Stuck in the Middle: The Challenges of
User-Centered Design and Evaluation for Infrastructure

W. Keith Edwards, Victoria Bellotti, Anind K. Dey,” Mark W. Newman

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304 USA
+1 650.812.4405
{kedwards, bellotti, mnewman } @parc.com

ABSTRACT

Infrastructure software comprises code libraries or runtime
processes that support the development or operation of
application software. A particular infrastructure system
may support certain styles of application, and may even
determine the features of applications built using it. This
poses a challenge: although we have good techniques for
designing and evaluating interactive applications, our
techniques for designing and evaluating infrastructure
intended to support these applications are much less well
formed. In this paper, we reflect on case studies of two
infrastructure systems for interactive applications. We
look at how traditional user-centered techniques, while
appropriate for application design and evaluation, fail to
properly support infrastructure design and evaluation. We
present a set of lessons from our experience, and conclude
with suggestions for better user-centered design and
evaluation of infrastructure software.

Keywords
Interactive software, technical infrastructure, toolkits,
design, evaluation

INTRODUCTION: THE
DILEMMA

Infrastructure is software that supports construction or
operation of other software. It comprises systems ranging
from toolkits (including those for building graphical user
interfaces [14] or collaborative applications [18]), to
network services (including document management
systems [5]), to other sorts of platforms.

INFRASTRUCTURE

In all of its many manifestations, infrastructure is one or
more software layers that provide new technical
capabilities for applications. It enables applications that
could not otherwise be built or would be prohibitively
difficult, slow, or expensive. It also reflects the desire to

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

CHI 2003, April 5-10, 2003, Ft. Lauderdale, Florida, USA.
Copyright 2003 ACM 1-58113-630-7/03/0004...$5.00.

“Intel Research Lab at Berkeley
2150 Shattuck Avenue, Suite 1300
Berkeley, CA 94704 USA
+1 510.495.3012
anind@intel-research.net

engineer reusable and well-architected software systems
and can serve many different applications, some of which
may be unforeseen at the time of its implementation.

While infrastructure itself is not visible to the user, it
affords certain styles of application and interface. In other
words, the technical capabilities of the infrastructure may
enable new interaction techniques, and lend themselves to
expression in new application features or styles.

For example, an easy-to-use Macintosh toolkit, called the
Toolbox [2], facilitated creation of graphical applications.
Developers could quickly create widgets like scrollbars
and dialog boxes, which previously demanded extensive
programming. As the Toolbox acquired new features
(such as ToolTips), developers exploited them. The
Toolbox not only allowed the explosion of graphically
consistent applications for the Macintosh, it also served
as a disincentive for alternative interface styles. When it is
so easy to create applications using the Toolbox, why
spend the time and effort to do something different?

Such tight coupling between infrastructure and application
features is not limited to graphical toolkits. Consider an
infrastructure that allows applications to “tag” documents
with useful properties (such as owner, last edited time,
references, etc.), and stores these properties persistently.
Such a system may allow certain styles of document-
based applications to be more easily created (for example,
applications that provide property-based organization
rather than fixed, directory-style organizations).

Figure 1 illustrates the relationship between infrastructure
and other aspects of an end-user system. The infrastructure
provides higher-level abstractions that shield application
developers from the demands of interacting with lower-
level data, hardware devices, and software concepts. The
infrastructure itself is separate from, but must anticipate
the demands of possible applications, users and use
contexts for the data, or hardware, or software constructs
to which it provides access.

The key problem addressed by this paper is that even
though the technical features of the underlying
infrastructure are visible in—and to a large degree, even
determine—the features of the applications created using
it, we often lack criteria for designing or evaluating the
features of the infrastructure itself.

Data Infrastructure
Constrain
— Features & Enable
Design?
Traditional .
Criteria Evaluation?

Performance, How to design for and evaluate usability
scalability, and usefulness of features without
robustness... knowing about applications and users?

Figure 1. The Infrastructure challenges: How can the
designer design and evaluate features without knowing
about applications and users?

The Problem

Typically, computer scientists design infrastructure based
on a desire for reuse [15], and evaluate infrastructure based
on “classical” technical criteria: performance, scalability,
security, robustness, and so on. These are all crucial
metrics, and they must be accounted for if we wish to
build workable systems. But there is a distinction
between technical workability and value for end-users.

Unlike infrastructure, user-visible applications have long
traditions of user-centered design and evaluation.
Techniques such as participatory design, ethnography, and
others all play a part in deciding what features go into an
application, how well those features add value for users,
by addressing needs with an acceptable user experience.

There are beginning to be some efforts to relate systems
architecture, principles, and engineering processes to
concepts of usability through some new concepts. These
include architecturally sensitive usability scenarios [3]
(end-user requirements that demand special architectural
considerations); software engineering patterns [1, 13]
(creational, structural and behavioral patterns in software
engineering define known relations between contexts,
problems and solutions); and agile software methods [12]
(a collection of techniques such as Extreme Programming
[4] that explicitly acknowledge that defining end-user
requirements a priori is a practically impossible goal; a
fact of which we are acutely aware).

There is, however, little reported experience in the HCI
literature on the special process of, and problems that
arise in, determining what particular user motivated
features should go into the design of any given
infrastructure system, nor for determining the success or
failure in the evaluation of those features.

The problems of designing and evaluating infrastructure
are not qualitatively the same as those for user-visible
applications. Rather, the separation between infrastructure
features and user-visible features, and the indirectness of
the coupling between them, brings new challenges to the
user-centered design and evaluation of infrastructure.

Designing Infrastructure for Usability

When developing infrastructure for interactive systems,
designers add features to their infrastructure with the
intention of enabling certain interaction experiences.
However, there is a degree of separation here between the
desired experience and the mapping of that experience
onto technical features. For example, trying to anticipate
the needs of all possible applications will lead to bloated
and complex software that will be difficult for developers
to understand and maintain. However, failure to anticipate
important functions or behaviors that may be required by
likely applications will lead to infrastructure that does not
support the needs of those applications. Such
infrastructure will either fail, or be tinkered with by
developers who may not understand exactly what they’re
tinkering with and the consequences of doing so.

Currently, the determination of features for an
infrastructure system is not particularly user-centered and
is largely based on designers’ experience and intuition,
having built both prior infrastructure and applications.
Designers must abstract from a desired set of application
features to a specific set of technical features in the
infrastructure. This leads to a number of questions:

e Is it possible to more directly couple design of
infrastructure features to design of application features?

e How can this more direct coupling exist when the
applications the infrastructure will support don’t yet
exist or cannot be built without the infrastructure itself?

e Could the context of either the users or the use of
these unknown applications have an important impact
on the features we choose?

e How can we avoid building a bloated system
incorporating every conceivable feature, while ensuring
we have a system that will not be constantly updated
(and so repeatedly broken) throughout its lifespan?

Evaluating Infrastructure for Usability

Imagine a toolkit for graphical applications that provides
a set of radical new features (e.g., support for visually rich
displays, or very high resolution). The features in this
toolkit are intended to support applications with a
compelling, new user experience. But how can we tell if
this user experience is really compelling, or even “right?”

We can only evaluate the user experience afforded by the
toolkit and its features by building applications that use
it, and then evaluating them. While the toolkit itself can
be evaluated on its technical criteria, the aspects of it that
are designed to support a particular user experience can
only be evaluated in the context of use and thus must be
evaluated indirectly—through applications built with the
toolkit. This leads to the following questions:

e How do we choose which applications (for which
users and uses) to build to evaluate the infrastructure?

e What does the manifestation of the infrastructure in a
particular application say about its capabilities (or even
desirability)? How useful is this “indirect” evaluation?

e Are the techniques we normally use to evaluate
applications acceptable when our goal is to evaluate the
infrastructure upon which those applications are based?

Discussion

Clearly, there is cross-talk between the problems of
design and evaluation. Iterative design implies at least
some evaluation. And thorough evaluation cannot happen
in the absence of some designed artifact to be evaluated.

Our aim in writing this paper is to begin a discussion on
the questions enumerated above, and the problems
inherent in design and evaluation of infrastructure to
support interactive experiences. Our belief is that a new
model of user-centered design and evaluation must evolve
to support such systems; this belief is motivated by our
experiences in designing and evaluating not only
infrastructures, but also applications that exploit them.

We frame our discussion in terms of two case studies of
our own work. Perhaps most interestingly, the systems
described were motivated by human, not technical,
concerns. These case studies illustrate real problems
inherent in trying to create useful and usable infrastructure
in the absence of good design and evaluation techniques.

CASE STUDY ONE: PLACELESS DOCUMENTS
The Placeless Documents system [9] is an infrastructure
that enables fluid storage, exploration, and use of
information spaces. It was designed specifically to enable
applications that escape the rigidity of traditional
filesystems and other data storage technologies.

In traditional filesystems, the user creates a more-or-less
static collection of folders or directories, to reflect the
structure of her work. These structures are often created
early, at the beginning of a project, for example, rarely
changing, due to the difficulty inherent in re-filing and re-
structuring the hierarchy of folders and their contents.

In the Placeless model, documents (analogous to files) can
simultaneously exist in any number of collections
(analogous to folders). So there is no one place in which
the user must store a document. Moreover, collections
themselves are much more fluid and powerful than
traditional folders. The contents of collections can change
dynamically, for example, to contain all documents used
within the last five minutes, or all documents created by
user Paul. The flexibility of Placeless’ collections allows
them to be used for ad hoc organizations of a file space,
as well as for multiple, simultaneous organizations,
perhaps to support different uses of the same documents.

From the outset Placeless was intended to become your
filesystem: traditional files and folders would be replaced
by more flexible Placeless collections and documents.
Additionally, Placeless would be the single repository for
all types of documents, including email messages and

web pages, not just files. In short, Placeless would unify
currently disparate access mechanisms, and provide a
flexible set of means to store, organize and use them.

User-Centered Design Challenges

A major problem that provoked much discussion during
the Placeless project, was how to determine the technical
features required to support the new applications that
would use these flexible organizational capabilities.

Using Multiple Scenarios to Drive Design

We decided to use a scenario-based approach to determine
the infrastructure features. We identified multiple contexts
that could benefit from the Placeless infrastructure. These
included “ideal” scenarios—completely replacing the
desktop file-and-folder metaphor with a more powerful
scheme—as well as mobile access to information spaces,
collaborative document use, and so on. The applications
that resulted from these scenarios included “better”
versions of existing tools (such as file browsers and mail
readers), and also some completely new tools.

From these scenarios we then identified specific
application requirements and technical features required to
fulfill them. Features to support fluid organization were
required by virtually every scenario. These features
included a flexible model for document metadata, coupled
with a query mechanism in which dynamically evaluated
queries could be embedded within document collections.

Additional possible infrastructure features were not
necessitated by all of the scenarios; instead, certain
features were identified that were only required by
individual scenarios, or small sets of scenarios. For
example, our collaborative scenarios depicted users with
different roles, moving about and sharing documents.
Supporting this scenario demanded a security model (to
determine who can and cannot view your documents) and
a distribution model (so that your documents can “refer
to” documents owned by someone else. Our mobile use
scenario required replication features (so that documents
can coexist on multiple machines simultaneously).

Lessons for User-Centered Design

All of the features mentioned above were motivated by
our scenarios, and a desire to provide a positive, robust
experience to the user. But of these, only a few—the basic
metadata mechanism and the query model—were truly
crucial to supporting the core ideas of the project.

The Dangers of Feature Bloat

This experience points out what we believe to be a key
danger when designing infrastructure. While secondary
features such as security, distribution, replication and so
on were all key to certain scenarios, technically interesting
in themselves, and perhaps even necessary for a “real
world” deployment of Placeless, they were not central to
the value that Placeless promised to deliver. In brief,
these secondary features had no value if the primary
features were not successful; if applications using
Placeless do not provide better information organization,
it does not matter if they’re secure or distributed.

One can even go so far as to argue that until one specific
application domain is validated, secondary features can
distract from the design of infrastructure. For Placeless,
the absence of a focus on a particular application domain,
and strict requirements derived from it, led to it becoming
a “grab bag” of technical features. Many of these features
could only have been justified or motivated (or evaluated)
after the core premises had been validated.

Lesson 1—Prioritize core infrastructure features: First
build a minimalist infrastructure to test core design
ideas and then, once those are validated, obtain user
feedback to motivate additional features.

In the case of Placeless, the core novel features (those that
pertained to flexible organization) should have been
pursued before other, secondary features were investigated
(replication and so on).

User-Centered Evaluation Challenges

It was clear that to fully exploit the Placeless
infrastructure new applications were required. Current
applications—the Macintosh Finder, Windows Explorer,
email, and so forth—did not provide access to novel
features afforded by Placeless; only custom-built
applications could perform this function.

We adopted a two-part strategy for evaluation. First, we
felt that the capabilities of Placeless would be best tested
under “real world” conditions. That is, by providing users
with enhanced replacements for everyday tools, such as
mail readers, we might determine how infrastructure like
Placeless could fit into everyday work practice. Second,
we built some small “throw away” applications, designed
to demonstrate some aspect of the infrastructure, while
not providing all the functionality of a “real” application.

Evaluation in Real Use Contexts

For the first strategy, we created two fairly heavyweight
applications to test the infrastructure. The first was a
“Placeless-aware” mail system that would not force users
to create fixed folders of messages. Instead, structure
would be emergent, according to the task at hand.
Messages could exist in multiple folders, and entire folder
hierarchies could be created on the fly according to ad hoc
organizational criteria imposed by the user. The second
application was a web portal-style tool designed to
provide the benefits of Placeless organization to a shared
document repository on a web server.

Both of these applications were designed to withstand real
long-term use. Additionally, since we believed that users
would be unwilling to forgo their existing applications
and data completely, we built migration tools to allow
users to use both existing, non-Placeless tools alongside
our new applications, accessing the same data.

Evaluation via Lightweight Technology Demonstrations
The second path to evaluation was the creation of a
number of lightweight “throw away” applications, purely
to demonstrate the utility of novel aspects of the
infrastructure. These, while engineered to be neither
robust nor featureful enough for long-term use, were easy
to build and required few engineering resources.

These tools used Placeless as a platform for
experimenting with workflow and collaboration [16]; to
address shared categorization schemes [10]; and for
experimenting with other user interfaces.

Lessons for User-Centered Evaluation

While the chief lesson we learned could perhaps be
summed up as, “prioritize your evaluation criteria
correctly,” the sections below discuss aspects of this
prioritization in detail.

Defer Work that Does Not Leverage the Infrastructure

The chief error made in evaluation was to aim
immediately to evaluate the system in the context of real
use. Such an evaluation, of course, required that the
system be robust enough for day-to-day use as an
information repository, support features (such as security)
that might not be required in other contexts, and provide
tools to support migration to the platform.

This last requirement was particularly troublesome. We
believed users would reject new applications and tools if
this meant giving up their existing tools, and perhaps
even data. We strove to ease migration to Placeless-based
applications by creating multiple backward-compatible
means to access and store documents in Placeless. Tools
were constructed to allow Placeless to be accessed as if it
were a normal filesystem (using existing file browsers), or
a web server (using existing web browsers), or an email
server (using existing mail clients). Likewise, the content
of documents stored in Placeless could reside in existing
filesystems. The goal was to ease users’ transition into
Placeless-based tools, and obviate the need for a “clean
slate” approach to the change.

While this was a rather significant—and to large degree,
successful—engineering effort, this migration support did
nothing to facilitate evaluation of the infrastructure’s
features, nor did it validate the class of applications the
infrastructure was designed to enable. These tools allowed
users to continue using, say, Windows Explorer and all of
its features, but still provided no access to Placeless-
specific features for evaluation purposes.

While required to support evaluation in a real use context,
none of these tools in themselves satisfied the prime
objectives of leveraging the platform and demonstrating
its utility. Furthermore, they diverted engineering
resources away from evaluation strategies that would have
better proved the core value of the infrastructure.

Lesson 2—First, build prototypes that express the core
objectives of the infrastructure: Initial prototypes should
leverage the fullest extent of the power of the
infrastructure, since the assumption that this power
makes a difference is the critical thing to test first.

Usefulness and Usability Remain Essential Criteria

The two major applications, created to leverage Placeless,
were meant to be evaluated during long-term, real-world
use. However, both of these applications failed as tools
for evaluation, although for different reasons.

The mail system failed simply because of wusability
problems. It did not matter that it offered useful tools for

organization if it did not also support other email task
requirements. Any value of the Placeless-derived features
of the mailer was overshadowed by a lack of other features
that would have demanded more effort to perfect.

The web portal failed for a more prosaic reason: there was
never a clear indication of precisely what the portal would
be used for, nor a clear set of requirements for what the
portal should do. Simply put, the system was not usefil,
or, at least, not useful for the general-purpose project
management tasks that it was intended to support.

Lesson 3—Any test-application built to demonstrate
infrastructure must also satisfy the criteria of usability
and usefulness: These criteria are difficult to satisfy,
demanding requirements gathering, prototyping,
evaluation, and iteration as with any application. The
more ambitious the application, the more these criteria
will come into play. Designers must trade off the time to
be devoted to satisfying them against the time available
for building and testing core infrastructure features.

The Placeless mailer failed to meet the usability
requirement, while the web portal failed to meet the
usefulness requirement. While these are perhaps obvious
criteria for any design, they can be overlooked when the
goals of the developers are not to evaluate the applications
themselves, but rather the infrastructure they exploit.

Assess Intrinsic Value of the Platform Early

While the heavyweight applications failed to serve much
useful purpose, the lightweight, proof-of-concept
applications succeeded in demonstrating compelling new
user experiences. Since these tools did not depend on
long-term use to provide feedback to the project, neither a
migration strategy nor features that would make them
usable in a “real world” setting was required.

Lesson 4—Initial proof-of-concept applications should
be lightweight: Early testing of core infrastructure
features should not require building myriad application
features purely for delivering a well-rounded, real-world-
style application since such features do little but distract
from the main goal of getting the basics of the
infrastructure itself (rather than the applications) right.

Discussion

These lessons, while perhaps obvious in hindsight, were
learned the hard way by the developers of Placeless. Its
features were driven by careful analysis of the usability
problems with existing document storage systems, and a
desire to create a compelling and sensible user experience.

The chief problem was finding appropriate outlets for
evaluation. Without a focus on what the actual objectives
of the test-applications were—namely, to test the power
of the infrastructure and to reveal shortcomings—the
design requirements ballooned. This expanding design, of
course, demanded even more outlets for evaluation. While
empirical observation of real use is essential in proving an
application’s worth, focusing too early on realistic use
detracted from our main goals. Significant engineering
resources are required to support such an evaluation.

Instead, a more lightweight approach to evaluation would
have been better, especially given the experimental nature
of the infrastructure. We should have begun with modest,
easy-to-build applications that leveraged unique features
of Placeless, and then—if those features were found to be
useful—proceeded to a longer-term evaluation. Any
“firming up” of the infrastructure, as well as testing
application usefulness and usability, would have occurred
at this stage. All this is summed up by the following
meta-lesson; a composite of the earlier ones:

Lesson 5—Be clear about what your test-application
prototypes will tell you about your infrastructure: It is
easy to get distracted by the demands of building
applications in themselves and to lose sight of the real
purpose of the exercise, which is purely to understand the
pros and cons of your infrastructure.

CASE STUDY TWO: CONTEXT TOOLKIT

The Context Toolkit [8] (built by a different team from
that of Placeless) is infrastructure to support context-aware
applications. These are applications that dynamically
adapt to users’ context: identity, location, environmental
state, activities, etc. The Context Toolkit was built in the
spirit of ubiquitous computing to allow programmers to
explore this space and to provide users with more
situationally appropriate interfaces to interacting with
computing environments.

Traditional applications have little or no access to context
information and cannot adapt their behavior to user,
system or environmental information. These applications
are sub-optimal in dynamically changing situations.
Further, in a ubiquitous computing environment, with
many services and information resources available to a
user at any time, the use of context to help determine
which information and services are relevant is particularly
crucial. However, context has so far been difficult to
acquire, and so has been used infrequently.

To address this problem, the Context Toolkit treats
context as a first-class citizen, providing applications with
easy access to contextual information and operations to
manage it. This means application programmers need not
worry about the details of acquiring context and can
simply exploit existing mechanisms. So context is made
as easy to use as traditional keyboard and mouse input,
allowing programmers to concentrate on designing the
application itself. Further, end-users of these applications
are provided with the added value of having information
and services automatically adapt to their current situation.

User-Centered Design Challenges

Survey of the State of the Practice

Our design of the Context Toolkit comprised four parts.
First, we examined existing context-aware applications in
the literature to derive a set of necessary features for our
infrastructure. Second, we looked at existing support for
building context-aware applications, and made a list of its
features and examined the complexity of the applications
they were able to support. Third, we performed informal
interviews with builders of context-aware applications
(mostly researchers) to determine what features they

would want in the Context Toolkit. Finally, we used our
own experiences, honed after building numerous context-
aware applications and a previous system to support
building of these types of applications.

We determined that the minimal set of features we needed
were: useful abstractions for representing context, a query-
and event-based information mechanism for acquiring
context, persistent store of context data for later use,
cross-platform and cross-language compatibility to allow
use by many applications, and a runtime layer that could
support multiple applications simultaneously.

The model chosen for acquiring and representing context
was the “widget,” a notion taken from the field of
graphical user interface (GUI) design. The widget is useful
in encapsulating behavior so application designers can
ignore the details of how a widget such as a menu or
scrollbar is implemented, focusing instead on integrating
that widget with their application. We created the notion
of context widgets that were also intended to encapsulate
behavior, allowing designers to focus on using context
information, rather than acquiring it [8].

Supporting Design Through Simulation

There is an important distinction between the context
world and the GUI world: the number of context sensors
potentially surpasses by far the number of “standard”
input devices. Thus, while it is feasible to create all the
device drivers needed to build and operate a GUI-based
application, the same is not true for context-aware
applications. It is here that the widget metaphor breaks
down. Application designers cannot avoid the details of
acquiring context from sensors because often they are
using sensors for which no standard device driver exists.

To alleviate this need, we were forced to add the ability to
simulate context data, allowing designers to either fake
the use of existing sensors or to fake the existence of
sensors that do not yet exist (e.g., mood detection). In the
evaluation section, we will discuss the impact that
simulation had on evaluation of the infrastructure.

Lessons for User-Centered Design

Providing a Basic Infrastructure for Programmers

We designed and constructed infrastructure to support a
set of carefully chosen features only to find that some of
the features were unnecessary, while others were too
difficult to get right or too limited to be useful to
programmers. In hindsight, the support for multiple
applications executing simultaneously and for multiple
programming languages and platforms was wholly
unnecessary. While these features would make any
eventual infrastructure for supporting context-aware
applications complete, they were not necessary for
supporting programmers exploring the space of context-
awareness. Programmers could build individual
applications in a single language on a single platform and
still perform interesting and useful exploration. Similar to
the experience with Placeless, we designed for features
that were not central to the value of the infrastructure.

In addition, the support we provided for some of the key
features was too limited. We did not make it easy enough
for programmers to build their own context widgets.
Also, we did not deliver enough widgets to support the
applications that developers wanted to build on top of our
infrastructure. This reveals yet another crucial lesson:

Lesson 6—Do not confuse the design and testing of
experimental infrastructure with the provision of an
infrastructure for experimental application developers:
It is hard enough to anticipate applications you yourself
might build, without providing means for others to push
the envelope even further. By the time developers are let
loose on the infrastructure it must be relatively stable. If
they begin to demand—or even attempt themselves to
make—changes underneath each other’s live applications,
this will lead to propagation of redundant, missing or
changing features and consequential chaos and breakage.

As implied in this lesson, the toolkit we built, while
addressing many interesting research problems, was not
completely appropriate for allowing programmers to
investigate the space of context-awareness. While we
spent much time trying to make the creation of widgets as
easy as possible, a better approach would have been to
spend time creating a toolkit with a simpler set of features
(reiterating lesson 1) and deriving a base set of usable and
useful widgets (analogous to the seven basic widgets in
the Macintosh Toolbox) and letting designers explore the
building of whatever applications were possible with
those. This way, we could have elicited feedback on what
additional widgets were desirable as well as on what
features were crucial in making the toolkit easier to use.

User-Centered Design Challenges

Because the Context Toolkit was designed for exploration
of context-aware computing, we decided to build some
novel applications that would both leverage the toolkit’s
features and highlight the utility of context-awareness to
users. While modification of existing applications (e.g.
web browser, calendar, e-mail) would also have been
useful, the lack of source code or sufficient hooks to alter
these applications made this impossible. We also
considered development of equivalent applications, but,
as stated in the discussion of Placeless, these
“equivalents” would not provide the stability or range of
features necessary for user adoption. In addition, context-
awareness provides the greatest benefit when the user’s
context is changing frequently. Therefore, we needed
applications that operated in an “off-the-desktop” mode,
for mobile users in dynamic environments.

We built many applications, from simple prototypes that
demonstrated only the core features of the toolkit to
complex systems that used most of the features. While of
course being easier to build, the simple prototypes more
succinctly illustrated the value of the toolkit and context-
awareness in general than did the complex ones, as
suggested by lesson 4. Furthermore, while intended as
short-term demonstration prototypes, they ended up being
the ones that were used over a long period. Examples
include an In/Out Board [19]; a context-aware mailing list

that forwarded mail to only the current occupants of a
building [8]; and a people tracking tool for the home.

Lessons for User-Centered Evaluation

The Value of Lightweight Prototypes

As with the Placeless lesson 3, the more sophisticated
applications provided less return on investment. We built
a conference helper to assist attendees in finding relevant
presentations, taking notes, and retrieving them later [7];
a reminder tool that used contextual information (not
simply time) to trigger reminders [6]; and an intercom
system that followed users around a building and used
context to determine when they could receive an incoming
call [17]. These applications were naturally more difficult
to build and harder to sustain and maintain for long-term
use. While they were intended to more richly illustrate the
toolkit features, they ended up more richly illustrating its
shortcomings, both to programmers and end-users.

In our attempt to design a toolkit to support many
different types of context, it was difficult to provide strict
guidelines on how to use its programming abstractions.
As the type of context being used varied and the ways in
which it was used became more sophisticated, the ways
that the toolkit could be used to support this increased.
Thus, when building more complicated applications,
programmers were confused about the “right” approach to
take. This leads to the following lesson:

Lesson 7—Define a limited scope for test-applications
and permissible uses of infrastructure: Unconstrained
interpretation of the purpose of infrastructure causes
confusion both about what features to use, and how best
to use them, making it difficult to assess the strengths
and weaknesses of the infrastructure, independently from
misunderstandings about how to exploit it.

In addition, as more sophisticated applications were built,
they often required the use of context for which there was
no available sensing technology. In many cases, the
desired sensors were either too expensive or in the realm
of science fiction. With the added simulation support,
there was little incentive for programmers to scale back
their intended applications. They could build a simulated
version of an application and do partial testing, but these
applications could not really be deployed or put to any
significant use to perform realistic evaluation [6, 11, 17].

As applications grew more complex, it became difficult
for users to understand the mapping between context and
application action. In particular, users could not determine
how the simulated applications provided benefit because
too much was faked, from the sensing technology to the
situation that the users were in. This leads to:

Lesson 8—There is no point in faking components and
data if you intend to test for user experience benefits:
By building simulations of aspects of both the
infrastructure and the data it collects, you risk learning
nothing about real user impacts and defeat the purpose
of evaluation, wasting precious time and resources.

All of the problems mentioned above ballooned as the
sophistication of each application increased. Instead of

being able to experiment with many applications,
designers could only evaluate the simple ones, as only
they could be put to authentic and sustained use. The
limitations on the applications made it equally difficult
for us to evaluate the ease of use and utility of the toolkit.

DISCUSSION AND CONCLUSIONS

So, what did we learn from our two examples of the
challenges of user-centered design and evaluation for
infrastructure. What we have is a list of apparently
commonsense lessons—but while these lessons may seem
obvious, it is only with the benefit of direct experience
and hindsight that they have become clearly apparent:

e Lesson 1—Prioritize core infrastructure features.

e Lesson 2—First, build prototypes that express the
core objectives of the infrastructure.

e Lesson 3—Any test-application built to demonstrate
the infrastructure must also satisfy the usual criteria of
usability and usefulness.

e Lesson 4—Initial proof-of-concept applications
should be lightweight.

* Lesson 5—Be clear about that your test-application
prototypes will tell you about your infrastructure.

e Lesson 6—Do not confuse the design and testing of
experimental infrastructure with the provision of an
infrastructure for experimental application developers.

e Lesson 7—Be sure to define a limited scope for test-
applications and permissible uses of the infrastructure.

e Lesson 8—There is no point in faking components
and data if you want to test for user experience benefits.

In themselves, these lessons do not fully answer the
questions proposed earlier in this paper. We do believe,
however, that they not only provide useful guidelines for
infrastructure developers, but perhaps more importantly,
form a starting point for further work on user-centered
approaches to the design and evaluation of infrastructure.

Bridging the Infrastructure Design and Evaluation Gaps
To conclude our discussion we propose a way of looking
at the infrastructure user-centered design process in terms
of an augmented design-implement-evaluate iteration
cycle. In Figure 2 we depict what our lessons tell us is an
appropriate cycle for infrastructure design and evaluation.

Based on our experience, user-centered infrastructure
design demands applications to demonstrate the power of
the infrastructure. But the focus at first must be on
applications with only simple proof-of-concept goals (core
test applications). These should be selected based on
fidelity to the features of the infrastructure (the degree to
which they express the power of the infrastructure), with
minimal demands for usability and usefulness evaluation
(that is, only in as much as these criteria serve the goal of
determining the power of the infrastructure). The design-
develop-evaluate cycle for test applications, shown in the
left of the diagram, is a very lightweight process, and the
feedback to the infrastructure concerns core features only.

Early Phases

Later Phases
- Sty
B2 O . 7

o *

“Serious” *
2 S Applicationsr T

-

’ . .
+ ;'§ 4
.

% n'e'\ .

e

o

-

e

Figure 2: An augmented design-develop-evaluate cycle
for infrastructure and its applications

Only in later cycles (shown to the right in Figure 2)
should serious applications be built as these will have
demanding engineering and usability requirements of their
own that do not demonstrate the success of the
infrastructure. There, the design-develop-evaluate cycles
for the “serious” applications is a much more stringent
process, since these are applications that will be deployed
for real use. By this point, the design and evaluation
cycles for the infrastructure should have honed in on the
refined features necessary to support such applications.

In the terms of Figure 2, both the Placeless and Context
Toolkit projects wasted effort on the parts of the figure
represented by dashed lines. They were overly concerned
with supporting, engineering and evaluating serious
applications rather than with a user-centered evaluation of
the infrastructure via simple, core feature-oriented test
applications. While core test applications are not, in fact,
the same as the serious applications that users really want,
such applications are still essential, demonstrating as they
do the power of the infrastructure and pointing to needs
for the ultimate applications of the technology.

ACKNOWLEDGEMENTS
The authors would like to thank the members of the two
projects used as case studies in this paper.

REFERENCES

1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M.,
Fiksdahl-King, I. and Angel, S. 4 Pattern Language. Oxford
University Press, Oxford, UK, 1977.

. Apple Computer, Macintosh: Macintosh Toolbox Essentials, 1993.

3. Bass, L., John, B.E. and Kates, J. Achieving Usability Through
Software Architecture. Carnegie Mellon University. 2001, 2001.

4. Beck, K. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

5. Cousins, S.B., Paepcke, A., Winograd, T., Bier, E.A. and Pier, K.,
The Digital Library Automated Task Environment (DLITE). In

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Proceedings of ACM International Conference on Digital Libraries,
(1997).

Dey, A.K. and Abowd, G., CybreMinder: A Context-Aware
System for Supporting Reminders. In Proceedings of Symposium on
Handheld and Ubiquitous Computing (HUC), (2000), Springer-
Verlag.

Dey, A.K., Futakawa, M., Salber, D. and Abowd, G., The
Conference Assistant: Combining Context-Awareness with
Wearable Computing. In Proceedings of International Symposium
on Wearable Computers (ISWC), (1999).

Dey, A.K., Salber, D. and Abowd, G.D. A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of Context-
Aware Applications. Human Computer Interaction, 16 (2-4). 2001.
Dourish, P., Edwards, W.K., LaMarca, A., Lamping, J., Petersen,
K., Salisbury, M., Thornton, J. and Terry, D.B. Extending
Document Management Systems with Active Properties. ACM
Transactions on Information Systems (TOIS). 2000.

Dourish, P., Lamping, J. and Rodden, T., Building Bridges:
Customisation and Mutual Intelligibility in Shared Category
Management. In Proceedings of ACM Conference on Supporting
Group Work (GROUP), (1999).

Espinoza, F., Persson, P., Sandin, A., Nystrom, H., Cacciatore, E.
and Bylund, M., GeoNotes: Social and Navigational Aspects of
Location-Based Information Systems. In Proceedings of Ubicomp,
(2001), Springer-Verlag.

Fowler, M. http://martinfowler.com/articles/newMethodology.html.
Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley, Reading, Massachusetts, 1994.

Hudson, S.E. and Stasko, J.T., Animation Support in a User
Interface Toolkit: Flexible, Robust, and Reusable Abstractions. In
Proceedings of Symposium on User Interface Software and
Technology (UIST), (1993), ACM.

Jacobson, 1., Griss, M. and Jonsson, P. Software Reuse:
Architecture, Process and Organization for Business Success. ACM
Press, New York, NY, 1997.

LaMarca, A., Edwards, W.K., Dourish, P., Lamping, J., Smith, L.E.
and Thornton, J.D., Taking the Work out of Workflow:
Mechanisms for Document-Centered Collaboration. In
Proceedings of European Conference on Computer-Supported
Cooperative Work (ECSCW), (Copenhagen, Denmark, 1999).
Nagel, K., Kidd, C., O'Connell, T., Dey, A.K. and Abowd, G.D.,
The Family Intercom: Developing a Context-Aware
Communication System. In Proceedings of Ubicomp, (2001),
Springer-Verlag.

Roseman, M. and Greenberg, S., GROUPKIT: A Groupware
Toolkit for Building Real-Time Conferencing Applications. In
Proceedings of Conference on Computer-Supported Cooperative
Work (CSCW), (1992).

Salber, D., Dey, A.K. and Abowd, G.D., The Context Toolkit:
Aiding the Development of Context-Enabled Applications. In
Proceedings of Conference on Human Factors in Computing
Systems (CHI '99), (Pittsburgh, PA USA, 1999), 434-441.

