
LiquidText: A Flexible, Multitouch
Environment to Support Active Reading

Craig S. Tashman

GVU Center, Georgia Institute of Technology
85 5th St., Atlanta, GA 30308 USA

craig@cc.gatech.edu

W. Keith Edwards

GVU Center, Georgia Institute of Technology
85 5th St., Atlanta, GA 30308 USA

keith@cc.gatech.edu

ABSTRACT

Active reading, involving acts such as highlighting, writing
notes, etc., is an important part of knowledge workers’ activi-
ties. Most computer-based active reading support seeks to
replicate the affordances of paper, but paper has limitations,
being in many ways inflexible. In this paper we introduce
LiquidText, a computer-based active reading system that
takes a fundamentally different approach, offering a flexible,
fluid document representation built on multitouch input, with
a range of interaction techniques designed to facilitate the
activities of active reading. We report here on our design for
LiquidText, its interactions and gesture vocabulary, and our
design process, including formative user evaluations which
helped shape the final system.

Author Keywords

Active reading, multitouch input, visualization.

ACM Classification Keywords

H5.2 Information Interfaces and Presentation: User Interfaces
– Interaction Styles. H5.2 Information Interfaces and Presen-
tation: Miscellaneous.

General Terms

Design, Human Factors.

INTRODUCTION

From magazines to novels, reading forms a critical part of
our lives. And beyond the relatively passive reading of a blog
or newspaper, many reading tasks involve a richer interaction
with the text. This interaction, known as active reading (AR)
includes processes such as highlighting and annotating, out-
lining and note-taking, comparing pages and searching [13].

AR is a regularly occurring component of knowledge work.
For example, prior studies have shown that two specific AR-
related activities, reading to answer questions and reading to
integrate information [15], each constituted about 25% of the
time knowledge workers spend reading [1].

Generally, AR demands more of the reading medium than

simply advancing pages—active readers may need to create
and find a variety of highlights and annotations, flip rapidly
among multiple sections of a text, and so forth. Many of
these activities are well supported by paper, but historically,
computers have proven inadequate [1, 16, 17]. Recently,
however, advances in hardware and software have enabled
computers to achieve many of the qualities of paper, such as
support for freeform annotation and navigation using the
non-dominant hand. Thus, studies suggest that recent pen-
based tablet PCs match or surpass paper as an AR medium
[13]. In effect, computers are getting better at supporting AR
by building upon an increasingly paper-like experience.

However, while current systems may have succeeded in
mimicking key affordances of paper, paper itself is not the
non plus ultra of active reading. O’Hara’s description of the
actions that occur in the AR process highlights the many
weaknesses of paper; while paper supports some things
well—such as freeform annotation and bimanual interac-
tion—it lacks the flexibility for others [15]. For example,
viewing disparate parts of a document in parallel, such as for
comparison or synthesis, can be difficult in a paper document
such as a book. Even annotation—traditionally seen as a
strong point for paper—can be constraining, complicating the
creation of large annotations, or marginalia that refer to dis-
parate or large portions of text, or to multiple texts. And
though the tangibility of paper does support some rapid
forms of navigation, the linear nature of most paper texts
gives the reader little flexibility for creating their own navi-
gational structures.

All this is not to say paper is bad; however, purely mimicking
the affordances of paper in a computer-based system may not
address all of the opportunities for improvements that digital
technology can potentially provide. Particularly, a more
flexible fundamental approach to document representation
may provide opportunities to better support AR.

Figure 1. LiquidText running on tablet PC.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

This paper presents LiquidText, an AR system we developed,
which explores a substantially different approach to repre-
senting and interacting with documents. In contrast to the
model embodied by paper, which offers a stable but rigid
representation, we focus on giving the reader a highly flexi-
ble, malleable kind of document. Specifically, LiquidText
provides rich, high degree-of-freedom ways to manipulate
the presentation of content, control what content is displayed
and where, create annotations and other structures on top of
content, and navigate through content. To do this, LiquidText
provides a multitouch gesture-based user interface running
on modern multitouch displays.

The key contributions of this work are: 1) its collection of
multitouch interactions, and specific gestures, for manipulat-
ing text documents; 2) the coherent integration of these inter-
actions into an application where they can be refined, evalu-
ated, and built upon; and 3) the underlying paradigm of more
flexible document representations. We also present the de-
sign processes, varying ideas, and tradeoffs involved in de-
veloping LiquidText.

In the following sections, we consider areas of related work,
our design process, and the LiquidText system, followed by
discussion and reflections on the project.

RELATED WORK

In this section, we review prior AR-related research from
three perspectives: 1) we consider investigations into the AR
process itself, and how technology might support it; 2) we
discuss past projects created specifically to support the AR
process; and 3) we consider systems that, while not targeting
AR per se, focus on some of the processes that occur in AR.

Active Reading Background

Broadly, earlier work has shown that AR involves four core
processes: annotation, content extraction, navigation, and
layout [15]. Here, we briefly discuss each process and note
some of the requirements for supporting it. As this research
informed our design goals for LiquidText, we structure our
later presentation of the system in terms of these categories.

Annotation. Annotation involves embellishing the original
text, as in highlighting, marginalia, etc. This process requires
high efficiency, which can be lost when switching between
tools used for different types of annotation [15, 16]. It also
requires support for idiosyncratic markings, and effective
ways to retrieve past annotations [16, 20].

Content extraction. Content extraction involves the copying
of original content to a secondary surface, as when outlining
or note taking. To maintain efficiency, this must be closely
integrated with the reading process, as there is a significant
potential for interference between the two. Users also must
easily be able to organize, review, and trace their extracted
content back to its source [15, 17].

Navigation. Navigation involves moving both within and
between documents, as when searching for text, turning a

page, or flipping between locations to compare parts of a
text. This requires high efficiency, even for traversing large
amounts of text, and benefits from metadata cues or land-
marks to help the reader maintain orientation. It should also
support reader-created bookmarks, and allow the reader to
perform other tasks in parallel with navigating [2, 16, 22].

Layout. Layout is the process of visually, spatially arranging
one’s documents and materials, as when cross-referencing,
comparing materials side by side, or gaining an overview of a
document. It requires support for viewing different pieces of
content in parallel, while maintaining the document’s original
linear, sequential structure [13, 15].

Prior Systems Supporting Active Reading

Of the systems designed to support AR as a whole, two of the
most complete are XLibris [19, 21] and PapierCraft [11].
XLibris is a stylus-based system that augments an explicitly,
extremely paper-like metaphor with digital functionality.
PapierCraft goes further in offering a paper-like experience,
actually letting users control digital documents through
marks on physical paper. Building atop a paper-like experi-
ence has benefits, including familiarity [12], but can bring
some of the limitations associated with paper as well. As
examples, PapierCraft was still subject to a lack of margin
space, and challenges creating annotations that spanned mul-
tiple documents; XLibris users noted an absence of flexibility
that arose from the explicitly paper-like metaphor followed
by the system, including the inability to alter the linear pres-
entation of text, or to spatially alter pages to construct differ-
ent, parallel representations of content. So while the system
was comfortable to use, its advantages over paper were
sometimes unclear, as one user stated explicitly [12].

By contrast, our goal with LiquidText was to remove some of
the rigid constraints imposed by a too-literal adoption of a
paper-like metaphor; in contrast with these earlier systems,
we sought to explore the possibilities afforded by more flexi-
ble, decidedly non-paper-like representations.

Other Relevant Systems

In contrast to the above, other systems have addressed certain
AR-related tasks without seeking to support the entire active
reading process. Such work ranges from helping authors pro-
vide new types of navigational affordances for their readers
[14] to dynamic layouts that provide detail on demand [3].
Still other systems have explored novel approaches to text
visualization both for documents [9] and for source code
[10]. While these systems are not specifically targeting AR,
they do suggest various interactions and manipulations that
may be relevant to AR nonetheless.

DESIGN APPROACH

Our goal with LiquidText was to create a design that over-
comes some of the innate difficulties inherent in paper-like
models. In particular, our specific goals were to support 1)
extensive, flexible, direct manipulation control of the visual
arrangement of content, including both original material as

well as annotations, and 2) flexibility in navigating through
the content, with a rich array of navigational affordances that
could be tailored and organized as required. To do this, we
undertook an iterative design process, through which we cre-
ated the final version of the system described here. But first,
we describe our design process in more detail.

Initial design ideation. We began by creating scenarios and
accompanying requirements for AR, grounded both in our
own experiences as well as the prior literature. We also began
exploring alternative metaphors for text representation—ones
that would promote a user experience that felt fluid and
flexible; not only allowing, but inviting users to step outside
the bounds of predefined structure that computers often im-
pose.

From a design perspective, to construct these metaphors, we
found it helpful to explore forms and substances that exem-
plify malleability, such as putty or water. And while consid-
ering these ways of manipulating materials, we improvised
interacting with imaginary systems inspired by such sub-
stances. Throughout this design process, we sought to brain-
storm in the context of plausible scenarios, in order to lead
our thinking toward designing a complete, integrated system,
rather than just a collection of standalone interactions.

Two guiding criteria for this phase of the design process were
1) to seek to include in our designs features that would sup-
port all of the major aspects of AR, and 2), to explicitly focus
on supporting those processes where paper-like representa-
tions fall short. Likewise, to maintain a manageable scope,
we focused on supporting the core processes of AR: the in-
teraction with source texts and the creation of notes, as op-
posed to a larger AR workflow including creating wholly
new documents, sharing documents, and so on.

Prototyping. After completing an initial system design, we
sought feedback from other designers using a simple me-
dium-fidelity prototype containing a limited set of interac-
tions (like fisheye text zooming, and creating and grouping
notes). This led to several semi-formal critiques where other
HCI professionals offered feedback on our designs and proto-
type. This provided us with feature suggestions and design
criticism, and helped to inform the required feature set of the
project.

In developing this initial prototype, we also chose to focus on
single-document scenarios, as the e-reading appliances with
which LiquidText would most likely be used are relatively
small, tablet-sized units, and these simpler scenarios seemed
a more tractable design goal. Adler et al. likewise show this
is not uncommon; of time spent reading/writing with multiple
documents, about 40% had only one document being read
(i.e., the other document(s) were writing surfaces) [1].

Formative study. Through continued design and develop-
ment, we completed a high-fidelity prototype system em-
bodying most of the essential functionality we envisioned
from the previous design stages, and which was sufficiently
refined to be used in actual active reading tasks. We evalu-

ated this functioning prototype with users, to get feedback on
our approach and to provide direction for subsequent steps.
This evaluation consisted of a multi-part, 18-person study.
Our objectives were: 1) evaluate the prototype’s particular
interactions, 2) evaluate the prototype as an integrated AR
environment, and 3) evaluate the acceptability of multitouch
by users in a knowledge-work activity.

The study began with a weeklong journaling task, in which
participants recorded each time they performed an AR task,
answering questions about their goals, difficulties, etc. for
each. This helped us obtain a baseline view of our partici-
pants’ current AR practices. Participants were then inter-
viewed individually about their general AR behavior, fol-
lowed by fifteen minutes of training on using the prototype
system, which ran on a 12.1” Dell XT2 multitouch tablet.
Participants also received a help sheet showing how to per-
form seven of the main functions in the prototype.

Participants then performed a 25-minute AR task, where each
read a 5-page popular science article using the prototype and
wrote a detailed critique.

Afterward, we performed a semi-structured debriefing inter-
view, asking participants about various aspects of their reac-
tions to the system.

Finally, we concluded this phase of the design process with
two separate, three hour participatory design workshops,
where 14 participants (two of whom did not participate in the
above parts of the study, and are not included in the 18)
brainstormed and mocked-up future AR environments.

We recruited broadly for the study, seeking regular active
readers in a large design and manufacturing firm. The 18
participants (12 women) included managers, designers, law-
yers, students and strategists. Of these, 16 returned their
journals and were found to perform an average of 6.6 AR
tasks over the roughly weeklong journaling period. While the
complete results of this study are beyond our present scope
(see [23]), we describe below how our results informed the
final design and functionality of the system.

Redesign. Using participants’ reactions to the prototype, in
conjunction with their thoughts and ideas about AR gener-
ally, we identified several potential refinements, which we
integrated into our redesigned system. We focused on areas
that were especially important to users, but also relevant to
our larger design objectives of exploring more flexible repre-
sentations of text documents. The section below describes the
final LiquidText system and its features.

LIQUIDTEXT SYSTEM

Having discussed the design process we followed, in this
section we consider the final form of the LiquidText system
and the rationale behind many of its functions.

Multitouch Input Model

The use of multitouch in LiquidText stems from two re-
quirements raised by our design approach: first, because we

were trying to let the user control visual/spatial properties,
and do so using interactions based on physical/spatial meta-
phors, we needed an input device with a natural spatial map-
ping. Second, past literature reveals that readers rely on bi-
manual control while reading with paper, such as when ar-
ranging content, navigating, etc. [13, 16]. The interaction
gestures that resulted from our design phase similarly re-
flected this style of rich, parallel input, and so lent themselves
well to multitouch interaction.

Naturally, other configurations of devices could potentially
satisfy these criteria—such as multiple mice. In comparison,
multitouch has advantages and disadvantages. For example,
multitouch is faster than multiple mice for many bimanual,
and even some unimanual, tasks, such as selection [4]. But
by contrast, multitouch also tends to incur far higher error
rates than mice [4], although improved touch sensing and
modeling may remediate this significantly in the future [7].
Additionally, a mouse reduces each hand’s input to a roughly
single point, reducing the richness of the interactions each
hand can perform. A potential compromise then could come
from multitouch-plus-pen interaction [6], allowing richer,
multi-finger input from one hand and simpler but more pre-
cise input from the other [8]. But while we wanted both of
the user’s hands free to engage in multi-point interaction, we
ultimately opted against pen-plus-touch because we were
unaware of an adequate hardware platform that could process
pen and multitouch input simultaneously—which would be
needed for bimanual interaction. Therefore, we chose pure
multitouch input for LiquidText.

Overview of the System

This section provides a high-level overview of the basic
functionality of LiquidText; subsequent sections provide
detailed explanations of the system and its features.

LiquidText starts by presenting the user with two panes (Fig-
ure 2): The left contains the main document the user has
loaded for reading (C); a range of interactions (described
shortly) allow the document to be panned, scaled, high-
lighted, partially elided, and so on. The large workspace area
(D) provides space for any comments or document excerpts
the user may have created; here, they can be grouped and
arranged, and the workspace itself can be panned or zoomed.
Users can also create multitouch fisheye lenses to zoom only

certain areas. Finally, users may also create custom naviga-
tion links among all the various forms of content in the sys-
tem, such as from the main document to comments or ex-
cerpts in the workspace.

Some of the basic interactions in LiquidText reuse a number
of common gestures that appear in other touch applications
(e.g., [24]). For example, the user can position objects, such
as comments, excerpts, and documents, just by dragging with
a fingertip. The user can rescale an object by using two fin-
gers to horizontally pinch or stretch it, or she may rotate it by
twisting with three fingers. The preview pane next to the
document (Figure 2, B) provides a scaled-down view of the
document, and the user may simply touch it to navigate the
document to the corresponding point.

In the following sections we discuss the details and rationale
for the central aspects of the design, organized according to
the major AR processes: content layout and navigation, con-
tent extraction, and annotation.

Content Layout and Navigation

LiquidText provides a number of novel features intended to
support the AR processes of content layout and navigation.
These features allow users to access an existing text linearly
in its original form (as shown in the main document view in
Figure 2), yet leverage a range of interactions to selectively
view multiple regions of text, and create custom navigational
structures through the text. The major LiquidText features for
content layout and navigation are Collapsing, Dog-Earing,
and Fisheye Views in the workspace area.

Collapsing. Among the most important—yet problematic—
aspects of layout in AR is the need for parallelism, such as
viewing multiple pieces of a document at once [13, 15]. But
as our intuition suggested, and our study participants told us,
viewing disparate areas of a paper document in parallel is
often difficult, requiring frequent flipping back and forth. To
better support this in LiquidText, we were motivated by elas-
tic substances which can be selectively compressed or ex-
panded—suggesting a document that lets one compress or
shrink some areas to bring text from disparate areas of a
document together—resulting in a sort of 1-dimensional fish-
eye. The visualization is thus similar to [9], and the interac-
tion similar to [25], but in a very different context.

The visual representation used in collapsing reduces selected
rows of text to horizontal lines, thereby indicating the amount
of text hidden. Additionally, multiple regions of text may be
collapsed at once, letting the user choose precisely which
portions of the document are visible in parallel. Interactions
involving this effect are used throughout LiquidText.

Since this “collapsing” process is applied to a vertical, linear
document (Figure 2), LiquidText uses a vertical pinch ges-
ture to provide a natural mapping for this interaction (Figure
3). This gesture offers degrees of freedom for controlling the
amount of text collapsed (through how far the user moves her
fingers), and whether it elides text above and/or below the

Figure 2. Overview of LiquidText screen: A) button bar, B)

preview pane, C) main document, D) workspace, E) color

palette, F) Dog-ear area.

Figure 3. Three stages of an increasing amount of text being

collapsed together.

Figure 4. Holding one finger on document while scrolling

another finger on preview pane collapses document to

show both locations.

user’s fingers (through whether the user moves the top finger
to the bottom, vice versa, or both).

This interaction, however, raises the design question of what
should happen when the user scrolls a partially collapsed
document. For example, if the user scrolls text above a col-
lapsed area, either 1) the entire document could scroll, in-
cluding the collapsed area. Or 2), only the text above the col-
lapsed area could scroll, adding text to, or removing it from,
the collapsed area. Under the first option, the collapse is a
part of the document itself, and can be used to conceal irrele-
vant material. Under the second option, the reader effectively
has two windows into the document, each of which can be
scrolled independently. Both choices have advantages, but
we selected the first option as it better fit our metaphor of
pinching/stretching the document.

By contrast, the latter option is similar to systems like Adobe
Reader, which show disparate regions of a text by allowing
the user to create multiple, independent views into the docu-
ment via a split pane. But that approach to multiple, inde-
pendent views comes at a cost, offering little clue as to the
relative order and distance between the document regions;
this disruption to the document’s underlying linearity may
also interfere with a user’s sense of orientation [15]. Collaps-
ing, through either approach though, guarantees that visible
regions are always in the order of the original document, and
provides a visual cue as to how much text has been collapsed
between two visible regions as well.

While this basic collapsing interaction provides a useful way
to hide irrelevant text, and bring disparate document regions
into proximity, manually pinching a long document together
to view, say, the first and last lines of a book, is tedious. Liq-
uidText thus provides two indirect ways to collapse a text:
first, touching the preview pane with two or more fingers
causes the document to automatically collapse to show all the
indicated areas at once. Alternately, holding down a desired
part of the document with a first finger—effectively holding
it in place—while using a second to touch the preview pane,

causes the document to collapse so as to keep the area under
the first finger visible, while also showing the area indicated
by the second finger (Figure 4). And in contrast to traditional
document viewing software, in which users must create sepa-
rate panes and scroll them individually, this functionality lets
a user view two or more document areas with just one action,
parallelizing an otherwise serial task.

We created the collapse interaction before our formative
study, so we evaluated it in the study and found user feed-
back to generally be positive. Notably though, two partici-
pants used collapsing as a way to conceal irrelevant material,
even though we only presented it as a way to bring disparate
material together—suggesting our decision to make collapses
part of the documents themselves was of value to users.

Dog-earing. Bookmarks meant for short-term, transient use
are an important part of AR navigation [2]—as when holding
a thumb at a particular page while browsing a book. Such
“ephemeral” ways of book-marking are often used when
rapidly flipping between regions of a text. In addition to of-
fering several options for persistent book-marking (described
below), LiquidText includes a type of transient bookmark we
call dog-earing. This feature was focused on scenarios where
the user would create and refer to a bookmark over a short
period of time, and is intended to support near effortless crea-
tion and deletion of the bookmarks.

In LiquidText, this interaction is modeled on its paper coun-
terpart: users associate a finger with a given document loca-
tion, much like putting a thumb on a book page allows a user
to rapidly flip between places in the text. To create one of
these bookmarks, the user simply puts down a finger in the
dog-ear region of the LiquidText application (see Figure 2,
F), which creates a small orb under her finger corresponding
to the current state of the document (including it is posi-
tioned, whether it is collapsed, etc.). The user can then navi-
gate as she wishes using the other hand, while keeping her
finger on the orb to “save her place.” To return to the cap-
tured state, the user simply lifts the finger off the orb and
LiquidText returns to that state while the orb fades out. Tak-
ing advantage of multitouch input, the user may do this with
more than one finger at a time to capture and flip between

several layout states. To discard an orb without using it, the
user drags it away from the dog-ear region before releasing it.

The choice of gesture here enforces transience, in effect: the
bookmark will be kept for only as long as the user’s finger is
in place (just as with a page in a book). Bookmarks held in
this way vanish as soon as the finger is lifted, meaning that
the user is freed from having to explicitly delete the book-
mark. (Other forms of book-marking, described shortly, can
be used when a user wishes to create a more permanent
placeholder in a text.)

Though we developed dog-earing before the formative study,
we found our tablets could not reliably detect the gesture, and
so we disabled it in the build given to users.

Fisheye workspace. As noted, the workspace area to the right
of the document allows users to freely arrange comments and
excerpts (described shortly). These can be rescaled to see
them more closely, or to make more space as needed.

During the study, however, users commented on the dearth of
workspace available to them on the 12.1” tablet which ran
the prototype version of our system. Likewise, our participa-
tory design workshops indicated that users required a large
space in which to see all their documents at once—and to get
an overview of any cross-document relationships. In light of
this, we explored a set of new features for the final version of
our system, designed to overcome the limitations of simply
scaling individual objects.

We considered several alternatives for letting users work
with larger numbers of objects effectively. Obviously, a
physically larger display would be helpful, but this trades off
against portability (something our participants strongly re-
quired as they reported often shifting between various public
and private working areas). We also considered providing
some form of organizational structures, such as allowing
users to make hierarchical outlines of comments and excerpts
in which tiers can be shown or hidden as needed. Outlines
have certain downsides, however: they impose a strict organ-
izational structure that may be inflexible, and they also privi-
lege hierarchical over spatial relationships.

Ultimately, for the final system, we settled on the notion of a
quasi-infinite, continuous workspace for comments and ex-
cerpts, extending beyond the display. This workspace can be
panned and zoomed, thus supporting spatial overviews of
comments and excerpts, and maintaining consistent spatial
relationships among the objects within the space. Since si-
multaneous viewing of multiple pieces of content is impor-
tant in AR, we considered a number of approaches to sup-
porting this functionality in the workspace region. For exam-
ple, one might allow regions of the workspace to be col-
lapsed, to bring distant objects into proximity even when
zoomed in. Although this idea is appealing—especially since
the collapsing concept is already present in LiquidText—the
technique was most suited to one-dimensional spaces. Col-
lapsing in a large 2D space would hide a great deal of content

unnecessarily and, if vertical and horizontal collapses were
used at once, could easily become confusing.

To avoid these downsides, we created a novel type of fisheye
effect; users access this functionality through one or more
fisheye “lenses” they create in their workspace (Figure 5).
But in contrast to typical fisheye effects, all text in a given
object is scaled to the same level in order to promote read-
ability (as in Figure 5).

In the final version of our system, the workspace is panned or
zoomed using typical drag/pinch gestures. Fisheye lenses are
created by tapping with three fingers; once created, they can
be moved by dragging and resized by pinching or stretching
the lens border. The magnification level is controlled by ro-
tating the lens—akin to the zoom lens of a camera. Thus, the
user can control all the essential properties of the distortion in
tandem and, using multiple hands, for two lenses at once.
Thus, while fisheye distortions have been deeply explored,
our approach combines two unique features: consistent scal-
ing within each object, and the ability to create and manipu-
late the distortion’s attributes in parallel through multitouch.

Content Extraction

As one of the central processes of AR, extracting textual ex-
cerpts from documents serves to support aggregation and
integration of content from across one’s documents. It lets
the reader maintain peripheral awareness of key material, and
explore alternate organizations of an author’s content [12, 15,
17]. But, in most present approaches to AR, content extrac-
tion has been quite heavyweight: paper-based active reading
may require copying, scanning, or rewriting portions of con-
tent in a notebook; even computer-based AR may require one
to open a new document, copy and paste text into it, and save
it. We sought to create a fast, tightly-integrated set of mecha-
nisms for content extraction in LiquidText that would not
distract from or interfere with the AR process itself [15].

To devise an intuitively appealing, flexible interaction to
support content extraction we again sought to draw on physi-
cal metaphors. Imagining a document as puttylike, we con-
ceived of extracting content as analogous to pulling it off of
the document. The two major parts of this interaction are,
first, selecting the text to be excerpted, and, second, actually
transforming that selected text into an excerpt.

Figure 5. Multitouch fisheye lens function.

Figure 6. A) Holding document with thumb while putting

finger on selection. B) Dragging selection as indicated by

arrow to create excerpt.

Text selection. Creating an excerpt begins with selecting the
desired text. In earlier versions of our system, we offered two
ways to do this: 1) an easy but modal approach in which the
user held down a soft button with one hand while dragging a
finger over the desired text, and 2) a non-modal approach,
where the user puts her thumb and forefinger together just
below the start point of the selection, and moves her fingers
to the endpoint. This way, the user did not have to shift her
gaze away from the document to invoke a selection mode.

Our formative study revealed disadvantages to both ap-
proaches. Several users disliked the bimanual requirement of
the modal approach, and the non-modal approach was diffi-
cult to perform reliably. By contrast, users indicated that they
wanted to select text by simply dragging a finger—the same
gesture they preferred to use to move objects. Thus, for the
final system, we sought a gesture distinguishable from, but
very similar to, simple dragging.

The result, replacing our initial non-modal interaction, was a
simple tap-and-drag—also used in some iOS apps. That is,
the user puts down a finger at the start of the intended selec-
tion, lifts her finger and then lowers it again, then drags her
finger to the desired endpoint. To give the user prompt feed-
back, a selection cursor is displayed as soon as the finger
touches the screen.

Excerpt creation. Once a span of text has been selected, users
may excerpt it from the document. Following the putty meta-
phor, the user creates an excerpt simply by anchoring the
document in place with one finger, while using another to
drag the selection into the workspace until it snaps off of the
document (Figure 6). The original content remains in the
document, although it is tinted slightly to indicate that an
excerpt has been made of it.

Excerpt manipulation. After creating excerpts, users must be
able to organize and review them [15, 17]. To support this
and our general design requirement of flexible content ar-
rangement, excerpts can be freely laid out in the workspace
area; they can also be attached to one another (or to docu-
ments) to form groups. This allows users to create whatever
structure they may desire on their excerpts, rather than the
system imposing explicit relationships that may not be neces-
sary or may not fit with users’ models of the structure.

In designing the ultimate appearance and behavior of these
groups of excerpts, though, we faced a tension between the
advantages of structure versus flexibility. In one approach we
considered, grouped excerpts move into a container-object,
where they are aligned and sequentially listed. This approach
is visually simple and organized, especially for a small
screen. Alternately, we considered letting grouped objects be
positioned arbitrarily and freely within a group, and have
visual links rendered between them to show they are
grouped. This option gives users more means of expression,
letting them indicate differences in group constituents by
position/size/angle, but would likely be messier. We felt
however, that the fisheye workspace would adequately ac-
commodate any potential disorganization, and so chose this
latter option, informing the interaction’s behavior with the
putty metaphor used in excerpt creation.

Excerpts are grouped simply by dragging them together—
which creates a fluid-like border surrounding all objects in
the group (Figure 7). Pulling them apart stretches the border
until it eventually snaps, separating the group.

Excerpt context. The final aspect of excerpts we discuss here
relates to using excerpts as a means to return to the excerpted
text’s original context in the document. While excerpts alone
can be helpful, being able to trace them back to their source
or context is known to be vital for AR [17]. We explored two
alternatives to providing such context: the first was in-place
expansion, where the original context of an excerpt was made
to appear around the excerpt, showing the context without
disturbing the original document. The second was linking,
where users can interact with an excerpt to cause the source
document to position itself so the excerpt’s context can be
seen.

Each has advantages: in-place expansion lets the user keep
her gaze in the vicinity of the excerpt and avoids disturbing
the position of the original document. But if the user needs to
do more than just glance at the source context, she will likely
need to navigate the original document to that point any-
way—which linking does immediately. Likewise, an in-place
expansion on a small screen may well cover much of the
user’s workspace, raising visibility problems, especially if
one wanted to see the contexts of two excerpts at once.

For this and other reasons we ultimately chose linking, which
we implemented bi-directionally, so excerpts could link to
sources and vice versa. Arrow buttons (shown in Figure 7)
appear near both excerpts in the workspace as well as areas

Figure 7. Attaching two excerpts to form a group.

of the original source document that have been excerpted. By
touching the arrow button near an excerpt, the source docu-
ment immediately moves to a new position in which it can
show the excerpted text in its original context; likewise,
touching the arrow button near the source document will
move the excerpt object in the workspace into view. This
mechanism effectively provides a way for users’ own ex-
cerpts to be repurposed as a way to quickly navigate through
the original source document. Further, we again take advan-
tage of multitouch to enable users to view multiple contexts
at once: multiple arrow-buttons can be held down to scroll
and collapse the document to show multiple source areas
simultaneously.

User feedback on excerpts. As the excerpt interactions were
designed before the study, we investigated how they were
used by participants. We found that the idea of extracting
content via touch was in-line with user expectations, as even
before seeing our prototype system, some users expressed an
interest in using touch to pull content out of a document, and
several described the existing copy/paste process as being
laborious. Perhaps as a result, of the various functions in the
prototype, the ability to create excerpts received the most
strongly positive feedback, with eight users noting it as a
feature they liked. In the AR study task, participants typically
used excerpts as a way to aggregate content or to provide
peripheral awareness. They noted that they pulled out quotes
and even whole paragraphs so they could refer back to them
later. And partly due to the support for grouping, several us-
ers discussed its value in allowing them to reorganize the
content of the document. One user described this as, “What
[the prototype] was really helpful for was because I had kind
of written my own version of the story on the side.” Excerpt-
ing, therefore, seems to have been used in much the way it
was intended, but its frequency of use allowed it to easily
consume available display space. So the findings of the study
did not lead to significant changes to the excerpts themselves,
but did provide part of our motivation for adding the fisheye
workspace (above).

Annotation

The final active reading process we focused on was annota-
tion. LiquidText provides two features for annotations: com-
ments and highlights.

Comments. One important shortcoming of paper is the con-
straint it places on textual annotations such as comments.
Comments on paper must generally be fit to the space of a
small margin, and are typically only able to refer to a single
page of text at a time. While software such as Microsoft
Word or Adobe Reader avoid some of these difficulties, they
still largely follow paper’s paradigm; their annotations are
thus still limited to single referents, and control of the size or
scale of annotations is very limited, so available space is eas-
ily consumed.

Following from our general design goals, we sought to pro-
vide a more flexible alternative in LiquidText. Text annota-

tions therefore act as attachments to the document itself. Like
excerpts, they can be pulled off, rearranged, grouped with
other items (including excerpts), and maintain persistent links
back to the content they refer to. This especially helps sup-
port separation, aggregation and retrieval of annotations, as
suggested by [16, 20].

LiquidText also breaks away from a one-to-one mapping
between content and annotations. Rather, comment objects
can refer to any number of pieces of content across one or
more documents (Figure 8). And since they maintain two-
way links to their referents, annotations can thereby act as
persistent navigational affordances, letting readers freely
create trails of links within and between documents.

To actually add a comment, the user simply selects the de-
sired text and begins typing. This creates the comment at-
tached to the document, and next to the selected text. The
user can also create a comment by just pressing a button on
the button bar (Figure 2, A), creating a comment that is not
linked to other text. This allows comments to act as very
simple text editors, letting the user begin to work on the con-
tent creation tasks which often come later in the AR work-
flow.

As the commenting functionality was included in our proto-
type, we received feedback on it in our user study. We found
comments to be used frequently, employed by 10 of the 18
users. These annotations were used for summarization and
commenting, such as identifying contradictions and noting
relationships to other projects. For the particular task we used
in our sessions, users did not appear to have a need to associ-
ate comments with more than one piece of content; nonethe-
less, one user spoke more generally of this being one of the
most valuable features of the prototype,

“I liked the ability to annotate and connect different chunks,

so the ability to say I want to highlight this piece, [and] I

want to highlight this [second] piece, and make a comment

about both of them for some later use.”

Highlighting. The final annotation feature provided by Liq-
uidText is the ability to highlight spans of text. While this is a
common feature in many document processing systems (such
as Adobe Reader), our assumption during our design process
was that with LiquidText’s extensive functions for content

Figure 8. Comment’s arrow-button collapses document to

show both pieces of associated text.

extraction, commenting, and layout, highlighting would be of
little value. Our user study showed this to be partly true—we
found that while 9 of the 18 participants used highlighting,
those users who tended to make more use of LiquidText’s
excerpt and commenting functions also seemed to make less
use of the highlighting. One participant even described high-
lighting as possibly redundant with the system’s other func-
tions—especially excerpts.

Nonetheless, some users’ preference for highlighting led us
to further develop the feature beyond the humble implemen-
tation in our initial prototype. User feedback led to more
color options, which we provided through a color palette
(Figure 2, E). To improve efficiency, we also added an in-
place highlight gesture: after selecting text, an upward swipe
on the selection highlights it, with the swipe distance control-
ling the highlight intensity. Swiping downward dims and
removes the highlight.

Participants also requested highlight aggregation functions.
The final version of our system includes this by building on
our existing collapse notion, and provides an auto-collapse
function to show only the highlighted text, plus some vari-
able amount of context.

Since the aggregation function was built on the concept of
collapsing, we chose to control it in a similar way. While
holding a soft-button accessed through the color palette, the
user simply does the vertical pinch gesture to cause the
document to collapse to show all the highlights. We chose
this approach as a way to give the user precise, flexible con-
trol of the aggregation process, specifically: 1) the further the
user pinches, the more of the space between the highlights is
removed, letting the user select how much context is seen
around highlights, and 2) the direction of the pinch (top fin-
ger brought to bottom or vice versa) controls whether the part
of the document above or below the user’s fingers is aggre-
gated. This was necessary for scenarios where the user might
wish to aggregate highlights in part of the document, while
reading another part normally.

Implementation

The final LiquidText system described here is a fully func-
tional application built on Windows Presentation Foundation
and consisting of about 12,000 lines of C# and XAML code.
LiquidText runs on Windows 7 and can work with any
touchscreen using Windows’ standard driver model.

DISCUSSION AND CONCLUSION

The LiquidText features—as well as the results of our design
process, particularly exposure to users—are suggestive about
the generalizability of the system to other domains.

Specific interactions. While LiquidText was intended to be
used as a unit, several of its interactions may be applicable on
their own in other contexts. Comments, for example, support-
ing multiple referents and two-way links allows them to act
as simple navigational affordances, and might make sense in
many document annotation situations. Collapsing likewise

was generally well received and offers a natural way to dis-
tort the visualization of a document to hide content or bring
material into proximity. Multitouch fisheye control was
added only after our study, but may be viable in many navi-
gation and layout situations as multitouch platforms become
more popular.

General approach. Underlying the specific interaction tech-
niques, however, is the notion of flexible, high degree-of-
freedom representations, combined with comparably rich
input devices to take advantage of them. We sought to apply
this in the context of active reading, but the approach may be
advantageous in other domains as well. Our formative study
participants, for example, informed us that tasks like email,
spreadsheet use, and manipulating presentations often inter-
sect with AR, and share many of it challenges—like visualiz-
ing disparate pieces of content in parallel.

Our use of multitouch, specifically, turned out to be an essen-
tial component for realizing our design goals. Interactions
involving many degrees of freedom, such as the fisheye
lenses and collapsing, depended heavily on this type of in-
put—they otherwise would likely have required many sepa-
rate controls. Our study also supported this input model, with
many users seeing touch as natural and very direct. However,
they also described an interest in more multi-modal input,
combining touch with gaze, a mouse, or a pen—which we
may investigate in our future work.

But while the spatial flexibility of our representation is also
essential to LiquidText, one potential pitfall of this approach
is that a sense of position within the document can be sacri-
ficed, impeding the spatial cues that help the reader maintain
a “sense of a text” [5]. While a full assessment of this issue
remains for future work, we did ask the participants about
their sense of orientation while using LiquidText; of the 15
who addressed the issue, 13 claimed they maintained orienta-
tion when using the system.

Lessons Learned

The conception and iterative design of LiquidText offered a
variety of lessons to us; we share several of these here.

Flexibility vs. structure. Throughout the design of LiquidText,
we observed a tension between the flexibility we offered
users in performing their task, versus the amount of prede-
fined structure we provided to simplify their task. Even ap-
proaches to making structure optional sometimes seemed to
impose structure. For example, we considered allowing users
to name object groups, but to make the feature visible re-
quired a default title already in place; but any meaningless,
default title (e.g., “Group 1”) would be effectively begging
the user to rename it, meaning that the choice of whether or
not to name is no longer so optional. Given the goals of Liq-
uidText, we generally opted for flexibility, but we leave for
future work the question of how better to balance these com-
peting ideals.

UI feel. It is difficult to disentangle the factors that contribute
to users’ impressions of a system, but over the course of our
design process, people generally seemed to appreciate the
“feel” that LiquidText provided. For example, p2's comments
about the bubbliness and personality of the system, and the
positive reactions from people to the putty-like connections
between objects. Seeing that these things, at least in some
cases, are not lost on users, hints to us that even in supporting
mundane tasks like reading, design must encompass not just
what the system does, but the message it conveys about itself
and how it expects to be used.

Future Work and Conclusion

As we explore the potential value and uses of LiquidText, it
will be important to conduct additional evaluation both to
provide empirical assessment of our final designs, as well as
understanding the types of AR tasks where it might be of the
most use. One of these tasks, our formative study suggested,
is multi-document scenarios—which LiquidText currently
does not support. We plan to explore this in the future and
believe some of LiquidText’s interactions, such as the fish-
eye zooming, will help provide the flexible workspace con-
trol that multi-document work requires [18].

In summary, LiquidText offers readers a substantially new
way to interact with their documents. While most systems
supporting AR replicate the experience of paper, paper is in
many ways inflexible, and carries significant limitations.
LiquidText takes a different approach, providing a flexible,
malleable representation that gives the user fine grained con-
trol of the visual/spatial arrangement, navigational affor-
dances, and annotations of their documents. To control this
representation, LiquidText uses a vocabulary of multitouch
gestures allowing efficient, often in-place, interaction.

ACKNOWLEDGEMENTS

We would like to thank Steelcase, Samsung, Dell and the
NSF (award #IIS-0705569) for their support of this research.

REFERENCES

1. Adler, A., Gujar, A., Harrison, B.L., O'Hara, K. and Sellen,
A. A diary study of work-related reading: design implica-
tions for digital reading devices CHI, ACM Press, 1998.

2. Askwall, S. Computer supported reading vs. reading text on
paper: a comparison of two reading situations. International
Journal of Man Machine Studies, 22. 425-439.

3. Bouvin, N.O., Zellweger, P.T., Gronbaek, K. and Mackinlay,
J.D. Fluid annotations through open hypermedia: using and
extending emerging web standards Proc. World Wide Web,
ACM, Honolulu, HI, USA, 2002.

4. Forlines, C., Wigdor, D., Shen, C. and Balakrishnan, R. Di-
rect-touch vs. mouse input for tabletop displays CHI 2007,
ACM, 2007.

5. Hansen, W.J. and Haas, C. Reading and writing with com-
puters: a framework for explaining differences in perform-
ance. Commun. ACM, 31 (9). 1080-1089.

6. Hinckley, K., Yatani, K., Pahud, M., Coddington, N., Ro-
denhouse, J., Wilson, A., Benko, H. and Buxton, B. Pen +
touch = new tools UIST 2010, ACM.

7. Holz, C. and Baudisch, P. The generalized perceived input
point model and how to double touch accuracy by extracting
fingerprints CHI 2010, ACM.

8. Holzinger, A., Holler, M., Schedlbauer, M. and Urlesberger,
B. An investigation of finger versus stylus input in medical
scenarios ITI 2008, IEEE, Dubrovnik, 2008.

9. Hornbaek, K. and Frokjaer, E. Reading patterns and usability
in visualizations of electronic documents. ACM Trans. Com-
put.-Hum. Interact., 10 (2). 119-149.

10. Jakobsen, M.R. and Hornbaek, K. Evaluating a fisheye view
of source code Proceedings CHI 2006, ACM, 2006.

11. Liao, C., Guimbretiere, F., Hinckley, K. and Hollan, J.
Papiercraft: A gesture-based command system for interactive
paper. ACM Trans. Comput.-Hum. Interact., 14 (4). 1-27.

12. Marshall, C.C., Price, M.N., Golovchinsky, G. and Schilit,
B.N. Introducing a digital library reading appliance into a
reading group Proc. of conf. Digital libraries, ACM, Berke-
ley, CA, US, 1999.

13. Morris, M.R., Brush, A.J.B. and Meyers, B.R., Reading Re-
visited: Evaluating the Usability of Digital Display Surfaces
for Active Reading Tasks. in Tabletop, (2007), 79-86.

14. Murray, T., Applying Text Comprehension and Active Read-
ing Principles to Adaptive Hyperbooks. in Cognitive Science,
(Boston, MA, 2003).

15. O'Hara, K. Towards a Typology of Reading Goals RXRC
Affordances of Paper Project, Rank Xerox Research Center,
Cambridge, UK, 1996.

16. O'Hara, K. and Sellen, A. A comparison of reading paper
and on-line documents CHI 1997, ACM, 1997.

17. O'Hara, K., Smith, F., Newman, W. and Sellen, A. Student
readers' use of library documents: implications for library
technologies CHI 1998, ACM Press, 1998.

18. O'Hara, K., Taylor, A., Newman, W. and Sellen, A. Under-
standing the materiality of writing from multiple sources.
Int'l Journal of Human Computer Studies, 56. 269-305.

19. Price, M.N., Golovchinsky, G. and Schilit, B.N. Linking by
inking: trailblazing in a paper-like hypertext Proc. of Conf.
Hypertext and hypermedia, ACM, 1998.

20. Renear, A., DeRose, S., Mylonas, E. and Dam, A.v. An Out-
line for a Functional Taxonomy of Annotation, Presented at
Microsoft Research, Redmond, WA, 1999.

21. Schilit, B.N., Golovchinsky, G. and Price, M.N. Beyond
paper: supporting active reading with free form digital ink
annotations CHI 1998, ACM, 1998.

22. Sellen, A. and Harper, R. Paper as an analytic resource for
the design of new technologies CHI 1997, ACM, 1997.

23. Tashman, C. and Edwards, W.K., Active Reading and Its
Discontents: The Situations, Problems and Ideas of Readers.
in CHI 2011, (Vancouver, Canada, 2011), ACM.

24. Wu, M. and Balakrishnan, R. Multi-finger and whole hand
gestural interaction techniques for multi-user tabletop dis-
plays UIST 2003, ACM, 2003.

25. Zeleznik, R., Bragdon, A., Adeputra, F. and Ko, H.-S.
Hands-on math: a page-based multi-touch and pen desktop
for technical work and problem solving Proc of ACM UIST,
ACM, New York, NY, USA, 2010.

