.

Thus far, we have presented the notion of recombinant computing and introduced
the key features of this approach. We have argued that recombinant computing is the
right approach for realizing network effects in ubiquitous computing. In the remainder
of this paper we present a specific realization of the recombinant computing ideas. The
next sections describe the current set of interfaces that make up the Speakeasy frame-
work, and the rationale for each. Afterwards, we examine the “applications”—configu-
rations of recombinant components—that we have built using these interfaces.

6 Speakeasy: A Recombinant Computing Framework

We have created an initial architecture, dubbed Speakeasy, to explore the models of re-
combinant computing outlined above. While there may be many possible ways to em-
body recombinant functionality in a set of programmatic interfaces, Speakeasy focused
on one such approach, which might be termed “connection oriented.” In the Speakeasy
interfaces, components are first and foremost viewed in terms of their ability to produce
or receive information. Secondary interfaces exist to enable sensemaking, navigation of
the world, interaction, and so forth, but our primary idiom of recombination is the no-
tion of a connection between components.

Broadly, our interfaces define three general categories of functionality that compo-
nents may support:

• Connection. How do components exchange information with each other?

• Context. How do components reveal information about themselves?

• Control. How do components allow users (and other components) to effect
change in them?

Any given component may support multiple of these interfaces. For example, a giv-
en component may be able to exchange information with other components and may
also reveal information about itself.

Our contention is that applications written to understand this handful of interfaces
will be able to interact with any component that may come along in the future that ex-

8.

poses its functionality in these terms. In other words, such a software system will be
able to use new components that appear in its environment, without recompilation or
update.

Certainly, one could make the claim that this approach trades one problem for an-
other. That, rather than writing applications to specific printer, filesharing, etc., inter-
faces, we’re requiring them to write to simply another set of interfaces. While this is
true, we believe that a thoughtful set of interfaces that can describe functionality inde-
pendent of any particular domain, coupled with the ability to transmit and execute mo-
bile code, can allow applications far greater “coverage” of functionality than has been
possible before.

In our choice of interfaces, we have attempted to define the smallest set of abstrac-
tions that are both necessary and sufficient to support arbitrary connections between ar-
bitrary components. For our starting point, we take the fact that, at its most primitive
level, the ability to move data between entities is crucial. The notion that data can be
shared among entities, and moved among them, is implicit in the very idea of recombi-
nation. However, the ability to simply move data around is insufficient without some
control mechanism to initiate the transfer and make decisions about when this should
be done. For this reason, our interfaces include explicit models for both Connection and
Control.

However, these two abstractions on their own are still somewhat limiting. Whether
or not to move data between entities will likely be a complex decision requiring special-
ized information (such as location or administrative domain) about each component in-
volved. We make the claim that an appropriate generic representation of this specialized
component information is to encapsulate it as attributes of an extensible “Context” ob-
ject that is contained within every component. Each component implements a common
interface for retrieving and modifying its context, thereby providing the user (or some
inference engine) with information it will need to make decisions about how to use the
component.

6.1 Connection
As mentioned previously, the fundamental metaphor in our approach to recombinant
computing is connection. A connection between two components indicates an associa-
tion for the purpose of transferring data. Such a transfer may represent a PDA sending
data to a printer, a whiteboard capture camera storing a snapshot in a filesystem, or a
laptop computer sending its display to a networked video projector.

Each of these different senders of data—a PDA, a camera, and a laptop computer—
may use very different mechanisms for transferring their data. A sender of high-resolu-
tion video, for example, is likely to use a streaming protocol that is adaptive to the trans-
port over which it is being run, perhaps by increasing compression or lossiness over
slow media. A PDA sending a file to a printer will likely use a very different data trans-
fer mechanism and indeed, a lossy connection such as that used by video will be un-
workable for this interaction.

This example points out the infeasibility of deciding on a handful of data exchange
protocols that all components agree upon. Each component may have its own semantics

9.

with regard to sending data, and these semantics are likely to be reflected in the proto-
cols used. Therefore, it is infeasible to build in support for all of these potential proto-
cols “up front.”

Our approach is to use a pattern whereby a sender of data can extend the behavior
of its receiver to enable it to transfer the data using a desired protocol. Rather than pro-
viding the data directly, a sender transfers a source-provided endpoint to its receiver.
This is a custom, sender-provided communication handler that lives in the receiver. Dif-
ferent senders will export different endpoint implementations, and the code for these
different implementations will be dynamically loaded by receivers as needed.

This arrangement gives the sender control over both endpoints of the communica-
tion; the sender can choose an appropriate protocol for data exchange, without the need
for these protocols to be built into every receiver.

Once the endpoint code has been received, the actual transfer of data is initiated.
The endpoint communicates with the remote sending component, using whatever pro-
tocols have been dictated by the creator of that component. This data is then returned to
the receiver as a stream of bytes in the desired format. The behavior of the receiver at
this point depends on its particular semantics—a printer will print the data it receives,
while a file system will store the data as a file.

Our current interfaces allow components to be either senders or receivers of data,
or both. Both senders and receivers can indicate the types of data that they can handle;
we currently use standard MIME [2] type names. Programs and users can use these
types to select components that are capable of exchanging data with one another.

Figure 1 illustrates the operation. In the top part of the figure the receiver initiates
a connection with a sender of video data, and the sender returns an endpoint to the caller
(in this case, an endpoint capable of using a streaming protocol for MPEG2 data). This
portion of the operation occurs using the “public” connection interfaces. After this, data
is transferred to the receiver via the endpoint through a “private” protocol between the
endpoint and the source.

Design Discussion. Several design decisions are represented in this arrangement.
First, the same mechanisms are used to transfer “one shot” data (such as a file) as are
used to establish long-lived connections. All receivers read data from a stream provided
by the endpoint, until an end-of-data marker is reached. We felt that this was a desirable
choice, since all receivers must be prepared to deal with long-lived connections any-
way, either because of slow connection speed, or simply because the sender-provided
endpoint transfers data in a streaming format.

A second design choice is that the interfaces presented here allow any party to ini-
tiate the transfer. For example, a third party (such as a “browser” application, whose
function is similar to that of a file browser, but provides access to components) can fetch
an endpoint from a sender and provide it to a receiver. Such an arrangement would
cause the receiver to read directly from the sender, using the sender’s endpoint imple-
mentation (as provided to it by the browser). A receiver could also be written to auto-
matically initiate connections with certain senders, if appropriate.

10.

Endpoints do not remain valid indefinitely. Any given sender may, potentially, be
engaged in any number of transfers with receivers. Senders and receivers must have a
way of cleaning up after failures of either. For this reason, endpoints are leased from
the senders which granted them. Leasing is a mechanism by which access to resources
is granted for some period of time; to extend this duration, a continued proof-of-interest
is required on the part of the party using the resource [11]. One benefit of leasing is that,
should communication fail, both parties know that the communication is terminated
once the lease expires, without any need for further communication.

The Tyranny of Types. A clear limitation of this approach is that, even though all
data exchange uses a common interface that supports arbitrary, specialized protocols for
transfer, many parties will have to have some semantic knowledge of the types they will
exchange. For example, a printer might only accept Postscript data, while a web camera
might only be capable of producing JPEG images. These two components would not be
directly capable of exchanging information, because they are not data type compatible,
even though they would speak compatible interfaces.

Agreement on type information is not a requirement for all interactions. A filesys-
tem, for example, may happily store any type of data it receives in a file, without the
requirement that it have any particular knowledge of those data types. But many com-

Figure 1 Data transfers in Speakeasy use source-provided endpoint code.
In A, a receiver initiates a connection, which causes a

source-specific endpoint to be returned. In B, this endpoint is
used to fetch data from the source using a source-private protocol.

Video
Data
Sender

Video
Data
Sender

ReceiverReceiver
Streaming
MPEG2
Endpoint

Streaming
MPEG2
Endpoint

Video
Data
Sender

Video
Data
Sender

ReceiverReceiver

Streaming
MPEG2
Endpoint

Streaming
MPEG2
Endpoint

A.

B.

11.

ponents, including any that interpret or act on the content of the data they receive, will
be able to process and handle only certain data types.

Although this need for type agreement limits the universality of the data connection
interfaces, the interfaces do still provide a significant benefit, namely, the ability for any
two components that can agree on types (or, alternatively, that don’t care about types)
to exchange information dynamically. Furthermore, the recombinant nature of compo-
nents in our environment makes it easy to deploy, discover, and use data transformation
services that can mediate between components that wish to share data, such as Ocker-
bloom’s mediators [22] or Kiciman and Fox’s paths [15].

6.2 Context
Simply knowing that a component can be a sender or receiver of data provides very little
utility if there is no other way to find out more information about that component. Thus,
all Speakeasy components are able to provide context about themselves. Context is sim-
ply a representation of a set of attributes that might be considered salient for a given
component: its name, location, administrative domain, owner, version information, and
so on. A user, through an application such as a browser, would be able to organize the
set of available components based on location, owner, and so on.

Context is not only useful for making sense of the set of components available in
the environment, but can also be used to mediate and control the behavior of individual
components. For example, a video projector may allow any co-located user to use it di-
rectly, without further access control. The same projector, however, may require the ap-
proval of a co-located user when a remote user attempt to access it. Other components
may similarly adapt their own behavior based on these attributes.

To support both of these uses, Speakeasy uses two contextual interfaces. First, all
components can reveal information about their own context when asked. Users or ap-
plications can organize and understand the set of available components using this infor-
mation. Second, all operations in Speakeasy require that the caller provide its own con-
text. For example, to acquire an endpoint from a sender, the initiator of a transfer must
provide the sender with its own context. This mechanism allows components to adapt
their behavior to their users. A fileserver in the Xerox administrative domain, for exam-
ple, would likely only interact with components in the same domain.

Currently, our representations of context are very simple; this is an area of ongoing
work for us. The actual contextual data that is exchanged is a remote proxy object that
communicates to the component to which it belongs. This proxy object reveals a simple
map of key-value pairs, with names indicating contextual attributes (such as “Name,”
“Location,” and so on), and values that are arbitrary objects, and may include digitally
signed data such as certificates.

The set of valid keys is extensible, as we do not believe any fixed organization is
likely to support the contextual needs of all applications or components. We do believe,
however, that certain keys are likely to be commonly understood and used across com-
ponents.

The basic model here—that components provide their own context—affords decen-
tralization, since the interfaces do not require the presence of some centralized, always-

12.

available resource. The design does not preclude the presence of a different context in-
frastructure “underneath” the contextual APIs, however. So particular components
could internally use sensing and aggregation infrastructures such as the Context Toolkit
[4], or context storage and notification infrastructures such as Intermezzo [7], as long
as these implementation artifacts are not exposed to clients.

An alternative approach for exposing this kind of information is to provide accessor
methods (such as getLocation(), getOwner(), and so on) on the component through spe-
cialized programmatic interfaces. However, this is precisely the kind of specialization
of interfaces that we hope to avoid: since interfaces are static, it is unworkable to decide
upon a fixed set of accessors for a fixed set of information that we hope is applicable to
all components. Exposing such information through specific accessors on the compo-
nent provides neither extensibility to new information nor a separation between the se-
mantics of such information and the interface used to access it.

Our design allows for the possibility of rich, complex interactions between compo-
nents if the entities have some a priori knowledge about each other, but at the same time
permits simple, general interactions in the absence of such knowledge. Components and
applications can agree on the syntax of interaction (the interface for retrieving context)
without having to have total agreement on the semantics of the various contextual at-
tributes themselves. Applications and users are free to use the aspects of context that are
salient to them (and understood by them) while ignoring others.

6.3 Control
There are, of course, many aspects of component behavior that are orthogonal to estab-
lishing data connections. In the example of a printer component, for example, the likely
reaction of a printer to receiving data is to print it. Although the simple connection in-
terfaces provide the minimum functionality that must be in place to send data to a print-
er, they cannot capture the full range of functionality of such a device. There is no no-
tion of full duplex, or color versus black and white, or stapled output in the connection
interfaces, for example. Nor should there be, since these are clearly concepts specific to
printers.

How, then, can we provide access to such component-specific notions without re-
quiring clients to potentially understand all such details?

Our approach is to provide users with mechanisms for acquiring user interfaces to
components, and to provide applications with mechanisms for altering component state
based on user interaction with those UIs. These two techniques are in keeping with our
philosophy that the programmatic interfaces must provide only the bare mechanisms
necessary for interaction, along with the means to defer to the user when appropriate.
These techniques are discussed below.

Component-Specific User Interfaces. Any Speakeasy component can provide
one or more complete user interfaces, at the request of a caller (and, like all other oper-
ations, requesting a user interface requires that the caller establish itself with the com-
ponent by providing its context). These user interfaces are downloaded on demand by
callers where they can be presented to users. Applications need not have built-in support
for explicitly controlling any component.

13.

Applications that need to display the UI for a component can select from potentially
any number of UIs associated with a given component, by specifying the requirements
of the desired UI. For example, a browser application running on a laptop computer
might request a UI that requires and uses a full-blown GUI toolkit already present on
the machine, while a web-based browser might request HTML or XML based UIs.

This approach is flexible in that it allows components to present arbitrary controls
to users, and in that it allows multiple UIs, perhaps specialized for different classes of
devices, to be associated with a given component. The primary drawback is that it re-
quires each component writer to create a separate UI for each type of device that may
be used to present the interface. A possible solution would be to use some device-inde-
pendent representation of an interface, such as those proposed by Hodes [13] or the
UIML standard [12], and then construct a client-specific instantiation of that UI at runt-
ime. We are not currently focusing on developing such representations ourselves, but
rather on the infrastructure that would be used to deliver such representations to clients.

Persistent Configuration of State. Under this model, the programmatic interfac-
es provide the tools for accessing component-specific UIs, without the need that appli-
cations understand any component-specific functionality. One additional interface we
felt was required, however, was the ability to make a set of user-supplied configurations
persistent.

For example, suppose that a user always wishes to get full-duplex, color, stapled
printouts from a given printer. Clearly, having to display the UI for the printer and con-
figure each of these settings every time the printer is used would be a great inconve-
nience. To prevent such hassle, we need a way for an application such as a browser to
recreate a particular configuration of settings in a component, but again without requir-
ing that the application understand any component-specific concepts.

Our approach is to allow applications to request that any component provide it with
a representation of its state. This representation—which can essentially be treated as an
opaque token—is a contract between the component and its client that the component
will attempt to recreate the state represented by the token if the client provides it to the
component at a later time.

Figure 2 illustrates this model. Here, a browser application interacts with a sender
of video data. The browser requests the user interface for the component, perhaps at the
direction of a user. Once the browser receives the UI and the user interacts with it, the
UI transmits new configuration information back to the remote component, using a pri-
vate protocol decided upon by the component’s builder. When the interaction is fin-
ished, the browser may request a state token from the component, which persistently
represents the particular parameterization of the component effected by the UI. In the
future, the browser can recover this particular parameterization by returning the token
to the component without having to have specific knowledge of the parameters them-
selves and without having to redisplay the UI to the user.

14.

7 Components and Applications

To date we have built approximately a dozen components, some of which represent fair-
ly complex behavior, as a means of refining our interfaces and exploring useful combi-
nations of functionality. For example, we have a video display component capable of
accepting digital video input from a source such as a laptop. This component is typically
embodied as a network-accessible digital projector. Unlike a typical projector, which
requires a direct, physical VGA connection, this component exports our data receiver
interface and can be accessed and used by any entity on the network capable of produc-
ing a compatible data stream.

We have also built a whiteboard mosaic and image capture component, based on
the ZombieBoard technology [24]; a digital camera component based on the Cam-
Works technology [21]; a filesystem component based on the Harland/Placeless tech-
nology [5]; a Powerpoint viewer component that can render a Powerpoint presentation
as a slide show, and provide controls for that slide show; a screen capture component
that can redirect a computer’s standard monitor display to another component (such as
a projector); and a number of others.

Figure 2 Control operations allow configurations of components, and recovery
of configurations. In A, a browser requests a UI; as the user interacts with the

UI, the component’s configuration is changed via a component-private protocol.
In B, the browser fetches a state token that can be used to recreate this

configuration in the future.

Browser
Application
Browser
Application

Video
Data
Sender

Video
Data
Sender

getUI(…attributes...)

Browser
Application
Browser
Application

Video
Data
Sender

Video
Data
Sender

getState()

….

A.

B.

15.

Currently, these components are situated in work areas and offices around PARC.
Users access and control them through a number of browser-style applications we have
built. These browsers allow connections to be established between arbitrary compo-
nents of compatible data types, control over devices, and exploration of the space of
available components.

Even with a fairly small number of components, there are a number of configura-
tions possible, which provide various applications of the Speakeasy framework. The in-
terfaces and programming patterns we have developed are sufficient to allow presenta-
tions without a laptop, for example. Using a browser interface running on a PDA, a user
would interconnect three separate components. First, the user interacts with his or her
“home” filesystem component to find a file containing the desired presentation. This
file is then connected to a Powerpoint viewer component, typically running on the us-
er’s desktop PC. This component is capable of producing a data stream compatible with
our display component, which is typically embodied as a small, network-connected
computer attached to a projector or flat panel display in a conference room. The Pow-
erpoint viewer is then connected to the display to complete the chain.

Control over the presentation is accomplished through the interfaces presented by
the various components. The projector component presents a UI allowing the user to
turn it on or off, for instance; the filesystem component allows the user to select a de-
sired file. During the actual presentation, the user will likely interact only with the UI
of the Powerpoint viewer component, which allows slideshow-style controls over the
presentation. This control UI is separate from the data connection, and can be run on a
device such as a PDA while the presentation is ongoing.

During the presentation, the user can interact with other components. For example,
the user can browse and find a whiteboard capture component, and cause it to capture a
whiteboard image and display it using the projector, or save it in any reachable filesys-
tem.

8 Implementation

As mentioned earlier, Speakeasy is a set of interfaces designed to leverage mobile code,
discovery, and component frameworks.1 As such, we have chosen to focus on the inter-
faces themselves and reuse existing technologies where appropriate.

In our current implementation, we use Java’s facilities as our mechanism for the se-
cure transfer and execution of mobile code. This means that, in our prototype, all com-
ponents must be represented by proxy objects expressed in Java bytecodes.2 We use the
Jini multicast and unicast discovery protocols as our discovery layer [27], and Java in-

1. Speakeasy also provides an infrastructure to support building and using components, of
course. For example, our implementation supports checkpointing and recovery of compo-
nent state, code libraries to remotely log, monitor, and administer components, and so on.
These details are not covered in this paper.

2. This does not mean, however, that components themselves must be written in Java.
Their proxies can communicate with “native” components written in any language.

16.

terfaces as our interface description language. Our control mechanisms build atop the
ServiceUI framework [29] for associating user interfaces with Jini services.

We do not believe that there are any artifacts in the Speakeasy code that prevent oth-
er technologies from being used as a base, as long as they provide mechanisms for de-
scribing the interfaces to components, discovering the existence of those components,
and then dynamically providing the code necessary to use them. The Microsoft .NET
platform, for example, would likely be able to support our recombinant interfaces. Al-
ternative discovery protocols—such as those based on the Bluetooth Service Discovery
Protocol (SDP) [1], for instance—would clearly provide benefits.

The set of components described in this paper have all been implemented using our
framework, and interact with one another solely using the recombinant interfaces de-
scribed here (that is, they do not resort to other, functionality-specific interfaces). We
have developed a pair of client browsers, including a “raw” browser used for debug-
ging, and a webserver-based client that allows access to component functionality from
any platform with a web browser (for example, a wirelessly connected PDA). We have
also developed scenarios for a number of other client applications.

9 Related Work

Section three of this paper presented a number of technologies atop which our model of
recombinant computing builds. There are, however, a number of other relevant technol-
ogies, including other efforts in the research and commercial community focused on
top-to-bottom infrastructure approaches to ubiquitous computing

First, our efforts are loosely inspired by work in programming language patterns [9]
and meta-object protocols [16]. In particular, the model of software and hardware com-
ponents that can alter the environments in which they exist is reminiscent of work by
Kiczales, et al., on meta-object protocols, which are mechanisms by which applications
can introspect and modify the behavior of their own runtime environments. Our work
extends this notion of reflection and adaptability across network boundaries.

A number of approaches, including Universal Plug and Play [19], and the .NET
combination of UDDI for discovery [28], WSDL for interface definition [3], and SOAP
for communication [25], are examples of what might be termed “service bus” models
of interaction. These systems provide a platform on top of which components can dis-
cover and communicate with one another. But they still require components to have
knowledge of the interfaces and semantics of the components they will interact with.

The CoolTown project at HP labs [17] is an example of an infrastructure for perva-
sive computing. Building on the ubiquity of web technology, the CoolTown approach
provides access to all entities through URIs and handles communication through HTTP
and HTML. While this is a certainly a promising approach, web technology evolved pri-
marily as a set of document sharing protocols and hence imposes some inherent limita-
tions on the kinds of interaction possible within its confines. We believe that by specif-
ically designing interfaces towards distributed computation and user control, we can ex-
plore a richer set of interactions.

17.

The CoolTown project also uses a “physical presence” model of service discovery,
which requires the user to be physically near the devices they want to interact with.
While this is an intuitive and straightforward approach with an easy to understand se-
curity model, we feel that it is important to not build this restriction into the infrastruc-
ture. There are many kinds of services for which physical location is not an important
attribute (a format conversion service for example) and which the infrastructure for a
generic distributed component network should be able to support.

The iRoom project also integrates diverse devices and software services [8]. Com-
munication between entities in this environment works via an Event Heap which all
components can query and send events to. This model requires that the source of an
event must understand the format and protocol required by the intended recipient. This
approach works very well in an environment such as the iRoom where system admin-
istrators carefully add each new entity and developers understand the programmatic in-
terfaces of the elements already in the room. However, we believe that it does not scale
appropriately in an environment where new entities have no prior knowledge of their
peers on the network.

10 Conclusions and Future Directions

The primary goal of this paper is to introduce recombination as an essential problem
that must be overcome for the ubiquitous computing vision to become a reality. The sec-
ondary goal is to begin a discussion on approaches to recombination.

The Speakeasy project is focusing on a connection-oriented approach to recombi-
nation, in which components interact with one another largely through transfers of in-
formation. To date, we have focused on developing an exploratory set of patterns that
leverage mobile code to allow arbitrary computational entities to find, control, and in-
teract with one another without prior knowledge. While these patterns have been re-
fined through experience, and we have confidence that they work well for the applica-
tions illustrated above, we firmly believe that other approaches to recombination are
possible. Such other approaches may well have other affordances, and may support dif-
ferent applications than the ones presented here (and, indeed, may support the applica-
tions shown here better).

In the near term, our project has two goals. First, we plan to continue to refine our
recombinant interfaces through experimentation, component building, application
building, and use. We are already experimenting with a number of mobile code-based
strategies to eliminate the “tyranny of types” problems present in our current interfaces,
and believe that we can extend the range and power of these interfaces. We are also in-
vestigating techniques for transparently extending the ability of components and appli-
cations to negotiate connections over arbitrary network interfaces.

Second, we wish to begin an exploration of issues of policy, user experience, and
security in a recombinant world—just because arbitrary components have the ability to
interact with one another doesn’t mean that they should interact with one another. How
we will effectively understand and use the world around us in such a setting is a key

18.

issue we are beginning to look at in parallel with our ongoing focus on low-level inter-
connectivity and control issues.

References

[1] Bluetooth Consortium (2001). Specification of the Bluetooth System, version 1.1 core. ht-
tp://www.bluetooth.com. February 22, 2001.

[2] Borenstein, N., and Freed, N. (1992). “MIME (Multipurpose Intermet Mail Extensions):
Mechanisms for Specifying and Describing the Format of Internet Messages.” Internet
RFC 1341, June 1992.

[3] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001). Web Services De-
scription Language (WSDL) 1.1. http://msdn.microsoft.com/xml/general/wsdl.asp. Janu-
ary 23, 2001.

[4] Dey, A.K., Salber, D., Abowd, G.D. (2001) “A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications,” to appear in Human
Computer Interaction Journal, vol. 16, 2001.

[5] Dourish, P., Edwards, W.K., LaMarca, A., Lamping, J., Petersen, K., Salisbury, M.,
Thornton, J., and Terry, D.B. (2000). “Extending Document Management Systems with
Active Properties,” ACM Transactions on Information Systems (TOIS), 2000.

[6] Economides, N. (1996). “The Economics of Networks,” International Journal of Industri-
al Organization, 14:2, March, 1996.

[7] Edwards, W.K. (1994). “Session Management for Collaborative Applications,” Proceed-
ings of ACM Conference on Computer-Supported Cooperative Work (CSCW), October,
1994. Chapel Hill, NC.

[8] Fox, A., Johanson, B., Hanrahan, P., Winograd, T. (2000). “Integrating Information Ap-
pliances into an Interactive Space,” IEEE Computer Graphics and Applications 20:3
(May/June, 2000), 54-65.

[9] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, ISBN 0201633612, January 15,
1995.

[10] Goland, Y.Y., Cai, T., Leach, P., Gu, Y., Albright, S. (1999). Simple Service Discovery
Protocol/1.0: Operating Without an Arbiter. Internet Engineering Task Force Internet
Draft. http://www.upnp.org/draft_cai_ssdp_v1_03.txt.

[11] Gray, C.G., Cheriton, D.R. (1989). “Leases: An Efficient Fault-Tolerant Mechanism for
Distributed File Cache Consistency,” Proceedings of the 12th ACM Symposium on Oper-
ating Systems Principles (SOSP), pp. 202-210, December, 1989.

[12] Harmonia, Inc. (2000). User Interface Modelling Language 2.0 Draft Specification, http:/
/www.uiml.org/specs/uiml2/index.htm.

[13] Hodes, T., and Katz, R.H. (1999). “A Document-Based Framework for Internet Applica-
tion Control,” Proceedings of the Second USENIX Symposium on Internet Technologies
and Systems (USITS), Boulder, CO, October 1999, pp. 59-70.

[14] Iseminger, D. (2000). COM+ Developer’s Reference. Microsoft Press. ISBN 0735611386.
September, 2000.

[15] Kiciman, E., and Fox, A. (2000). “Using Dynamic Mediation to Integrate COTS Entities
in a Ubiquitous Computing Environment,” Proceedings of the Second International Sym-
posium on Handheld and Ubiquitous Computing (HUC), September, 2000.

19.

[16] Kiczales, G., Des Rivieres, J., Bobrow, D. (1991). The Art of the Metaobject Protocol. MIT
Press, ISBN 0262610744, September 1991.

[17] Kindberg, T., and Barton, J. (2000) “A Web-Based Nomadic Computing System,” HP
Labs Technical Report HPL-2000-110. http://cooltown.hp.com/papers/nomadic/nomad-
ic.htm, 2000.

[18] Microsoft Corp. (1999). Plug and Play Specifications, http://www.microsoft.com/hwdev/
respec/pnpspecs.htm, April 29. 1999.

[19] Microsoft Corp. (2000). Universal Plug and Play, http://msdn.microsoft.com/library/
psdk/upnp/upnpport_6zz9.htm. December 5, 2000.

[20] Microsoft Corp. (2001). The C# Language Specification. April 25, 2001, Microsoft Press.

[21] Newman, W., Dance, C., Taylor, A., Taylor, S., Taylor, M., Aldhous, T. (1999) “Cam-
Works: A Video-based Tool for Efficient Capture from Paper Source Documents,” Pro-
ceedings of the International Conference on Multimedia Computing and Systems, 7-11,
June 1999, Florence, Italy. Vol 2, pp. 647-653.

[22] Ockerbloom, J. (1999). Mediating Among Diverse Data Formats. Ph.D. thesis, Carnegie
Mellon University, January 1999.

[23] Salutation Consortium (1998). White Paper: Salutation Architecture: Overview, http://
www.salutation.org/whitepaper/originalwp.pdf.

[24] Saund, E. (1999). “Bringing the Marks on a Whiteboard to Electronic Life.” Published in
Cooperative Buildings: Integrating Information, Organizations, and Architecture. Second
International Workshop (CoBuild’99). Pittsburgh, USA, October, 1999 (Springer Verlag
Lecture Notes in Computer Science 1670).

[25] Scribner, K., Stiver, M.C (2000). Understanding SOAP: The Authoritative Solution,
SAMS Press, ISGN 0672319225, January 15, 2000.

[26] Sun Microsystems (1997). JavaBeans Specification. Graham Hamilton, ed. http://ja-
va.sun.com/products/javabeans/docs/beans.101.pdf. July 24, 1997.

[27] Sun Microsystems (1999). Jini Discovery and Join Specification, January, 1999.

[28] Universal Description, Discovery, and Integration Consortium (2000). UDDI Technical
Whitepaper, September 6, 2000. http://www.uddi.org/pubs/
lru_UDDI_Technical_White_Paper.PDF.

[29] Venners, B. (2000). Jini Service UI Draft Specification. http://www.artima.com/jini/servi-
ceui/DraftSpec.html. April 24, 2000.

[30] Waldo, J. (1999). “The Jini Architecture for Network-centric Computing,” Communica-
tions of the ACM, July 1999, pp. 76-82.

[31] Weiser, M., and Brown, J.S. (1996). “Designing Calm Technology.” PowerGrid Journal
v. 1.01. http://www.powergrid.electriciti.com/1.01.

[32] Wollrath, A., Riggs, R., Waldo, J. (1996) “A Distributed Object Model for the Java Sys-
tem,” USENIX Computing Systems, vol 9, November/December, 1996.

