
TALC: Using Desktop Graffiti to Fight
Software Vulnerability

Kandha Sankarapandian, Travis Little, W. Keith Edwards
Georgia Institute of Technology

85 Fifth Street NW, Atlanta, GA 30308, USA.
{kandha, tlittle , keith}@cc.gatech.edu

ABSTRACT
With the proliferation of computer security threats on the
Internet, especially threats such as worms that
automatically exploit software flaws, it is becoming more
and more important that home users keep their computers
secure from known software vulnerabilities. Unfortunately,
keeping software up-to-date is notoriously difficult for
home users. This paper introduces TALC, a system to
encourage and help home users patch vulnerable software.
TALC increases home users’ awareness of software
vulnerabilities and their motivation to patch their software;
it does so by detecting unpatched software and then
drawing graffiti on their computer’s background wallpaper
image to denote potential vulnerabilities. Users can “clean
up” the graffiti by applying necessary patches, which
TALC makes possible by assisting in the software patching
process
ACM Classification: H.5.m Information interfaces and
presentation, H.5.2 User Interfaces, K.6.5 Management of
Computer and Information Systems: Security and
Protection, D.4.6 Operating Systems: Security and
Protection
General terms: Human factors, security, management
Keywords: Usable security, Internet security, home users,
patch management, software vulnerabilities, security
framework, graffiti

INTRODUCTION
One of the most significant computer security threats faced
by users today results from vulnerabilities in the operating
system and application software installed on users’
computers. Software defects—bugs such as susceptibility
to buffer overflow attacks [7], cross site scripting [26], and
so forth—represent vectors through which malware can

infect and compromise users’ machines. Once machines
have been compromised, malicious parties can extract
personal information from them, or enlist them into botnets
to serve in further attacks on network resources. The latter
threat, in particular, has a significant impact on the entire
Internet community as botnets are the means to Distributed
Denial of Service (DDoS), spam and phishing attacks [14];
the exponential increase in size and number of botnets [6]
is a stark reflection on the number of vulnerable machines
that exist in the Internet. Ironically, in many cases, patches
exist to repair these vulnerabilities; however, users are
often unaware that such patches exist, or are unmotivated to
install them, or may not know how to install them.
Numerous reports from both government and industry
sources highlight the magnitude of the threat posed by
unpatched software vulnerabilities. For example, statistics
from the Computer Emergency Response Team
(CERT/CC) show the rapid increase in reported software
vulnerabilities since 1995 [5]. NIST's report on the
economic impacts of inadequate software testing estimates
damage from attacks exploiting software vulnerabilities at
US$60 billion/year [25]. Furthermore, testimony from the
US General Accounting Office notes the importance of
effective and continual patch management in addressing the
“staggering” increase in software vulnerabilities [29].
Industry sources echo these same concerns. The importance
of routine patching is highlighted in Symantec’s security
report [28], which notes that after having a firewall and
antivirus software, the single most important practice for
consumers to maintain their computer’s security is to stay
current on software patches. The SAGE report [17] from
McAfee Avert Labs estimates that known software
vulnerabilities are increasing at a rate of about 30%
annually. Microsoft’s LaMacchia [16] also notes that the
window of time between when new software is released
and when an exploit has been created has decreased
considerably (leading to so-called zero day attacks, in
which exploits are ready to be employed the day new
software is released).
Unfortunately, just as the necessity of maintaining up-to-
date patches is increasing, the complexity of doing so is
also increasing: users must now be responsible for patching
not only their operating system software, but also the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00

multiplicity of application software on their systems. While
operating systems have built-in facilities (such as Windows
Update) to download patches and encourage users to install
them, other applications use a diverse range of update
mechanisms, including requiring that users explicitly visit
vendors’ web sites for newer versions. Worryingly, the
SAGE report indicates that in the period between
December 2005 and May 2006, the vulnerabilities targeted
were moving away from OS attacks, to attacks on other
software, such as Internet Explorer and Firefox. Thus users
must now contend with a host of disparate and confusing
patch systems in order to ensure that all of the software on
their machines is protected.
In order to patch vulnerable software, users (1) must know
that such software exists in the first place, (2) know how to
go about patching it, and (3) be motivated to do so in a
timely manner.1 Although there are a number of existing
systems that address patching in some capacity (described
below), none of these systems specifically address making
home users aware of the threats that vulnerable software
poses to their computer’s security and their privacy, nor do
they provide a holistic approach to patch management
across multiple vendors’ applications.
To address these challenges, we have developed a system
called TALC (for Threat Awareness, Learning, and
Control) that aims to augment users’ awareness of
vulnerabilities posed by unpatched software through
unobtrusive yet persistent visual reminders, persuade them
to remedy those vulnerabilities, and provide easier
mechanisms for patch installation across a range of
applications.
In this paper, we describe TALC, its architecture, and a
deployment-based user study that we performed to
determine its overall utility. We conclude with a discussion
of our approach and directions for future research.

RELATED WORK
Most of the current work on easier patch management is
either vendor-specific, or has focused on managed solutions
for the enterprise environment.
In the vendor-specific category, tools such as Windows
Update and Mac OS X Software Update perform automatic
detection and download of new patches, and single-click
installation. However, these tools only work for operating
system components and, as noted above, unpatched
application software now represents the major source of
vulnerabilities. Of course, many application vendors
provide mechanisms for their own products (such as Adobe
Online’s tools for update of their Creative Suite products).
However, there is no unified vendor-supported mechanism

1 Even with systems that include an auto-update mechanism, the response window between

the public disclosure of an exploit and the availability of a software patch is sufficient for a

worm to exploit the vulnerability and achieve significant spread. Usually an advisory on

working around the vulnerable software is released before the actual patch and educating

users with these advisories can be effective in stopping exploits.

for simple updates of all software on a user’s system,
requiring users to deal with these on a piecemeal basis,
when such systems exist at all.
In the enterprise space, a number of companies have begun
to focus specifically on patch installation in managed
networks, as a way for centralized IT organizations to
protect the corporate network. Enterprise management
solutions like Marimba Patch Management from BMC
Software [3], for example, enable deployment of security
patches on all devices across the enterprise. While
powerful, these systems are not designed for use by home
users; they require, for example, a centralized administrator
who manages patch releases to the corporate network, and
rely on homogeneous software installations on client
devices.
There is a tension between tools like Marimba, which are
proactive and aim to shield end-users from direct
involvement with patching, and other tools such as
Windows Update that take a more interactive approach,
involving the user in the patch decision process and
demanding their attention [15].
While proactive tools are, on the surface, easier to use since
they do not require direct user involvement, they also do
not contribute to the user’s learning process: awareness of
threats is a critical component in managing software
vulnerabilities given the diversity each user’s individual
software usage patterns. Further—and perhaps more
importantly—unless potential software version conflicts
can be reliably determined in advance, there is a risk that an
automatically installed patch will break other software on
the user’s computer. Such a hypothetical, fully-automated
tool for managing software updates across applications is
difficult to achieve outside the homogeneity of the
managed corporate network, meaning that users will likely
have to be involved in at least some aspects of patch
decision making for the foreseeable future [10].
Given these practical realities of automated patch
management, it is imperative that users be kept informed
about the potential dangers of an unpatched system, as well
as the benefits and risks of installing a given patch, if they
are going to be involved in making patch decisions.
A challenge, of course, is that highly interactive tools can
potentially annoy users to the point that they turn off such
tools completely. This problem has been especially evident
in security software; most common firewalls, for instance,
display pop up messages about threats such as port scans.
Bailey, Konstan, and Carlis [1] report that such
interruptions increase task completion times, as well as user
anxiety and frustration. However the suggestion from [1] of
an “attention manager” that predicts opportunities for
engaging with the user may not be an optimal solution for a
security task like patch management that does not require
an instantaneous allow/deny decision in the way that
antivirus or firewall alerts do. This suggests that different,
more subtle and less intrusive approaches than interrupting
the user may be employed, which allow the user to interact

with the patch management system as a secondary task, but
with sufficient persuasion that users do not ignore it
completely.
There have also been a number of research efforts intended
to address the problem of excessive dependence on user
interaction for security. For example, systems such as the
Chameleon System for Desktop Security [23] attempt to
categorize software into activity roles in an effort to reduce
impinging on the user’s attention. However, most such
tools are incomplete, or focus on a narrow range of threats.
For example, Chameleon is a low-fi, paper-based prototype
intended to address only the threat of malware.
TALC is designed in response to the need for better patch
management on end-user systems. It aims to strike a
balance between proactive and interactive support, in order
to provide users with awareness and control over security
risks without excessive attention costs or disruption to their
workflow. TALC uses “calm” notifications, rather than
intrusive techniques such as popups, to motivate specific
user behaviors, and to provide awareness of overall system
risk from software vulnerabilities. TALC also provides a

holistic approach to patch management, by assisting with
patch management across the heterogeneous variety of
applications and software components that may be installed
on a user’s machine.
DESCRIPTION
In this section, we describe how the user sees TALC, as
well as how TALC detects and assists in repairing software
vulnerabilities.
TALC paints graffiti on the user’s desktop to indicate the
presence of unpatched software on the user’s system (see
Figure 1). Unlike intrusive techniques such as popups, this
is meant to be a “low-distraction” technique, designed to
make users aware of potential problems, while allowing
them to act on them in their own time. In contrast to
warning dialogs that interrupt users’ activities (“Your
patches are out of date!”), this awareness function is
intended to serve as a constant but gentle reminder,
allowing users to finish their primary tasks without letting
them forget about the security maintenance tasks that need
their attention.

Figure 1: TALC showing graffiti on the userʼs desktop along with a popup description of the threat.

For each threat found on the user’s machine by TALC a
single graffiti image is chosen out of a corpus of images,
and composited into a randomly selected area of the screen.
TALC uses the size of the graffiti image to convey the
relative severity of the threat: the graffiti is shown larger
for severe threats and smaller for more mild threats.

Why Graffiti?
We chose the graffiti visualization of software
vulnerabilities to convey a general sense of “decay” or
“threat” to the user, suggesting that their machine has
entered a state of risk. Such notions appear to be broadly
associated with graffiti in physical environments for many
people. Numerous studies have confirmed this association
across a number of cultures and communities; see, for
example Morin et al.’s study of US public health nursing
students’ perception of threat in their communities [22],
Bowling et al.’s study of risk perception in Britain [4] as
well as others [2, 13].
We realize that this association may not hold across all
cultures, or even across individuals within a given culture.
(See, for instance, sources that reflect the artistic value in
graffiti such as Susan Farrell’s Art Crimes site,
http://www.graffiti.org, as well as academic work exploring
the appropriation of graffiti by various subcultures [11].)
However, even for those users that may not have negative
associations with graffiti, we hoped that their personal
inclinations would be outweighed by the minor annoyance
of having part of their desktop covered by the graffiti
(covering a personally selected photo for instance), and
therefore would still provide motivation to deal with the
software vulnerabilities.
Our choice of a real world metaphor for visualizing
security threats stems from the observations made by
Redstrom, Skog and Hallnas in their work on informative
art [27]. We explored a number of other, non-graffiti
visualization approaches during prototyping, which we also
believed might convey a sense of risk to the user. These
included one that used bullet holes in the user’s background
image (deemed both to be too violent, and to
inappropriately convey a sense of active attack rather than
simple decay), and one that rendered increasingly large
piles of garbage and other debris along the bottom of the
user’s screen (deemed to appropriately convey a sense of
decay but perhaps be too easy to ignore). We believe using
graffiti walks the line between the ambient media and
diversion categories as described by McCrickard, et.al. in
their model for notification systems [18].

Determining and Presenting Vulnerabilities
TALC determines potential vulnerabilities through a multi-
step process. First, we perform a periodic system-wide
audit to identify software versions installed on the user’s
machine. Next, this data is compared against the online
NIST National Vulnerability Database (NVD) [24],
resulting in an up-to-date list of installed software for
which patches exist.

When the user’s cursor hovers over a graffiti area, a tooltip
displays the name of the software that is vulnerable, as well
as the threats posed by this vulnerability (see Figure 1).
We parse the NVD at connection time to retrieve patch
information, as well as the descriptions presented to users,
as shown in Figure 1 above. The language used in the
descriptions in the National Vulnerability Database is often
highly technical, and may be confusing to home users. To
make the descriptions more palatable, we use a set of
heuristics to simplify the explanations. For example, an
NVD threat description such as the following:

The do_change_cipher_spec function in OpenSSL
0.9.6c to 0.9.6k, and 0.9.7a to 0.9.7c, allows remote
attackers to cause a denial of service (crash) via a
crafted SSL/TLS handshake that triggers a null
dereference

would be presented by TALC as:
Denial of service vulnerability that lets a remote
attacker slow down/crash your computer.

The descriptions are scanned for a small set of keywords,
and predefined descriptions of the problems are presented
to the user. This provides a more readable description for a
large number of common classes of vulnerabilities; other
descriptions that do not match our heuristics are explained
with a generic message: “Other vulnerability.”
We did not completely eliminate all information about the
vulnerability to allow users to learn about common types of
threats, and—if necessary—communicate such information
to any people or organizations they trust to help them keep
their computer safe. Thus, following Zurko [30], TALC
places emphasis on helping users understand these security
concepts through its use.

Repairing Vulnerabilities
In addition to supporting threat awareness, TALC also
allows users to take actions that mitigate threats. When the
user clicks the right mouse button on graffiti, a popup
context menu appears that allows them to repair the threats
posed by a vulnerable program. When the user chooses to
fix the program, TALC downloads and displays the
webpage that contain patches or workarounds for
vulnerabilities, and displays the control window shown in
Figure 2. TALC also shows system information and the
name and version number of the program with the
vulnerability.
Unfortunately, different vendors require different processes
to acquire patches: some may require that users log in,
while others require a click-through license agreement, and
others may simply provide direct access to the patch itself.
Thus, while TALC automates the process of finding a patch
for the detected vulnerabilities, it leaves the task of actually
installing patches to individual users. This is not only
because of the difficulty involved in automatically dealing
with multiple vendors’ web sites, but also because users
must often be involved in the process of deciding whether a
particular patch is appropriate for them. Security is not

users’ only concern; they must make security related
decisions in context, such as knowing whether a new
software version will break compatibility with other tools.
For example, Windows XP SP2—while providing
important security features—broke the functionality of a
number of network-based tools [21]. Simply installing such
updates automatically without considering the context of
other software in use can often lead to such problems.

IMPLEMENTATION
TALC uses a modular implementation, with well-defined
communication interfaces between modules to facilitate
easy addition and replacement of components. This is
exposed in the form of an API that allows developers to
write pluggable modules for TALC. For example, these
APIs have been used to create the software vulnerability
detection system described in this paper, but can be
extended to provide functionality beyond software patch
management. The extensible nature of TALC is intended to
be used to visualize and control a large set of security tools
through a framework similar to the one described by
Dourish and Redmiles in [9]. For example, information
sources, sensors and aggregators can be created and
plugged into TALC, allowing it to be extended to new
visualizations and to detect new security threats. Our long-
term goal is for TALC to ultimately serve as an integrated
security suite along the lines of Internet Security suites
from Symantec, McAfee and an advanced form of the
Windows Security Center [20].
The TALC system is composed of four modules,
Information Source Module, Correlation Module,
Visualization Module and Control Module linked together
by a Communication Manager that allows modules to pass
messages to each other. Each module exposes hooks and
registers callback functions with the other modules for
communication. The Information Source module detects
events from the host and the network and processes them
into XML data that can be exchanged with other modules.
For example, the software vulnerability detection features

described in this paper are implemented as a custom
Information Source module, which generates data by using
Hijackthis [19] (a tool that scans the registry for references
to installed programs) and a series of other system scans
(such as programs on the Start Menu, or on the user’s
desktop) to identify installed software.
The Correlation module interprets this information by
aggregating the data from the different Information
Sources. For the software vulnerability detection
incarnation of TALC, the Correlation module correlates the
information from the system scans with data pulled from
the NVD. The Correlator performs a version match with the
list of vulnerable software from the NVD database,
ascertains the severity of the threat (Mild, Medium or
Severe), and records the website indicated by the NVD to
contain information necessary to resolve the vulnerability.
This is fed to the Visualization and Control modules.
The Visualization module is responsible for information
presentation. As described earlier, our current visualization
module presents software vulnerabilities as graffiti
rendered onto the user’s desktop. Other visualizations are
possible; for example, one visualization we have explored
renders vulnerabilities as pieces of garbage piling up along
the bottom of the user’s screen; one could also create
visualization modules that use standard pop-up dialog
boxes to notify the user of threats.
Finally, the Control module provides the means by which
the user can act upon the information presented by the
Visualization module. In our current system the Control
module opens up websites that lets the user download a
patch to fix the software vulnerability. The Control module
can be easily extended to give a user control of different
security software such as their firewall.

EVALUATION
We performed a deployment-based study of TALC to
determine its efficacy in providing better awareness of
software vulnerabilities, and in incenting users to rectify
those vulnerabilities. Our study structure consisted of a
two-week deployment period during which TALC was in
operation on users’ primary machines. Logging features in
TALC reported on users’ use of the system so that we
could collect quantitative data on their actions. We also
collected data from pre- and post-study questionnaires to
get qualitative data about users’ perceptions of the
software.
Participants were recruited from a non-university context.
After consent was obtained (but before any other
participation in the study), users were sent a link to an
online questionnaire that tested them on their awareness of
computer security concepts and threats, as well as their
expertise in general computer usage.
Once users completed the pre-test questionnaire they were
emailed a link to the installation file and they were asked to
download and install TALC. Our participants ran a
specially instrumented version of TALC on their personal

Figure 2: TALC Control window displaying the

website with patch information.

computers for two weeks. Every week, TALC would
upload the data it had collected on how users interacted
with it.
When the participants had been running the program for
two weeks, they were sent a link via email to a post-study
questionnaire to allow us to get data about their subjective
experiences of using the software.

The Participants
Ten participants finished the study successfully. Seven
more started the study, but dropped out for a variety of
reasons, including changing their mind about participating
in the study before downloading the software, and because
of installation problems. One participant uninstalled the
TALC software before the two weeks were completed; we
include data from this subject in the results presented here:
one of the things we hoped to discover was whether we had
correctly adjusted TALC to motivate users without being
annoying, and so results from users who ceased using the
software had the potential to be especially illuminating.
The ages of the participants ranged from twenty-three to
thirty-five, with an average age of twenty-six. Of those who
completed the study, four were women and six were men.
Although the absolute number of participants is smaller
than would be typical in a controlled lab study, the intent
with our evaluation was specifically to engage users in a
real-world deployment of the system over a sustained (half
month) period of time, a style of evaluation that we believe
is necessary for ecological validity. While lab-based studies
can easily engage substantially larger numbers of users,
these studies have problems in the security context,
particularly around artificial experimental scenarios that are
removed from users' day-to-day experiences, and also may
overly prime subjects’ orientation toward security. We
therefore believed that a deployment study, on users’ own
computers, confronting unknown usage contexts and
uncontrolled software vulnerabilities, was the only
appropriate way to measure use.

The Pre-test Questionnaire
The pre-test questionnaire was administered online, using a
common online survey vendor. Participants were emailed
requests to fill out the survey, and provided links to the
survey site. The survey consisted of three demographic
questions, eleven questions to determine how comfortable
the participants felt using computers, and how confident
they were in their computer’s security. Finally there were
eight questions in which the user was asked to define
simple computer security related terms, to gauge their
general knowledge of computer security concepts.

The Study
There were two conditions in the study, to separate
patching actions incented directly by TALC from other
patches downloaded merely because users had an increased
awareness of the security issues as a result of participating
in the study itself. In all conditions TALC was downloaded
and installed by the participants. In one condition, however,

the tool was instrumented to not identify any vulnerabilities
(and, hence, to not show any graffiti) during the first week;
in the second condition the tool was instrumented so that it
did not detect any vulnerabilities (nor show any graffiti) in
the second week. Through these two conditions we hoped
to isolate any potentially biasing novelty effects caused
simply because subjects were participating in the study. In
both cases, for the week it was active, TALC detected
vulnerable software on all participants’ computers, and thus
presented graffiti to all users during the week it was
activated. During both weeks, for both conditions, TALC
continued to scan the users’ systems and record
vulnerabilities as well as how the participants interacted
with it.
Participants were randomly assigned to a condition when
they consented to be a part of the study. They were not
given a link to the TALC installation file until they had
completed the pre-test questionnaire. Participants were
instructed to inform researchers if they had any problems
installing the software packages; despite this, a number of
participants did have trouble installing our prototype and
yet did not contact us, which contributed significantly to
the drop-out rate.
The Post-test Questionnaire
The post-test questionnaire was administered online, again
using a common online survey vendor, in the same way as
the pretest questionnaire. Participants were emailed
requests to fill out the survey, and provided links to the
survey site, when they had run the TALC software for two
weeks and their usage data had been uploaded. The survey
had the same questions as the pretest questionnaire, along
with the addition of thirteen questions to determine the
participants’ perceptions of using the TALC system over
the deployment period.

RESULTS
This section describes the results from our deployment
study, and from our pre- and post-test questionnaires.

Events Tracked
TALC kept logs of the users’ interaction with it, over the
two week period, and the data was uploaded twice to our
server: once at the end of each week.
From the logs we categorized five types of events:
Awareness events, Learning events, Control (Fixed) events,
Control (Ignore) events, and Reappear events. An
Awareness event was recorded when graffiti for a particular
threat was shown to the user for the first time. Whenever
our simplified description of the threat was shown to the
user or when the user clicked on a graffiti, and the vendor
website was displayed, it was recorded as a Learning event.
Whenever users would indicate to the system that a
vulnerability had been repaired and should be dismissed
(through clicking the “Already Fixed” button in the TALC
interface), Control (Fixed) events were recorded. If the
vulnerability hadn’t actually been fixed, a Reappear event
would be recorded when the vulnerability was re-detected.
Finally, if a user chose to not fix a vulnerability by clicking

the Ignore button while viewing a patch website, a Control
(Ignore) event was written to the log.
Each line on these graphs represents a single test
participant. Figure 3 records the distribution of Awareness
events—each representing a newly detected vulnerability—
over the TALC active week period. The smaller spike in
awareness at later stages of test period is a composite of
two factors—new vulnerabilities released by NVD and new
program installs by users of the software.

Usage Patterns
The majority of user actions were taken within two days
after graffiti for a particular vulnerability first appeared on
the desktop: 60% of all vulnerabilities were fixed within a
two-day period. However, 39% of the remaining
vulnerabilities that were fixed were patched in the last two
days of the test, indicating that users were patching,
ignoring graffiti for a couple of days, and then coming back
and patching at a later time. This is illustrated in Figure 4
below.
Recall that Learning events represent visits by users to a
patch website through TALC; this figure shows the
distribution of such visits. Beyond simply exploring
vulnerabilities through TALC, we believe that the effects of
making users aware of software vulnerabilities on their
systems may have resulted in greater sensitivity to patching
in general: A number of the respondents to our post-test
survey reported using regular web search engines to find
out more details about the detected vulnerabilities. While
we were encouraged by these findings, such events are
beyond the scope of the instrumentation we had in place for
TALC and so we only have self-reports of such activities.
The Fixed and Ignore types of Control events are a good
reflection of the effectiveness of TALC. When a participant
applied a software patch, TALC did not immediately
remove the graffiti; rather, the graffiti was removed during
the next periodic scan of the user’s system. The TALC user
interface, however, provided an option to manually invoke

the scan to remove graffiti for threats that had been fixed.
Another option, which incidentally most users adopted, was
to use the Control window to mark a threat as “Fixed” so
that TALC hides the graffiti. Figure 5 shows users’ usage
patterns of marking threats as fixed.
A common pattern across all participants is that they tried
to fix a number of vulnerabilities initially, following which
there was a lull period with little or no activity; finally,
several days later, there were more attempts to fix
vulnerabilities. We believe this pattern indicates favorable
acceptance on the part of users: rather than becoming
infuriated with the notifications provided by TALC, users
were “living with” the notifications for a period of several
days, and then fixing them at convenient intervals. Users
were able to put off patching anything for a couple of days,
but were not allowed to forget about the security task to
which they needed to attend. This indicates that the graffiti
notification system worked well in allowing users to push
back their lower priority (but necessary) security tasks until
they were convenient, but while still retaining awareness of
the need to perform these tasks. Furthermore, we believe
the sudden flurry of activity near the end of the active week

Awareness

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7

Days

N
e

w
 G

ra
ff

it
is

 (
th

re
a

ts
)

Figure 3: Awareness of new threats reported by

TALC to the test participants.

Learning

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

Days Graffiti was shown

N
u

m
b

e
r

o
f

in
te

ra
c

ti
o

n
s

Figure 4: Learning events logged by TALC.

Control (Fixed)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

Days Graffiti was shown

U
s

e
rs

 m
a

rk
 t

h
re

a
ts

 a
s

F
ix

e
d

Figure 5: Participants marking threats as “Fixed”.

represents a periodic turn of attention toward patching,
rather than a desire by participants to “wrap up” patching
before the end of the study. Much of this activity, for
example, came from the condition two participants, who
still had another week to participate in the study.
In the subsequent scan cycles, TALC logged any of these
fixed threats that still match the vulnerability description
from NVD and logs them as a reappearance of a threat,
shown in Figure 6.
We should note here that, in our current implementation,
threats for which the NVD has only an advisory (meaning:
for which no patch is available) are never detected as fixed
by TALC. To handle such a scenario, TALC allows the
user to optionally ignore these threats that have reappeared.
Threats that have been ignored will not reappear in the
subsequent scans unless the user explicitly asks TALC to
include them in the scan. Occurrences of this event are
plotted in Figure 7. The spike near the start of the test may
be due to the large number of vulnerabilities detected by
TALC (see below for details on the number of raw
vulnerabilities found on users’ systems). These Ignore
events were also recorded when participants found the
information provided by the patch website too daunting for
them, and chose to leave the vulnerability unpatched. We
discuss some suggestions for how to overcome both these
shortcomings in the Future Work section.

DISCUSSION
There are multiple useful metrics for determining what
constitutes efficacy in a tool such as TALC. One such
metric is whether the tool increases the perceived safety of
users; the second is whether it increases their actual safety.
While we evaluated for both metrics, we believe that the
latter is actually the more important, since perceptions of
increased safety are of little value without actually
increased safety.
In the sections below we first report on TALC’s efficacy in
actually repairing system vulnerabilities, and then on users’
perceptions of its efficacy.

TALC Effectiveness
We were pleased to find that TALC provided a dramatic
increase in the safety of users’ systems during its
deployment, and that TALC’s notifications made a large
and statistically significant difference in users’ awareness
and motivation to install patches.
In the weeks where TALC was dormant—meaning it was
not drawing graffiti on the users’ desktops—none of the
users patched any vulnerabilities whatsoever. However, in
the week when the graffiti was placed on the desktop,
seventy percent of the users fixed at least one vulnerability,
with an average of 24.3 vulnerabilities patched per user
(averaged over all users), and an average of 34.7
vulnerabilities patched over users who patched at least one
vulnerability. The number of vulnerabilities patched during
the active period was found to be statistically significant
(t(9) = 2.78, p = 0.0216) when compared to the dormant
state when no vulnerabilities were patched.
The absolute number of vulnerabilities patched may seem
artificially high, because it does not necessarily indicate the
number of fixes downloaded, but rather the number of
vulnerabilities patched: A single fix downloaded by the
user may or may not patch multiple vulnerabilities.
At the beginning of the test, TALC found an average of
47.6 vulnerabilities on our participants’ machines. All
participants’ computers had at least five vulnerabilities,
with the most having 64 vulnerabilities. These numbers not
only confirm the threat posed by unpatched software, but
also users’ lack of awareness about vulnerabilities on their
systems for which patches exist.
Although TALC was effective in getting users to fix some
of the vulnerabilities in their systems, none of the users
patched their machines completely. Of the 482
vulnerabilities left unpatched, 208 (43.15%) were
considered serious threats by the NVD, 88 (18.25%) were
considered moderate threats by the NVD, and 186
(38.59%) were considered mild threats. The total number of
vulnerabilities increased over the test period in part due to

Reappearances

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7

Days Grafitti was shown

T
h

re
a

ts
 t

h
a

t

re
a

p
p

e
a

re
d

Figure 6: Threats that reappeared after being

marked as “Fixed” by the participants.

Control (Ignore)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

Days Graffiti was shown

U
s

e
rs

 a
s

k
 T

A
L

C
 t

o

ig
n

o
re

 t
h

re
a

t

Figure 7: Participants asking TALC to Ignore a

threat from subsequent scans

new software being installed by our test subjects, but
mostly due to updates in the vulnerability listing from the
NVD. 50% of the users responded that it was very difficult
to correct the security vulnerabilities reported by TALC,
which we attribute to the poor usability of many of the web
pages supplied by the NVD. In addition, sometimes the
links provided in the NVD data were not valid. Further
discussion can be found in the Future Work section below.

User Perceptions
One of the goals of TALC was to experiment with gentle
reminder functions to motivate users to take security
actions. In the post-test questionnaire, when asked to
suggest improvements to the program, thirty-three percent
of the participants suggested various solutions for making
the graffiti less invasive. However, our goal was to make
TALC as motivating as possible, without being overly
annoying (which could have caused users to disable the
program entirely). A majority (67%) of users raised no
issue with intrusiveness; further, we find it to be telling that
the only user who reported disabling the TALC software
during the test did so because he felt it was slowing his
system down too much. The implementation of our
Visualization module uses the default .NET transparency
effects, which run on the CPU on systems without modern
graphics cards, so this may have contributed to the
problem.
Finally, with regard to the effect of TALC on perceived
user safety, we found that four of the seven users who
responded to the post-study questionnaire felt that using
TALC had improved their ability to protect their computer,
and that their computer was safer as a result. Although this
figure does not represent universal success in increasing
perceived safety, we were delighted to demonstrate any
increase, since our pre-test questionnaire showed users
were generally unaware of any vulnerabilities. We believe
that this sort of awareness of risk is essential for self-
managed computers (at least given today’s state-of-the-art
in automated security systems), and points to necessary
further work in the area of conveying an accurate sense of
risk or safety to users.

Future Work
Our near-term goals concern both expanding the
capabilities of the TALC framework, as well as evaluating
with a larger user base on how well our visualization and
control features motivate and support users to mitigate
threats.
One of the common problems encountered by users was the
complexity of vendors’ update websites. To address this
issue, we intend to add another level of proactivity in the
system, to allow TALC to automatically download and
install patches from a set of “common” websites, the patch
processes of which can be built into the tool itself. With
this addition, TALC would only present instructional web
pages for late-breaking advisories that do not include a
direct download link to a software patch. This feature can
be accompanied by an additional layer of abstraction over

the patch websites that simply asks the user to update their
software to the latest version without loading the entire
website containing specific details of the threat.
To prevent display of “unfixable” problems (such as
advisories that do not have valid URLs), we intend to filter
the advisories for common problems, and never show
graffiti for the vulnerabilities reported.
We also intend to add several more information sources to
the program, to exercise the extensibility features described
in the Implementation section. Most important among these
are the creation of modules that integrate a number of
existing security tools, such as NMAP [12] and Nessus [8],
to extract data about other sorts of system vulnerabilities.
Specifically, we plan to use NMAP (a port scanning tool)
to independently audit the user’s firewall, since properly
configured firewalls are very effective at blocking many
automated attacks. Nessus is a tool that performs security
audits by running exploit code against a user’s computer. It
has an active development base that releases new exploits
to be used while auditing.
CONCLUSION
We have presented TALC, a software system that assists
users in protecting their computers from some of the most
serious threats on the Internet, software with known
vulnerabilities. TALC uses a low-intrusion notification
mechanism for presenting users with information about
vulnerabilities. Through the use of automated system audits
and correlation against online databases, we can detect
potential software vulnerabilities and give users easier
mechanisms to act to repair those vulnerabilities. The
extensible architecture of TALC allows it to be used to
detect, visualize, and mitigate against a wide range of
threats.
More generally, we believe that the approach taken by
TALC may be useful in cases where 1) user motivation for
a task may be low (as is often the case with security tasks),
2) intrusive or disruptive notifications may actually incent
users to disable the system, and 3) there is not the need for
immediate action. This combination of factors makes this
class of tasks somewhat different from others (such as
firewalls or background email notification) that have been
widely studied in our community. We believe that the
strategy of background notifications that strike a balance
between awareness and annoyance to gently incent the user
can be profitably applied to this class of problems.

REFERENCES
1. Bailey, B.P., Konstan, J.A. and Carlis, J. V. (2001) The

effects of interruptions on task performance,
annoyance, and anxiety in the user interface.
Proceedings of INTERACT ’01, pp. 593-601.

2. Bennett, R. and Flavin, J. “Determinants of Fear of
Crime: The Effect of Cultural Setting.” Justice
Quarterly, 11:3, September 1994, pp. 357-381.

3. BMC Software. Marimba Patch Management
Software, http://www.marimba.com/

4. Bowling, A., Barber, J., Morris, R., and Ebrahim, S.
“Do Perceptions of Neighbourhood Environment
Influence Health? Baseline Findings from a British
Survey of Aging.” Journal of Epidemioogy and
Community Health, 60:476-483. 2006.

5. Computer Emergency Response Team (CERT), 2006.
CERT/CC Statistics 1988-2006.
http://www.cert.org/stats

6. Cooke, E., Jahanian, F., and McPherson, D. The
Zombie Roundup: Understanding, Detecting and
Disrupting Botnets, in First Workshop on Steps to
Reducing Unwanted Traffic on the Internet (SRUTI),
2005.

7. Cowan, C., Wagle, P., and Pu, C. Buffer Overflows:
Attacks and Defenses for the Vulnerability of the
Decade, DARPA Information Survivability
Conference and Expo, 1999.

8. Deraison, R. Nessus - A Comprehensive Vulnerability
scanning program, http://www.nessus.org/, 1998.

9. Dourish, P., Redmiles, D. , An approach to usable
security based on event monitoring and visualization.
In Proceedings of the New Security Paradigms
Workshop (NSPW), 2002. pp. 75-81.

10. Edwards, W.K., Poole, E.S., and Stoll, J. Security
Automation Considered Harmful? In Proceedings of
the New Security Paradigms Workshop (NSPW), White
Mountain, New Hampshire. September 18-21, 2007.

11. Ferrell, J. Crimes of Style: Urban Graffiti and the
Politics of Criminality. New York: Garland. 1993.

12. Fyodor. Nmap - Free Security Scanner for Network
Exploration and Security Audits, Insecure.org, 1997.

13. Geason, S. “Preventing Graffiti and Vandalism.”
Proceedings of Designing Out Crime: Crime
Prevention through Environmental Design, Sydney,
Australia. June 16, 1989.

14. Ianelli, N., and Hackworth, A. Botnets as a Vehicle for
Online Crime, CERT, Request for Comments (RFC)
1700, December 2005.

15. Isbell, C. and Pierce, J. An IP Continuum for Adaptive
Interface Design. In Proceedings of HCI International,
2005.

16. LaMacchia, B.A. Security Attacks and Defenses, in
47th Meeting of IFIP WG 10.4. 2005.

17. McAfee AVERT Labs. SAGE. Security Vision from
McAfee AVERT Labs, July 2006.

18. McCrickard, D. S., Chewar, C. M., Somervell, J. P., &
Ndiwalana, A. A Model for Notification Systems
Evaluation—Assessing User Goals for Multitasking
Activity. ACM Transactions on Computer-Human
Interaction (TOCHI), 10 (4), 2003.

19. Merijn. HijackThis .
http://www.spywareinfo.com/~merijn/programs.php.

20. Microsoft. Manage Your Computer's Security Settings
in One Place with Security Center,
http://www.microsoft.com/windowsxp/using/security/i
nternet/sp2_wscintro.mspx.

21. Microsoft. Programs that are known to experience a
loss of functionality when they run on a Windows XP
Service Pack 2-based computer,
http://support.microsoft.com/?id=884130.

22. Morin, K., Hayes, E., Carroll, M., and Chamberlain, B.
“Selected Factors Associated with Students’
Perceptions of Threat in the Community.” Public
Health Nursing, 19:6, pp. 451-459, Nov. 2002

23. Moskowitz, C.L.a.C. Simple Desktop Security with
Chameleon. in Lorrie Faith Cranor, S.G. ed. Security
and Usability, O'Reilly, August 2005.

24. National Institute of Standards and Technology
(NIST). National Vulnerability Database,
http://nvd.nist.gov.

25. National Institute of Standards and Technology
(NIST), 2002. The economic impacts of inadequate
infrastructure for software testing. Technical Report
02-3, May 2002. This report estimates damage from
attacks exploiting software vulnerabilities at $60
billion/year.

26. Rafail, J. Cross-Site Scripting Vulnerabilities, CERT
Coordination Center, 2001.

27. Redstrom, J., Skog, T. and Hallnas, L. Informative Art:
Using Amplified Artworks as Information Displays, in
Proceedings of the Designing Augmented Reality
Environments Conference ‘00, (Elsinore Denmark,
2000), 103 – 114.

28. Symantec Internet Security Threat Report, Volume IX.
www.symantec.com/enterprise/threatreport/index.jsp.

29. US General Accounting Office (GAO), 2003.
"Effective Patch Management is Critical to Mitigating
Software Vulnerabilities." Testimony before the
Subcommittee on Technology, Information Policy,
Intergovernmental Relations, and the Census.

30. Zurko, M.E. User-Centered Security: Stepping Up to
the Grand Challenge ACSAC, 2005.

