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ABSTRACT 
HCI endeavors to create human-centered computer systems, 
but underlying technological infrastructures often stymie 
these efforts. We outline three specific classes of user 
experience difficulties caused by underlying technical 
infrastructures, which we term constrained possibilities, 
unmediated interaction, and interjected abstractions. We 
explore how prior approaches in HCI have addressed these 
issues, and discuss new approaches that will be required for 
future progress. We argue that the HCI community must 
become more deeply involved with the creation of technical 
infrastructures. Doing so, however, requires a substantial 
expansion to the methodological toolbox of HCI. 
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INTRODUCTION 
A central goal of HCI is to understand how to design 
human-centered computer systems. But even the best-
intentioned user experience designers fight an uphill battle 
against layers of underlying technological infrastructure 
that may not be designed with the full range of human-
centered concerns in mind. Most user interfaces are not 
built in isolation, but sit atop a collection of software 
libraries, toolkits, protocols, and standards typically 
inaccessible to user-centered design processes. 
Traditionally, HCI has had little to say about these layers, 
instead focusing on creating compelling user experiences 
within the constraints posed by that underlying 

infrastructure. Infrastructure presents a fundamental tension 
for HCI. For user-centered design to provide realistic, 
useful, deployable, and economical solutions, designers rely 
heavily on existing technological infrastructures. At the 
same time, this dependency may at times restrict their 
ability to fully address user needs and capabilities. We 
argue that such lower level concerns, while not traditionally 
considered within the scope of HCI, significantly affect 
user experience, determining what sorts of functionality can 
be delivered, the logic by which functions are organized, 
and the interdependencies among these functions. In this 
paper, we ask what it would mean for HCI to consider the 
infrastructures upon which applications are built and 
explore possible ways that HCI might have more impact on 
discussions surrounding the design of infrastructure.  

This paper makes two key contributions to our 
understanding of the tension between HCI and 
infrastructure. First, we identify three ways infrastructure 
can negatively impact user experience, and illustrate them 
with case studies. Second, we examine a number of 
possible approaches to address the infrastructure problem in 
HCI. By organizing these approaches into a framework 
organized by the level at which they engage the 
infrastructure, we identify new possibilities for how HCI 
can engage infrastructure development more effectively.  

WHAT IS “INFRASTRUCTURE?” 
“Infrastructure” is a broad term that can be applied to any 
system, organizational structure, or physical facility that 
supports an organization or society in general [54]; this 
broad term has been used to describe interconnect systems 
that sink into the background of everyday life (e.g., roads, 
sewers, or telecommunications networks), conceptual 
abstractions (e.g., disease classification schemes), and more 
complex relationships between politics, individuals, 
organizations, and technical systems [31, 35, 55, 57]. In this 
paper, however, we take a constrained view of 
infrastructure, focusing solely on the domain of software 
systems. By this definition, infrastructure comprises 
system-level software providing functions, capabilities, or 
services to other software. Operating systems, libraries, 
toolkits, frameworks, services, protocols, and interoperation 
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standards are common examples of the infrastructure we 
take as our focus in this paper. We focus on these software 
infrastructures particularly because as software applications 
become increasingly complex, distributed, and 
interconnected, reliance on infrastructure increases. Despite 
the impact of infrastructure on the user experience, there is 
little understanding within the HCI community as to how 
we may contribute to the development of software 
infrastructures leading to positive user experiences.  

Infrastructure Design Tensions 
Software infrastructures are a necessity; they provide 
economic and technical benefits of reuse, separation of 
concerns, and interoperability. If many applications require 
a particular software capability, it makes economic sense to 
build a reusable infrastructural component. For example, 
the development of GUI toolkits relieved application 
developers of the burden of creating common widgets such 
as lists, panels, and resizable windows [40]. Infrastructure 
also supports a separation of concerns, enabling specialized 
capabilities to be implemented by developers with the most 
appropriate skills. For example, security-related functions 
typically are provided via pre-existing libraries (e.g., the 
secure string functions in C), as it is unlikely that most 
application developers would correctly and efficiently 
implement these functions on their own. A third benefit of 
infrastructure is interoperability. Whenever an application 
communicates with software created by another entity, 
some kind of infrastructure must exist in order to facilitate 
the connection between those parties. For example, for a 
web browser to be able to retrieve and display a web page 
from a server, the browser and server must conform to 
predefined standards specifying, at a minimum, an 
application protocol (HTTP), a transport protocol (TCP), 
and a data format (HTML or XML), among others.  

Although the economic and technical benefits of 
infrastructure are considerable, they are removed from the 
immediate concerns of users. In and of themselves, for 
example, such economic and technical benefits do not 
guarantee other desirable properties that we may wish from 
an infrastructure, such as maintainability, conceptual 
clarity, simplicity, or support for troubleshooting. While 
technical and economic considerations certainly can coexist 
with such human-motivated considerations, our own 
experience, as well as evidence from a growing body of 
literature [5, 9, 22, 37], suggests that an exclusive focus on 
traditional criteria does not reliably lead to positive user 
experience outcomes. In the next section, we discuss 
previous work examining the relationship between HCI and 
infrastructure, and present examples of user experience 
breakdowns occurring as a result of conventional 
approaches to infrastructure design. 

Previous Reflections on HCI and Infrastructure 
A number of studies have examined the uncomfortable 
relationship between infrastructure and human experience. 
These studies have looked at those disillusioned or 

disenfranchised by civic infrastructure [35], home 
networking challenges [9, 22], and cognitive difficulties 
with security software [60], among others. In addition, a 
number of authors have made recommendations about how 
particular kinds of infrastructure technologies might be 
built to better account for human concerns. These 
recommendations have included suggestions for better 
infrastructure design processes [17], better abstractions for 
exposing infrastructure capabilities [14], appropriate 
considerations for evaluating user interface systems 
research [44], and architectural patterns for supporting 
usability [27]. We extend this prior work by identifying 
general problems with infrastructure, providing a 
framework for understanding the strengths and weaknesses 
of previous approaches to addressing HCI’s infrastructure 
problem, and suggesting new approaches that have not been 
previously addressed in the literature. 

FACETS OF THE INFRASTRUCTURE PROBLEM 
In this section we consider three ways in which technical 
infrastructures shape user experience. In particular, we 
discuss: 

• Constrained possibilities: Design choices taken by the 
infrastructure may preclude entirely certain desirable 
user experience outcomes.  

• Interjected abstractions: Technical abstractions in the 
interface may appear in the conceptual model exposed 
to users. 

• Unmediated interaction: Users may have to interact 
directly with the infrastructure to accomplish their 
goals.  

We present a set of case studies to illustrate each of these 
manifestations of the infrastructure problem.  

Case Study #1: UPnP and Constrained Possibilities 
We define constrained possibilities as situations in which 
the technical capabilities of an infrastructure preclude the 
ability to create certain desirable user experiences. For 
example, consider Universal Plug and Play (UPnP), a 
technology supporting interoperability among networked 
consumer electronics devices, particularly media-oriented 
devices [38]. UPnP simplifies device setup by removing 
tedious, manual configuration of networked devices; in 
theory, when users plug new devices into their networks, 
these devices should work immediately. However, UPnP is 
limited to supporting a set of pre-defined device types and 
is therefore brittle in the face of evolving user needs and 
technical capabilities.  

To illustrate, consider the case of a user who purchases a 
new UPnP device, but also has a number of older UPnP 
devices in her home. Upon installation, she discovers that 
her existing devices are not interoperable with this new 
device’s advanced functionality. Perhaps the new device 
supports a UPnP profile not yet defined at the time the 
earlier devices shipped. Perhaps the older devices simply 
support an earlier version of the profile that the new device 



uses. She has three options: return the new device, replace 
the old equipment already in the home, or hope that vendors 
of all of the existing equipment make a patch that allows 
them to work with the new device (which, of course, 
necessitates the headache of upgrading the software on all 
the existing devices.) This experience represents the kind of 
broken expectation noted by Bly et al. that is common when 
infrastructures fail to provide capabilities anticipated by a 
user [5]. 

What has gone wrong with UPnP? We argue that UPnP’s 
failure to deliver the promised experience is, in fact, 
inherent in the infrastructure itself. UPnP, like other 
interoperation standards such as USB and Bluetooth, takes 
an “ontological” approach to interoperability in which 
service profiles describe each type of device. UPnP, for 
example, defines profiles for a set of device types, 
including media display devices, media storage devices, 
HVAC components, and printers. These service profiles are 
standardized by committees and specify details of how to 
communicate with a given device, including which 
operations each class of device can perform.  

In the approach taken by UPnP, standardization at this level 
of detail is necessary for interoperability (a client 
application that encounters a MediaRenderer “knows” that 
it will be able to communicate with it using the standard set 
of operations). Further, such standardization affords a sort 
of polymorphism (MediaRenderers from any vendor can be 
simply “plugged in” to the network and used by existing 
clients without writing any additional software). Yet this 
approach to interoperability comes at a cost. 
Standardization at this level means that new types of 
devices are unusable by existing applications. New sorts of 
devices (say, for example, a MediaUploader associated with 
an online photo sharing service), with new functionality and 
semantics, require a different profile. Existing software—
including the software on devices already installed on the 
network—will not be written against this new profile and 
thus will be unable to use the new device type [19]. Even 
new versions of existing device types face this problem, as 
new revisions of the standards define new features unusable 
by devices or applications created before the revision. 
Moreover, the evolution of an ontological standard is a slow 
process. For UPnP, new device types (or revisions to 
existing device types) must be standardized by the UPnP 
Forum, then implemented and shipped by device 
manufacturers, and then finally acquired and deployed by 
consumers.  

Fundamentally, then, the design choices in UPnP privilege 
interoperability among a handful of existing (and slowly 
evolving) categories of devices, but at the cost of 
accommodating entirely new types of devices. This design 
choice presents an inherent user experience conundrum: 
because of UPnP’s approach to interoperability, whenever 
users wish to introduce a new type of device into an 
existing network, they are faced with incompatibilities or 
the need for wholesale upgrades of existing devices. It is 

often difficult to anticipate these incompatibilities in 
advance, as doing so would require specialized knowledge 
of the infrastructure. Thus, UPnP users are left with 
difficult choices: do they upgrade everything in their homes 
to accommodate new devices? Do they abandon hopes of 
having a new device for the time being? Once there are 
software patches available, do they bother with the 
potentially tedious task of upgrading all of their existing 
equipment to support the new device?  

Is the implicit prioritization made by UPnP the “correct” 
one from a user experience perspective? Are there other 
approaches that might have mitigated these downsides? A 
different set of infrastructure design decisions in UPnP (and 
in other similarly designed infrastructures such as USB and 
Bluetooth) may have led to a different set of trade-offs, 
enabling more “ad hoc” interoperability while preserving 
existing user experience benefits. For example, self-
describing formats such as tuplespaces [26], or mobile 
code-based approaches [19] have the potential to enable 
easier interoperability among devices with less a priori 
knowledge of each other—meaning that the user experience 
enabled by these infrastructures could be one of more fluid, 
dynamic use of new devices, without the hassles of 
continuous software updates or device replacement. 

Case Study #2: ACLs and Interjected Abstractions 
The second category we explore is interjected abstractions, 
or situations in which low-level infrastructural concepts 
become part of the conceptual model of the interface. All 
technical infrastructures present abstractions to application 
developers. These abstractions may be in the form of 
software objects (e.g., modules, classes, and functions), or 
underlying concepts (e.g., reliable vs. unreliable transport 
protocols). Developers use these abstractions to create 
applications with user-facing features. In many cases, these 
infrastructural abstractions—perhaps designed to further 
technological priorities such as extensibility, modularity, or 
performance—become exposed to users through the 
applications built on top of the infrastructure. 

For example, consider access control lists (ACLs), used by 
operating systems and middleware to regulate access to 
information and system resources. ACLs have a long 
history in computing, going back to the early 1970s [30]. 
They have a number of advantages: ACLs are easily 
specified in machine-friendly ways (lists of principals, 
along with the privileges accorded to those principals); they 
are also a highly efficient means of regulating access 
(checking whether a given process has the ability to read a 
file, for example, can be done by simply checking whether 
the process’s owner has the “read” permission in the file’s 
access control list) [51]. Thus, from a technical perspective, 
this abstraction is well designed, efficient, and simple. 

However, users see this abstraction more or less “as is.” 
The typical user interface to an ACL-based system is 
simply a textual list of users and their corresponding access 
rights, despite the fact that the HCI community has long 



 

identified and discussed many of the problematic aspects of 
ACLs. These include ACLs’ relative inflexibility [1], their 
requirement for a priori configuration [7], and more general 
difficulties mapping access to the negotiated, contingent 
way that revelation and identity are managed in social 
settings [48]. How can we address these problems? One 
avenue is to tackle the redesign of the “classic” ACL 
interface [36]; this approach has been shown to yield 
substantial usability improvements, and we agree that such 
improvements are necessary. However, while it may be 
possible to create more usable interfaces on top of ACLs, 
such higher level interfaces are still constrained in that they 
must, at the end of the day, be expressible in the forms 
required by ACLs: lists of human principals with their 
access rights for specific objects.  

Understanding how such features become visible in the user 
experience might have led to a different set of design goals, 
had they been known. For example, studies have shown that 
users’ sharing preferences and practices are conditioned by 
the sharing context, contents of the shared data items, and 
sometimes-ephemeral aspects of the relationships with 
collaborators [46, 58]. Alternative interfaces to sharing such 
as those proposed by [58] would provide a solution, but 
would be difficult to make widely available due to the 
limitations of underlying abstractions such as the ACL. 

The problem of interjected abstractions extends to other 
cases where infrastructure abstractions become part of the 
application’s conceptual model. For example, Whitten and 
Tygar’s analysis of the shortcomings of PGP 5.0 point out a 
number of places where the underlying security 
infrastructure’s abstractions—such as public and private 
keys, and webs of trust—are unlikely to be understood or 
properly employed by end users, thus subverting the goal of 
enabling secure communication among users [60]. 

Case Study #3: Networks and Unmediated Interaction 
A third way in which infrastructure impacts user experience 
is one we term unmediated interaction, in which users must 
interact with the infrastructure directly, without the 
mediation of some intervening application. While we 
typically think of the infrastructure as being a sort of hidden 
“plumbing” removed from the user experience by layers of 
application code, the infrastructure itself becomes a locus of 
interaction in some cases. As noted by Star, for example, 
this can happen when the infrastructure “breaks” in such a 
way that it is no longer hidden from the user [54]. 

However, there are a number of computing infrastructures 
that are poorly mediated at best, even in those cases where 
the infrastructure may not necessarily be “broken,” and 
which require that users interact directly with the 
infrastructure. Our case study for this section is networking 
in the home. The presence of complex home networks is 
growing, with some figures showing that 34% of US 
households have a home network, and 25% of households 
having a wireless network [25]. Notably, the protocols and 
architectures used in the home today are essentially the 

same protocols and architectures used in the global Internet, 
and which were developed during the 1960’s and 1970’s. 
Many of the assumptions of the original Internet 
architecture no longer hold true, and this creates problems 
in a number of contexts, not least of which is the home [4]. 
The concepts of the Internet Protocols (such as IP 
addressing, non-routable addresses, the Domain Name 
Service), and network topology (e.g., routers, bridges, 
switches, hubs, network address translation (NAT) 
facilities) are all present in the home, despite the fact that 
these concepts and underlying architectures were originally 
created for a world of trained network administrators, 
shared responsibility for the network as a whole, and 
assumptions of mutual trust. This mismatch between 
original goals and present uses is manifest through the 
many reported user experience issues with networking in 
the home [5, 6, 9, 18, 52].  

Home network users today face unmediated exposure to the 
network infrastructure at many points. For example, 
effectively (and securely) installing a home network means 
that users must have some modicum of understanding of the 
basics of network topology, including the role that the home 
router plays in the network; for example, that it creates the 
notion of an “inside” of the home network that is separate 
and distinct from the “outside” public Internet.  

Unmediated interaction also manifests itself at times when 
new devices are added to the home network. The Internet 
infrastructure requires that devices be configured with local 
state information in order to operate. At a minimum, they 
must be configured with a range of link-layer settings (e.g., 
SSID, WEP key) as well as network-layer settings (e.g., IP 
address, router, and DNS server). Further, certain 
application requirements may force users to interact 
directly with the network in order to configure it to support 
applications’ needs. For example, running a service (such as 
a web server to host a blog) inside the home network cannot 
be done on most home networks without fairly extensive 
network-layer configuration such as setting up NAT 
forwarding, configuring firewall rules, or setting up a 
Dynamic DNS service. 

Perhaps the most common form of unmediated interaction 
with the network comes at troubleshooting time, when the 
nature of the network means that no single node may have a 
complete picture of where a problem exists. The opacity of 
the network infrastructure means that the “interface” to 
troubleshooting these problems is typically only the 
physical interface provided by the network hardware 
itself—blinking LEDs that indicate connectivity status, for 
instance, and the connectivity of physical cables.  

Our point in enumerating these cases is not to reiterate the 
many (and well-known) problems of networking in the 
home. Rather, our point is to show how certain features of 
the network infrastructure in homes today necessitate that 
users be exposed to it. Furthermore, we wish to highlight 
that it is difficult, and in some cases impossible, to create 



applications that shield users entirely from this exposure. 
The degree of unmediated interaction required of users is 
inherent in the design decisions made by this infrastructure.  

To illustrate how other possibilities could exist for home 
networking, we note that other network infrastructures have 
taken radically different approaches, yielding radically 
different user experiences. The public switched telephony 
network (PTSN), for example, limits such unmediated 
interaction by embodying a different set of design priorities: 
in the PSTN, most of the infrastructure of the network is 
removed from the home entirely, end-user devices need not 
be configured in order to work (a landline phone, once 
plugged in, “knows” its phone number), and there is a 
minimum of troubleshooting required by users.  

Summarizing the Problem 
UPnP, ACLs, and home networks are three examples of 
infrastructure technologies that present user experience 
challenges. At the same time, we do not aim to discount the 
fact that all three enable enormously powerful capabilities 
for end-users. The technical skill and insight required to 
design each of these infrastructures is impressive and we do 
not intend to diminish their significance; rather, our aim is 
to highlight that that infrastructure design processes based 
largely around technical considerations in isolation are 
unlikely to avoid user experience problems such as the ones 
highlighted above. We do not propose to replace traditional 
considerations based around technical and economic issues 
with discussions of user experience, rather we seek to add 
to the perspectives already represented in the design of 
infrastructure technology.  

THE WAY FORWARD 
So far we have argued that technical infrastructures deeply 
affect the user experience of systems created on top of 
them. In this section, we consider various approaches to 
addressing the infrastructure problem in HCI. We find it 
productive to think of the various approaches in terms of 
the depth at which they engage infrastructure; in many 
ways, the layers of engagement that we present here echo 
Rodden and Benford’s analysis based on Brand [49]. 

• Surface approaches focus on applying superficial 
layers of user-facing software in an attempt to shield 
users from unwieldy aspects of infrastructure. 

• Interface approaches focus on the interface between the 
infrastructure and the applications it supports, 
endeavoring to reduce the problems caused by 
mismatches between conceptual models and system 
functionality. 

• Intermediate approaches supply new infrastructure 
technologies that are more amenable to delivering a 
positive user experience, though they are often 
constrained by other, more fundamental infrastructure 
layers. 

• Deep approaches seek to directly influence the 
architecture of infrastructure itself. In contrast to 
intermediate approaches, deep approaches require the 
engagement of multiple technical disciplines, most 
notably the systems specialists who have traditionally 
dominated discussions of infrastructure design. These 
are the most challenging approaches, and the least 
understood by the HCI community at present. They 
represent the next frontier in the struggle to overcome 
HCI’s infrastructure problem. 

Surface Approaches 
Surface-layer approaches have been the path of much work 
in HCI. Accepting infrastructure as given and attempting to 
present a prettier picture to users via application software is 
often the most expedient development path, in particular 
when infrastructure is immutable due to technical or 
practical reasons. Masking underlying infrastructure can 
sometimes address unmediated interaction by providing 
abstractions that improve the match between user 
expectations and system functionality. It may also address 
interjected abstractions, though remapping abstractions 
often has unintended negative consequences when these 
superimposed abstractions break down. This approach, 
however, fails to address constrained possibilities, as it 
simply accepts the infrastructure as is. 

Interface Approaches 
Some researchers in HCI have proposed exposure of 
infrastructure in novel ways that allow greater transparency 
to users as well as flexibility to user experience designers. 
These approaches involve modifying the infrastructures to 
expose more accurate, or more appropriable, abstractions to 
developers or users, potentially in ways unanticipated by 
the infrastructure designers. 

Seamful design 
Bell et al. [2] argue for a “seamful design” approach, in 
which designers expose human-salient aspects of 
infrastructure rather than masking them. Fundamentally, the 
seamful approach is about accepting the notion that users 
will be exposed to infrastructure, but ensuring that that 
exposure is done in such a way that users can perceive and 
appropriate underlying abstractions, and share them with 
other users. In contrast to surface-layer approaches, 
infrastructure limitations become a resource for user 
reasoning and improvisation. This approach prefers the 
potential shortcomings of unmediated interaction to the 
pitfalls of interjected abstractions. It does not, however, 
directly tackle the issue of constrained possibilities, as 
seamful design proposes a new way to present existing 
infrastructure rather than new approaches to designing 
infrastructure itself. 

Reflective architectures  
A second interface-layer approach allows software 
developers to access the internal state of the infrastructure 
in new ways, including potentially for uses unforeseen by 



 

the original infrastructure developers. Such reflective 
architectures expose mechanisms that allow developers to 
not only use the infrastructure, but also reason about its 
current state and behavior, and potentially even modify its 
behavior in new ways. As an example, Dourish suggests an 
approach to reflective system design, called accounts, 
which allow applications to introspect infrastructure-layer 
abstractions to determine how they are working; such an 
approach, while not “fixing” the problems of poor 
infrastructure, allows the creation of applications that can 
access infrastructure in ways not available using traditional 
programming interfaces [15]. In some cases, reflective 
approaches go further—allowing application developers to 
modify underlying infrastructure implementation and 
behaviors. Such capabilities have been explored in domains 
ranging from programming languages (Kiczales’ meta-
object protocols [28] and “open implementation” 
approaches [34], most notably, but also the more prosaic 
mechanisms provided by the reflection APIs in the Java 
language) to collaborative toolkits [15] to real-time 
operating systems [53], to networks [3]. 

All of these systems share the ability for developers to 
reach into the infrastructure and to query and potentially 
even change its internal workings in ways that traditional 
approaches do not allow—even in ways that may have been 
unforeseen by the infrastructure’s original developers. This 
ability can be used by applications to both adapt to the 
constraints of the underlying infrastructure, as well as to 
adapt underlying infrastructure to user-centered needs. Such 
approaches seem particularly suited toward overcoming 
challenges of interjected abstractions and unmediated 
interaction. While these approaches may offer potential for 
overcoming certain constrained possibilities, this potential 
is largely determined by how deeply into the infrastructure 
the reflective features reach.  

Support for intelligibility 
Intelligibility, or explaining system configuration and state 
to users in an understandable way, is another approach to 
overcoming mismatches between users’ mental models and 
the system’s model of operation. For example, Dey et al. 
describe infrastructural abstractions [13] and end-user 
inspection facilities [33] that support end-users’ 
comprehension of the behavior of context-aware systems. 
Support for intelligibility has the ability to overcome the 
problem of interjected abstractions by providing users with 
a more understandable view of the how the system works. It 
can also address unmediated interaction by essentially 
providing a new layer of mediation. Taken as an 
independent approaches (i.e., separate from the construction 
of new infrastructure, which is discussed next), 
intelligibility does not address the issue of constrained 
possibilities. 

Intermediate Approaches 
A number of HCI researchers have developed frameworks, 
toolkits, and libraries aimed at supporting certain specific 

user experiences. For example, platforms for context-aware 
computing [23, 50], tangible computing [29], flexible 
document management [16], and distributed user interfaces 
[42, 45] strive to overcome the limitations of existing 
infrastructure and ease the construction of novel 
applications. We refer to these as intermediate approaches 
because they typically sit atop of a layer of more 
fundamental infrastructure (e.g. existing operating systems, 
networking protocols, security mechanisms). In addition, 
these approaches tend to be focused enough that they can be 
developed unilaterally by HCI researchers seeking to 
support a particular style of application or a specific 
interaction facility, without the need to engage with the 
systems, networking, or security communities. This 
approach embodies much of the work of the “technical 
HCI” community, and has engaged discussions of the 
relationship between HCI and infrastructure.  

New infrastructure technologies 
Frequently, these infrastructure components follow a “top 
down” approach, in which applications are created in an ad 
hoc manner before the need for a general infrastructure is 
identified. For example, if several constructed applications 
share common needs, then often this shared functionality 
may be abstracted out into an infrastructure to support 
better reuse [24, 29]. Alternatively, as necessary features 
become apparent at the application layer, this provides a set 
of requirements for the next layer in the software stack, and 
so on. As an example, consider an application to allow 
secure exchange of content among users on an ad hoc 
network (along the lines of the Casca system reported in 
[20]). At certain points, the application may require that a 
dialog box appear that specifies who is requesting what 
content. For this dialog to be created, the underlying system 
must be capable of providing the user-facing application 
with information such as association of a device with its 
human owner, human-readable names to describe the 
content being requested, and so forth. These requirements, 
in turn, may argue for certain security protocols that can 
support these technical features. Thus, after identifying 
user-facing needs, general capabilities can be pushed down 
into infrastructure in a top-down manner. Assuming each 
application was built and evaluated to ensure a good fit with 
human needs and capabilities (not always a safe 
assumption), it is likely that the infrastructure will be 
similarly suitable. However, this approach breaks down 
when the existing infrastructure cannot support certain 
applications. In such cases, changes to the infrastructure 
must precede application development, and alternative 
measures must be employed to ensure that the infrastructure 
does not fall prey to the pitfalls discussed earlier. 

New infrastructure processes 
In situations where infrastructure needs to be built before it 
is possible to build the applications it enables, some have 
argued for involving the practice of human-centered design 
and evaluation in the creation of infrastructure itself [17]. 
Incorporating such methods, it is hoped, will ensure that the 



underlying concepts of the infrastructure can more directly 
support the desired user experiences, whether of 
applications built upon the infrastructure, or through 
unmediated exposure to the infrastructure itself. This 
approach, however, is difficult given the current state of the 
art in HCI. Our traditional methods prove most useful when 
we have a well-known task, an application that supports 
that task, and an understanding of the user who will use that 
application. Our methods are less suited to situations where 
aspects of the system which we seek to design, or evaluate, 
are far removed from the application itself, or when there 
may be no specific task for which to design. 

Currently, to the degree that human concerns are 
systematically brought to bear on technical infrastructure, it 
is done in an ad hoc fashion. For example, multiple 
lightweight prototypes might be built on an infrastructure; 
these prototypes serve as “proxies” for how real 
applications built on the final infrastructure might work, 
and can provide feedback about certain infrastructure 
features, albeit indirectly (e.g. this is the approach in [17]).  

This approach could be developed more fully, for example 
by more directly aligning underlying abstractions of the 
infrastructure with the conceptual model we wish to expose 
to users. To the degree that these models can be aligned, 
there would be no “gap” between the veneer of user 
interface abstractions and the concrete reality of the 
system’s underlying behavior. This certainly may not be 
possible in many cases; in others, it may not be desirable 
(perhaps for technical reasons, such as performance or 
security). However, such an arrangement would likely 
enhance the ability of users to work with the infrastructure 
in an unmediated way, and mitigate the abrupt step change 
between application-layer concepts and infrastructure-layer 
concepts, leading to infrastructure that is more actionable 
and predictable. Such an approach could allow users to 
more readily form actionable conceptual models about how 
the behavior of their infrastructure, reducing some of the 
well-known “gulfs” in user experience [43]. 

Intermediate approaches have the potential to avoid all 
three of the pitfalls we have been discussing with respect to 
the user experience of infrastructure, albeit usually limited 
to their restricted domain of focus. Even when an 
application is built directly atop a well-designed 
infrastructure component, it will typically rely on other, 
inherited infrastructure components that are out of either the 
application developers’ or component developer’s control. 
For example, a context-aware application built on top of an 
infrastructure like the Context Toolkit [12] will also be 
required to interact with common networking protocols, 
windowing toolkits, file systems, etc. As such, it will be 
susceptible to the user experience limitations of the 
infrastructure on which it depends. 

Deep Approaches 
The deepest and most pervasive aspects of software 
infrastructure are the layers that, to this point, HCI has had 

the least ability to influence, because they are the purview 
of the systems, networking, and security communities. 
However, as we have argued throughout this paper, 
ignoring these layers imposes significant constraints on our 
ability as a community to deliver compelling user 
experiences. While there may not be a difference in kind 
between the infrastructure technologies created through 
what we have termed “intermediate” and “deep” 
approaches, there is an important difference in the degree to 
which each approach engages stakeholders outside the HCI 
community—most importantly those in the computing 
disciplines who have traditionally been the most concerned 
with issues of software infrastructure.  

Thus the final set of approaches we argue for in this paper 
focus on influencing those who themselves create the 
technical infrastructures we rely upon, to help them to 
create substrate technologies that are more usable by and 
useful to users. While one way to effect such change may 
be through education (teaching software practitioners about 
human-centered practices, for example), here we focus on 
what we consider to be a key challenge for our discipline in 
how we communicate our results to those in other 
disciplines, and how we influence their work. 

Learn to speak the language of infrastructure 
Much technically-oriented research focuses on a handful of 
quantitative measures for evaluating the “goodness” of a 
system—in networking, for example, throughput, latency, 
and scalability are canonical metrics (and entire 
infrastructures have emerged just to support evaluation 
along these metrics, such as PlanetLab [10]); for security 
systems, metrics such as cryptographic security (the 
computational cost of the fastest known attack on an 
algorithm) may be used to assess the merit of a given 
system. In and of themselves, these measures provide useful 
input to system designers, allowing them to answer 
questions, for example, about whether a given architecture 
can support the bandwidth required for video applications, 
or whether a given security system is safe enough for 
military-grade work. However, when used by themselves, 
these metrics paint a skewed picture—they provide a set of 
technically-oriented metrics that can be optimized and 
traded off against one another, but without counterbalance 
from the human side of the equation. In the absence of some 
way to represent user-facing concerns in the technical 
design process, pure technical capability is the primary 
(even sole) driver of technical infrastructure research and 
development. 

Thus, the current state of the practice of technical 
infrastructure development too often focuses on isolated 
measures that present a reductionist view of the concerns 
that should face creators of such infrastructure. Far from 
being a problem that the technical disciplines should be 
expected to address in isolation, we argue that this is a 
challenge for the HCI community: to foster the creation of 
new means for communication across disciplines. One such 



 

means of engagement would be for HCI to more effectively 
master the language of metrics that is spoken by the 
systems community. 

Currently, the only major human-oriented metric that has 
been widely adopted outside of the HCI community is 
performance-oriented: namely, the human performance 
guideline that indicates that 100 millisecond response time 
is perceived as “instantaneous” [8, 39] is used as a technical 
goal in many systems ([47, 56], among many examples). 
Although the 100 millisecond number may itself be debated 
[11], there is little doubt that this metric has assumed the 
mantle of conventional wisdom, becoming widespread as a 
performance upper bound for systems designers from a 
range of disciplines.  

However, there are far more aspects of the user experience 
that may be salient: concerns such as installability, 
evolvability, predictability, and intelligibility may all have 
great impact on the user experience—taken from a holistic 
perspective, perhaps even greater than mere response time. 
Distilling down such aspects of the user experience so that 
they can be accounted for in the design of technical 
infrastructure, however, is not an easy task. Producing 
metrics for these aspects—intended to serve as a 
counterbalance to existing, technically-oriented metrics—
may be misguided at best, and counter-productive at worst: 
many of these aspects of the user experience are nuanced 
and multi-faceted, reflecting the complexity of human 
behavior and experience. Simplistic translation into some 
quantitative measure may do as much harm as good, 
obscuring nuances and subtleties that lead to yet more 
inappropriate infrastructure design choices. 

While voices within HCI have argued for a greater 
emphasis on quantitative metrics for comparison of 
alternatives since the inception of the field [8, 41], we argue 
that there are distinct challenges with providing such 
metrics to inform the design of infrastructure. First, 
obtaining comparative data or establishing benchmarks for 
many aspects of user experience would be difficult: for 
infrastructural capabilities that enable new interactions, 
there may be no existing systems that form an appropriate 
basis for comparison. Further, benchmarks for qualities 
such as “match with users’ conceptual model,” “ease of 
maintenance,” and “fits well with existing systems and 
practices” would be impractical to establish, and in any case 
would mean very little when isolated from each other. 
Second and most importantly, many of the most important 
aspects of the user experience of infrastructure unfold over 
long periods of time and are subject to future conditions 
that cannot be reliably forecast prior to the implementation 
and deployment of the system. Unlike isolated system 
metrics such as throughput, scalability, and key strength 
that can be computed analytically or modeled in accepted 
ways, user experience criteria will likely remain fuzzy and, 
to some extent, speculative for the foreseeable future. 

Change the conversation 
In the absence of easily computable quantitative metrics, 
how can we effectively engage with the technical 
disciplines on which HCI depends? Other examples of 
cross-disciplinary interactions may offer suggestions. In 
this section we look to the field of Environmental Planning 
as a provocative example. While we do not argue that the 
case here is directly transferable to computing, it does 
illustrate new approaches for integrating diverse concerns 
in design. 

Environmental Planning grew out of Urban Planning and 
the 1960’s environmental movement as a way to broaden 
the discussion about new urban development projects to 
include factors of “environmental impact” that were 
traditionally left out of mainstream urban planning 
discussions. To be specific, environmental planning seeks 
to introduce concerns such as land use, air pollution, noise 
pollution, effects on wildlife habitats, socio-economic 
impacts, and visual impacts of particular projects into 
discussions that were dominated by traditional, “functional” 
urban planning concerns such as economic development, 
transportation, and sanitation [59]. In the United States, the 
environmental planning agenda has been greatly facilitated 
by the 1969 passage of the National Environmental Policy 
Act (NEPA) which mandates the assessment of 
environmental impacts for certain types of development 
projects [21]—similar laws have been subsequently passed 
in other countries as well. The effect of NEPA is that for 
the affected development projects, an Environmental 
Impact Assessment (EIA) must be performed, and its 
results made a matter of public record prior to the granting 
of permission to proceed with a new project. For the 
purposes of our discussion, the most remarkable aspect of 
the EIA process is its breadth of assessment criteria. 

The EIA mechanism accommodates a wide range of criteria 
that are measured in radically different ways. Indeed, the 
completion of an EIA often requires calling upon the skills 
of various disparate specializations, including ecologists, 
economists, sociologists, and experts in cultural heritage. 
The Leopold matrix [32] is commonly used in EIAs to 
represent the various activities involved in a project and 
their effects on the criteria of interest. The matrix is a 
simple table that plots attributes of a proposed project 
against the estimates of the impacts that each attribute will 
have on the environmental factors of interest. Each cell of 
the table contains two numbers: an assessment of the 
magnitude of the impact and an assessment of its 
importance. What is significant about this representation is 
its ability to serve as a boundary object among multiple 
disciplines involved in Environmental Planning. Indeed, the 
NEPA specifically requires that federal agencies “use ‘a 
systematic and interdisciplinary approach’ to ensure that 
social, natural, and environmental sciences are used in 
planning and decision-making,” and in particular to develop 
methods so that “presently unquantified… values may be 
given appropriate consideration in decision-making along 



with traditional economic and technical considerations” 
[21].  

One may posit an “Infrastructure Impact Assessment” for 
software as a thought experiment. Like the EIA, it could 
accommodate the perspectives, methods, and assessment 
criteria of multiple disciplines. User experience criteria 
could live alongside traditional the criteria of system 
performance, cost of implementation, security, and so forth. 
HCI specialists would employ a range of techniques in 
order to generate assessments, including scenario 
generation, prototype building, user testing, ethnographic 
studies, user modeling, as well as new techniques that 
would likely evolve to address questions specific to 
infrastructure evaluation. Note also that such a mechanism 
might also support the inclusion of other important 
perspectives often missing from infrastructure discussions 
in addition to usability, such as environmental 
sustainability, access for disabled users, and impacts on 
economic competition. 

We do not argue that notions like an Infrastructure Impact 
Assessment are necessarily the right solution to the 
infrastructure problem in HCI, nor even that they are 
entirely workable. Nevertheless, mechanisms like the EIA 
offer examples of how others have approached the 
challenge of involving multiple perspectives, from radically 
different disciplines, into the process of designing complex 
systems intended to be long-lived and robust. At a 
minimum, mechanisms such as the EIA surface and make 
visible and explicit concerns that, today, are often invisible 
or implicit in the creation of software infrastructures. 

CONCLUSION 
We have argued that HCI should expand its methodological 
toolbox to address the design of system infrastructures 
typically considered outside of the realm of “the user 
experience.” Technical infrastructures not only influence 
user experience but in many cases may preclude entirely 
certain desirable possibilities. Certainly, there will always 
be constraints to what can be built; we do not argue that 
such constraints will somehow disappear when HCI 
becomes involved in the lower layers of the software stack. 
However, our lack of involvement in the lower layers of 
software has led to systems that—while “working” from a 
technical perspective—present less-than-ideal abstractions 
to users, require tedious and error-prone troubleshooting, 
and limit their applicability to new situations. 

We have argued for a number of possible ways to mitigate 
these effects, but the challenges ahead remain substantial. 
Fundamentally, we see the need to involve HCI 
practitioners more deeply with the creation of technical 
infrastructure, and doing so requires new methodological 
approaches to allow us to both understand the user 
experience implications of infrastructure design decisions, 
as well as to guide the development of infrastructure 
features given a desired user experience outcome. Adopting 
processes from other fields that have faced analogous 

challenges integrating diverse stakeholders may be 
informative. To have impact beyond the application layer, 
engagement with the technical concerns of infrastructure is 
a necessity for the HCI community. 
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