
StickyLand: Breaking the Linear Presentation of Computational
Notebooks

Zijie J. Wang
Georgia Tech

jayw@gatech.edu

Katie Dai
Georgia Tech

kdai7@gatech.edu

W. Keith Edwards
Georgia Tech

keith@cc.gatech.edu

Figure 1: The StickyLand user interface persists on top of a computational notebook, creating an always-onworkspace for data
scientists to display text and execute code. (A) A user can drag an existing Notebook Cell to (B) the Sticky Dock that mounts on
the edge of the notebook. (C) It creates a Sticky Cell that stays at the same location even when the user scrolls the notebook. (D)
The user can further convert this cell to a Floating Cell that floats on top of the notebook with customizable position and size.

ABSTRACT
How can we better organize code in computational notebooks?
Notebooks have become a popular tool among data scientists, as
they seamlessly weave text and code together, supporting users
to rapidly iterate and document code experiments. However, it is
often challenging to organize code in notebooks, partially because
there is a mismatch between the linear presentation of code and
the non-linear process of exploratory data analysis. We present
StickyLand, a notebook extension for empowering users to freely
organize their code in non-linear ways. With sticky cells that are
always shown on the screen, users can quickly access their notes,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9156-6/22/04. . . $15.00
https://doi.org/10.1145/3491101.3519653

instantly observe experiment results, and easily build interactive
dashboards that support complex visual analytics. Case studies
highlight how our tool can enhance notebook users’s productivity
and identify opportunities for future notebook designs. StickyLand
is available at https://github.com/xiaohk/stickyland.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools.

KEYWORDS
Computational Notebooks, Exploratory Programming, Code Layout

ACM Reference Format:
Zijie J. Wang, Katie Dai, and W. Keith Edwards. 2022. StickyLand: Breaking
the Linear Presentation of Computational Notebooks. In CHI Conference on
Human Factors in Computing Systems Extended Abstracts (CHI ’22 Extended
Abstracts), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3491101.3519653

https://orcid.org/0000-0003-4360-1423
https://orcid.org/0000-0002-4623-3980
https://orcid.org/0000-0002-5209-7380
https://doi.org/10.1145/3491101.3519653
https://github.com/xiaohk/stickyland
https://doi.org/10.1145/3491101.3519653

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Zijie J. Wang, Katie Dai, and W. Keith Edwards

1 INTRODUCTION
Computational notebooks, such as Jupyter Notebook [11] and Co-
lab, have become dominant programming environments for data
scientists to explore and understand data [18]. According to a 2021
Kaggle survey [6], Jupyter Notebook and JupyterLab are among
the top-3 most popular integrated development environments, and
more than 75% surveyed data scientists use Jupyter Notebook or
JupyterLab in their day-to-day work. These notebooks present a
customizable programming environment that consists of an arbi-
trary number of cells—small editors for markdown text and code.
These cells are linearly organized in a document format and tend to
grow longer and longer as the complexity of the analysis increases.
Textual and visual results, such as code output and visualizations,
are presented below corresponding cells. Users can arrange and
execute these cells in their notebooks—creating a form of literate
programming [12]. With a seamless combination of text, code, and
visual outputs, notebooks facilitates data scientists to perform ex-
ploratory data analysis, document data insights, and eventually
share data stories with collaborators.

However, recent research suggests that notebook users face chal-
lenges regarding code organization [2, 5]. Since there is only one
code interpreter that keeps all the execution states in a notebook,
users need to carefully arrange and execute cells in certain orders to
avoid variable corruptions [5, 8]. In addition, all notebooks follow a
linear presentation style that is contradictory to the non-linear na-
ture of exploratory data analysis [9, 22]. Effectively, all of the code
cells are a part of a single program, despite being spread across
the notebook. This means that edits such as changing variables
in one part of the notebook may have unforeseen consequences
later in the notebook. To help users better organize notebook cells,
researchers propose techniques such as distilling essential cells to
create sub-notebooks [5], supporting cell-level code version con-
trols [15], and two-column notebook layout [22]. In contrast to
these works, we address the notebook messiness by focusing on
the linearity of the traditional notebook layout.

We introduce StickyLand (Fig. 1), an interface that breaks the lin-
earity of notebooks with sticky cells that are always shown on top of
the notebook. This alternative layout provides multiple new options
for organizing, navigating, displaying and executing notebooks. Our
main contributions are:

• StickyLand, a collection of user interface techniques that
empowers data scientists to break the linear presentation of
traditional notebooks. These user interface techniques include
the ability to create persistent, free-floating cells that can con-
tain either code or markup, the ability to automatically run
code cells in order to help synchronize states and explore re-
sults instantly; and a variety of organizational techniques that
let users rearrange and combine sticky cells in order to cre-
ate customized dashboards that support complex visual ana-
lytics. We also present three use scenarios where StickyLand
enhances notebook users’ productivity, collaboration, and learn-
ing through more flexible code organizations.

• An open-source1 implementation that broadens the pub-
lic’s access to a more flexible notebook layout. We also provide

1StickyLand Code: https://github.com/xiaohk/stickyland

comprehensive documentation to help future designers and re-
searchers use StickyLand as a user interface toolkit to explore
and develop alternative notebook designs. To see a demo of
StickyLand, visit https://youtu.be/OKaPmEBzEX0.

We hope our work will inspire the design, research, and develop-
ment of computational notebooks that help data scientists to more
productively analyze data, document insights, and share findings.

2 BACKGROUND AND RELATEDWORK
As computational notebooks have been gaining popularity in recent
years, there is a growing body of research from the CHI commu-
nity that aims to improve these notebooks [e.g., 8, 9, 19]. Through
conducting interviews and surveys with data scientists, researchers
have identified difficulties of using notebooks in practice: One of the
main pain points is code management [2, 9]. Since the traditional
scripting code is modularized as a linear collection of multiple cells
that users can arrange and execute in any order, it becomes chal-
lenging to manage code in computational notebooks [2, 13]. For
example, the fact that all the code cells are effective in one program
means that a change to some code at the top of the notebook may
impact or break code far away at the end of the notebook. Likewise,
as the data analysis gets more complex, users may find themselves
flipping back and forth through the long notebook, trying to find
specific pieces of information.

To address this issue, researchers introduce techniques to clean
unused code [5, 19] and provide better version control of code [7, 15].
To align notebook designs with the non-linear and iterative nature
of exploratory data analysis, Weinman et al. [22] explore alterna-
tives to the single execution state of notebooks with forking and
backtracking, as well as a two-column layout. Similarly, researchers
have also explored designs that allow users to more easily navigate
between code and interactive visualizations, such as bi-directional
communications [10] and side-by-side presentations [24]. However,
these works still follow the traditional linear presentation style of
notebooks. Such linear presentation is not the only way to organize
code; In fact, before computation notebooks, researchers developed
a wide range of tools that support visual organization of code, such
as partially linked code in a grid [4], stackable cards to dynamically
organize code segments [16], single code editor across multiple
documents [3], and code bubbles that users can freely group and ar-
range [1]. Inspired by these works, StickyLand challenges the linear
layout of notebooks by introducing flexible sticky cells that persist
on top of the notebook. To help users easily inspect code results and
navigate the notebook, StickyLand supports automatically running
cells and a variety of organization techniques.

3 SYSTEM DESIGN AND IMPLEMENTATION
StickyLand is an interface that breaks the traditional linear pre-
sentation of computational notebooks by introducing a persistent
area on top of the notebook where users can freely store any note-
book artifacts such as code, notes, and task lists. It can help users
more easily navigate the notebook, write less repetitive code, and
better manage the execution states of their code. To accomplish
this, StickyLand starts with the Sticky Dock (§ 3.1), a persistent
area shown on top of the notebook that contains sticky cells. With
easy drag-and-drop, users can add editable Sticky Code cells (§ 3.2),

https://github.com/xiaohk/stickyland
https://youtu.be/OKaPmEBzEX0

StickyLand: Breaking the Linear Presentation of Computational Notebooks CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

Figure 2: The Sticky Dock sticks on a notebook’s right edge,
containing multiple sticky cells as tabs. To add new cells,
users can drag-and-drop existing cells from the notebook or
directly create new sticky cells from scratch.

which can execute code and have an auto-run feature and Sticky
Markdown cells (§ 3.3), which can format markdown and LATEX
text. In addition, users can create multiple Floating Cells (§ 3.4)—
enabling more flexible code display and easy dashboard creation.
The following sections describe these features in detail.

3.1 Sticky Dock
When users launch StickyLand in a notebook by clicking a button in
the toolbar, the Sticky Dock appears—sticking to the right edge of the
notebook window (Fig. 2). Users can resize the dock by dragging the
panel corner and re-position it by dragging the top handle up and
down along the right window edge. Sticky Dock is always shown
on top of the main notebook, and it does not move when users
scroll the notebook. Sticky Dock consists of a tab bar where each
tab is associated with one sticky cell. Users can create an unlimited
number of tabs to store sticky cells. To create a new tab, users can
click the + button which opens a new tab with a dropzone. Users can
easily drag-and-drop existing cells from the main notebook to the
dropzone. If an existing cell is dragged to Sticky Dock, StickyLand
creates a clone of the cell and collapses (hides) the original cell in
the notebook. StickyLand synchronizes the content (both input
and output results) in the existing cell and the cloned cell. In other
words, editing a cell also changes the original cell in the notebook
in real-time. Users can also create a new sticky cell from scratch
in the dropzone, and Sticky Dock will add a collapsed cell in the
notebook to synchronize the content with the new sticky cell. Once
users close a tab, Sticky Dock removes the sticky cell and extends
(shows) its corresponding cell in the notebook.

3.2 Sticky Code
In the Sticky Dock, users can create a tab that contains a traditional
code cell, where each cell has an input and output cell (Fig. 3). In
computational notebooks, users write scripts (e.g., Python, R, Julia)
in the input cell, and the output cell displays the result after users
execute the input cell. The output cell can render many different
forms of data, from simple strings, tables, and charts to any HTML

markups. Therefore, users can use the Sticky Code to display online
videos and interactive visual analytics tools [14, 20, 23].

Users can easily create new Sticky Code cells by using drag-and-
drop to copy cell code from the notebook to StickyLand. Users
can also create a new Sticky Code from scratch. The Sticky Code
has a cell synchronization feature: code in the Sticky Code inherits
and shares the code and execution states from the notebook, so
editing and executing the cell in StickyLand will make the same
changes to the content and execution states in the notebook as well.
In other words, users can access variables defined in the notebook
from StickyLand, and vice versa. Sticky Code shares the global code
state so that it is easier for users to keep a mental model of the code
execution history across the notebook.

On top of the input cell in the Sticky Code, there is a toolbar
with four buttons, where users can click to run, hide the input cell,
make the cell float (§ 3.4), and toggle the auto-run mode. When
the auto-run mode is active, every time the user runs a different
cell from the notebook or StickyLand (Fig. 3-1), the Sticky Code
automatically runs the input cell and displays the output (Fig. 3-2).
The auto-run feature helps users avoid manually running cells that
need recurring updates, such as code that displays the results of
code experiments. If there are multiple Sticky Codes in the auto-run
mode, StickyLand will automatically run them in the order they
are created (Fig. 3-2∼4). Sticky Dock also highlights auto-run Sticky
Code that has unseen updates with a green tab name.

3.3 Sticky Markdown
The Sticky Markdown is similar to the Sticky Code (§ 3.2): users can
type Markdown code in the input cell, and then the output cell will
render the corresponding formatted textual result. Users can use a
keyboard shortcut or toolbar buttons to switch between the input
and output cells. Similarly to the Sticky Code, users can make the
Sticky Markdown float, and the content of a Sticky Markdown is
synchronized with its corresponding cell in the notebook. Users
can also render LaTeX mathematical equations in the input cell.
With Sticky Markdowns, users can easily store artifacts such as data
exploration notes, code snippets, and to-do lists.

3.4 Floating Cells
There is a “launch” button in the toolbar of both Sticky Code and
Sticky Markdown (Fig. 3-2), where users can click to launch the
sticky cell outside of the Sticky Dock container (Fig. 1D). Then, the
cell transitions into a separate cell windowwith a smooth animation.
This Floating Cell floats on top of the notebook, and it does not
move when users scroll the notebook. During the transition, the cell
window is auto-resized to fit the input cell size. Users can drag the
header of Floating Cell to change its position and drag the left corner
to resize the window. Floating Sticky Code and Sticky Markdown
keep all the same functionalities including auto-run as they are in
the Sticky Dock. Users can minimize or close the Floating Cell by
clicking the buttons on its header.

In addition, StickyLand allows users to launch multiple Floating
Cells on the screen. Therefore, with a combination of floating Sticky
Code and Sticky Markdown as well as the auto-run feature, users can
easily create an interactive dashboard. With different components
on a dashboard, users can display text and visual outputs, provide

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Zijie J. Wang, Katie Dai, and W. Keith Edwards

Figure 3: To help users avoid repetitively running the same code, the Sticky Code supports to automatically execute its code
when any other code cell is executed. Take a data scientist who inspects their image augmentation pipeline for example; 1
They first run a code cell in the main notebook that loads a random image from their dataset. This interaction triggers three
Sticky Codes with auto-run toggled to automatically execute in a chained manner: 2 first rotating the original image; 3 then
adding noise to the rotated image; 4 finally corrupting the edited image.

input values, run code, or interact with stand-alone interactive tools.
As users can freely customize and arrange Floating Cells, users can
use the interactive dashboard for data analysis or as a storyboard
to communicate data insights to other people.

3.5 Open-source Implementation
We implement StickyLand as a JupyterLab Extension.2With Jupyter-
Lab’s flexible and extensible design, we can customize the presen-
tation styles of notebooks. Through extension APIs, StickyLand
has access to cell content, and it can listen to code execution events
from the notebooks. With a responsive design and integrated style
as native UI elements, we hope StickyLand can provide data scien-
tists a seamless experience when using JupyterLab for exploratory
data analysis. We also release StickyLand as a Python package so
that users can easily install it with one command.

4 USAGE SCENARIO
4.1 Exploratory Data Analysis
As a junior data scientist,
Carl struggles with organiza-
tion and keeping track of his
thoughts and findings. With
StickyLand, he can keep ev-
erything in the same place for
easy access. Carl is working on
a complicated task with many
steps, so he opens StickyLand
and creates a new tab with a
new Sticky Markdown cell from scratch. He double clicks the input
cell to enter the editing mode and adds his to-do list (shown on the
right); it helps him plan his work process. As he keeps working,

2JupyterLab Extension:https://github.com/jupyterlab/extension-examples

he can always see the list of steps that helps him remember and
follow his plan. Carl also clicks the rendered checkbox to check-off
completed items and update the list as needed. As he continues
conducting the data analysis, he creates a new Sticky Markdown
tab and writes down his thoughts and findings. The next day, he
has a “gotcha” moment at work, so he quickly opens StickyLand
as a reference to remember his findings from the day before and
make comparisons. Here, StickyLand acts like a miniature note-
book that is always accessible, as it persists on the screen regardless
of the tasks happening in the notebook. Now Carl wants to test and
compare some results to confirm some hypotheses regarding the
dataset, but his visualization results are buried in different sections
within his long notebook. To better organize these visualizations,
Carl creates several Sticky Codes tabs and drags related code into
StickyLand. He also collapses the input cell so that only the visu-
alization output is visible. Carl turns on the auto-run mode on all
visualization Sticky Codes, so that every time he makes a change in
the notebook, the visualization refreshes. Now Carl can focus on
writing code in the main document to try out different data trans-
formation methods, as he can always inspect the latest experiment
results in StickyLand. With accessible and automatically-updated
visualizations, Carl can quickly verify his hypotheses.

4.2 Communicating Machine Learning Models
Ellie, a senior machine learning (ML) engineer at a financial institu-
tion, has trained an ML model that helps the institution make loan
application decisions. This model takes inputs of an individual’s
financial information, such as credit score, annual income, and em-
ployment length, to inform a lending decision. As this model could
directly affect the livelihood of thousands of clients, Ellie wants
to make sure that the model’s behavior aligns with the financial
experts’ knowledge and does not discriminate against specific de-
mographics. Ellie develops her model in JupyterLab, so she decides

https://github.com/jupyterlab/extension-examples

StickyLand: Breaking the Linear Presentation of Computational Notebooks CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

Figure 4: Withmultiple resizable and re-positionable Floating Cells that float on top of the notebook, a user can quickly create
an interactive dashboard that support complex visual analytics directly from their existing code. For example, to diagnose a
machine learning (ML)model’s performance on different dataset slices, anML engineer can create a dashboard to interactively
perform error analysis through simple drag-and-drops. The dashboard consists of: A markdown text describing the dashboard,
B input field to specify a feature to diagnose, C auto-run chart showing the distribution of the specified feature, D second
input field to further specify the range within the feature to diagnose, E auto-run table displaying all samples that meet the
criteria, F auto-run visualization explaining how the MLmodel makes decision on these samples, G interactive tool allowing
the ML engineer to fix the ML model by editing its parameters based on their error analysis.

to use StickyLand to create an interactive dashboard (Fig. 4) to
perform ML model error analysis with a financial expert. She first
creates a Sticky Markdown that describes the purpose of the dash-
board, and then she clicks the launching button to convert the cell
to a A Floating Cell (Fig. 4A) that floats on top of the notebook. She
drags the Floating Cell to the top left of the notebook and resizes
it accordingly. Following the same procedure, Ellie further creates:
B Code cell that allows users to specify a feature from the

dataset on which to perform error analysi
C Histogram chart with auto-run that visualizes the distribu-

tion of all samples on the specified feature
D Code cell that allows users to further specify a range with the

selected feature to diagnose the model
E Table with auto-run that displays the details of all samples

from the dataset that meet the specified range
F Interactive chart with auto-run that explains how the model

makes the decision on these samples [17]
G ML editor that helps users align a model’s behavior with their

knowledge by editing the model’s parameters [21]

Then, Ellie and the financial expert examine the model’s behaviors
across common under-represented demographics (e.g., older people
and people of color) by changing the feature and feature range
in two code cells (Fig. 4B, D). Once Ellie runs these two cells, all
other cells in the dashboard with auto-run toggled automatically
refresh themselves and display information in sync with the spec-
ified subset of data. Finally, they use the model editor (Fig. 4G) to
create a more equitable model by editing its parameters to mitigate
biases they discover from this dashboard. With StickyLand, Ellie
is now able to quickly build an interactive and tightly-integrated
dashboard that supports collaborative and complex visual analytics.

4.3 Learning Programming
Russel, an undergraduate computer science student, is taking a class
to learn how to use Python for data analysis. His instructor requires
students to submit their assignments in Jupyter Notebooks. The
starter notebook lists detailed instructions at the top followed by a
long list of skeleton code.When completing the assignments, Russel
usually has to scroll all the way back up to check the instructions.

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Zijie J. Wang, Katie Dai, and W. Keith Edwards

After installing StickyLand this
week, he realizes he can drag the
instructions into a new Sticky
Markdown to store the steps to
refer to as he works through
the assignment. Russel is strug-
gling with completing one prob-
lem as he keeps forgetting the
syntax and how to use some
Python functions. To get help,
Russel creates a new floating
Sticky Code in StickyLand, where he imports a YouTube video
of a Python tutorial with code walk through. He then drags that
Sticky Code cell to resize the video so that he can read the code in
the video. Seeing the video while writing code at the same time
helps Russel solve many problems. Later, Russel gets frustrated that
he keeps forgetting the parameter list of some functions. Therefore,
he creates another floating Sticky Code where he prints out the
documentation of confusing functions (shown on the right). This
sticky cell enables Russel to quickly refer to the syntax of functions
while completing the assignment. With StickyLand’s help, Russel
quickly finishes this week’s assignment and eagers to learn more.

5 LIMITATIONS & FUTUREWORK
While StickyLand can help users better organize their code in
computational notebooks, there are some potential improvements
to our current system design regarding the auto-run feature (§ 5.1),
code states (§ 5.2), and notebook platforms (§ 5.3). We also plan to
conduct a user study to evaluate StickyLand (§ 5.4).

5.1 Support Topological Auto-run
We develop the auto-run feature in Sticky Code to help users avoid
running cells that need recurring updates (§ 3.2). When auto-run is
activated, a Sticky Code would automatically execute its code after
any other cell is executed. However, this mode can fail in some
special cases. For example, an auto-run Sticky Code A depends on
cell B which depends on cell C. If a user runs cell C, then the Sticky
Code A can yield unexpected results after its automatic execution,
because cell B is not updated. Also, an auto-run Sticky Code might
waste unnecessary execution time when a user runs unrelated cells.
To address this issue, we plan to take inspirations from Observable3
and support topological automatic execution: auto-run Sticky Code
would only run when their referenced values changed in other cells,
and it would also automatically recompute all intermediate cells
that uses the same referenced values in a topological order.

5.2 Explore Separate States
We are working on adding the feature of separating the code state
in StickyLand from the cell state in the main notebook. This feature
would be a unidirectional state sharing mechanism, where the code
in the Sticky Code inherits states from the notebook, but the code in
the notebook does not have access to the states in the Sticky Code.
In other words, instead of creating Sticky Code that live in one big
program as the notebook, these cells would be independent from
each other, with their own scope, thus providing better abstraction,
3Observable: https://observablehq.com

freedom from side effects, and separation of concerns. For example,
users can create visualizations in the Sticky Code using data from
the notebook, but they cannot access variables defined in the Sticky
Code from the notebook. By partially separating the execution
states, StickyLand might help avoid information overload when
tracking the code states across the notebook. For example, a user
can use cells with separate states as a “safe space” for throw-away
experiments, as they do not need to worry about interfering with
the states in the notebook. Thus, having separate code states might
further challenge the linearity of computational notebooks.

5.3 Generalize to Other Notebooks
For future work, we would look at generalizing StickyLand to be
used for other computational notebooks such as Google Colab,
VSCode Notebook, Azure Notebook. While Jupyter is the most
popular computational notebook, expanding StickyLand to other
notebooks with similar functionality would increase benefits to a
wider range of users. StickyLand could then help more users who
work in different domains with different programming languages.

5.4 Planned Evaluation
We are preparing to conduct a survey study to evaluate the usability
of StickyLand. We will recruit data scientists who use JupyterLab
or Jupyter Notebook in their work through social media and word
of mouth. Then, we will provide participants with information
regarding the features of our tool and detailed instructions on how
to use it in notebooks with a tutorial video. We will ask participants
to use StickyLand in their daily work. After some time, we will ask
participants to complete a survey to (1) report their daily usage and
use patterns, (2) evaluate the usability of our tool, and (3) provide
feedback on the design and implementation.

6 CONCLUSION
As computational notebooks have become the most popular pro-
gramming tool among data scientists, it is critical to address the
limitations of the current notebook design. In this work, we present
StickyLand, a user interface that leverages an always-on workspace
to break the linear presentation of traditional notebooks. We imple-
ment our tool as an open-source JupyterLab extension. It enables
users to easily install and use StickyLand in their daily work. Also,
future designers and developers can use our tool to explore alter-
native notebook designs and implementations. We discussed use
scenarios where users with different levels of familiarity with data
science can benefit from a non-linear layout of computational note-
books. We hope our work will inspire future researchers to study
and evaluate alternative notebook designs that help improve the
usefulness, productivity, and user experience for notebook users
and eventually help democratize data science.

ACKNOWLEDGMENTS
We thank Haekyu Park, Rahul Duggal, Duen Horng (Polo) Chau,
Benjamin Hoover, and Seongmin Lee for the fruitful discussions.
We appreciate the Project Jupyter community for answering our
JupyterLab extension development questions. We are also very
grateful to anonymous reviewers for their valuable feedback.

https://observablehq.com

StickyLand: Breaking the Linear Presentation of Computational Notebooks CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

REFERENCES
[1] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William

Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola. 2010. Code Bubbles: A Working Set-Based Interface for Code Under-
standing and Maintenance. In Proceedings of the 28th International Conference
on Human Factors in Computing Systems - CHI ’10. ACM Press, Atlanta, Georgia,
USA, 2503.

[2] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. ACM, Honolulu HI USA, 1–12.

[3] Han L. Han, Miguel A. Renom, Wendy E. Mackay, and Michel Beaudouin-Lafon.
2020. Textlets: Supporting Constraints and Consistency in Text Documents. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
ACM, Honolulu HI USA, 1–13.

[4] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer.
2008. Design as Exploration: Creating Interface Alternatives through Parallel
Authoring and Runtime Tuning. In Proceedings of the 21st Annual ACM Symposium
on User Interface Software and Technology. 91–100.

[5] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. ACM, 1–12.

[6] Kaggle. 2021. State of Machine Learning and Data Science 2021.
[7] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting

Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. ACM, Denver Colorado USA,
1265–1276.

[8] Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty, Amber Horvath, and Brad A.
Myers. 2019. Towards Effective Foraging by Data Scientists to Find Past Analysis
Choices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. ACM, Glasgow Scotland Uk, 1–13.

[9] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science Using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. ACM, Montreal QC Canada, 1–11.

[10] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. Mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. ACM, Virtual Event
USA, 140–151.

[11] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E. Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B. Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing,
and Jupyter Development Team. 2016. Jupyter Notebooks - a Publishing Format
for Reproducible Computational Workflows. In ELPUB.

[12] Donald Ervin Knuth. 1984. Literate Programming. The computer journal 27, 2
(1984), 97–111.

[13] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The Design Space of
Computational Notebooks: An Analysis of 60 Systems in Academia and Industry.
In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, Dunedin, New Zealand, 1–11.

[14] Siwei Li, Zhiyan Zhou, Anish Upadhayay, Omar Shaikh, Scott Freitas, Haekyu
Park, Zijie J. Wang, Susanta Routray, Matthew Hull, and Duen Horng Chau.
2020. Argo Lite: Open-Source Interactive Graph Exploration and Visualization
in Browsers. arXiv:2008.11844 (Aug. 2020).

[15] Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi. 2017. Micro-Versioning
Tool to Support Experimentation in Exploratory Programming. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems. ACM, Denver
Colorado USA, 6208–6219.

[16] Nicholas Nelson, Anita Sarma, and André van der Hoek. 2017. Towards an IDE
to Support Programming as Problem-Solving.. In PPIG. 15.

[17] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. 2019. InterpretML:
A Unified Framework for Machine Learning Interpretability. arXiv:1909.09223
(Sept. 2019).

[18] Bernadette M. Randles, Irene V. Pasquetto, Milena S. Golshan, and Christine L.
Borgman. 2017. Using the Jupyter Notebook as a Tool for Open Science: An
Empirical Study. In 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL).
IEEE, Toronto, ON, Canada, 1–2.

[19] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Expla-
nation in Computational Notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. ACM, Montreal QC Canada, 1–12.

[20] Ian Tenney, James Wexler, Jasmijn Bastings, Tolga Bolukbasi, Andy Coenen, Se-
bastian Gehrmann, Ellen Jiang, Mahima Pushkarna, Carey Radebaugh, Emily Reif,
and Ann Yuan. 2020. The Language Interpretability Tool: Extensible, Interactive
Visualizations and Analysis for NLP Models. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations.
Association for Computational Linguistics, Online, 107–118.

[21] Zijie J. Wang, Alex Kale, Harsha Nori, Peter Stella, Mark Nunnally, Duen Horng
Chau, Mihaela Vorvoreanu, Jennifer Wortman Vaughan, and Rich Caruana. 2021.
GAM Changer: Editing Generalized Additive Models with Interactive Visualiza-
tion. arXiv:2112.03245 (Dec. 2021).

[22] Nathaniel Weinman, Steven M. Drucker, Titus Barik, and Robert DeLine. 2021.
Fork It: Supporting Stateful Alternatives in Computational Notebooks. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM, Yokohama Japan, 1–12.

[23] JamesWexler, Mahima Pushkarna, Tolga Bolukbasi, MartinWattenberg, Fernanda
Viegas, and JimboWilson. 2019. TheWhat-If Tool: Interactive Probing of Machine
Learning Models. IEEE Transactions on Visualization and Computer Graphics
(2019).

[24] Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
Code and Interactive Visualization in Computational Notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
ACM, Virtual Event USA, 152–165.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Design and Implementation
	3.1 Sticky Dock
	3.2 Sticky Code
	3.3 Sticky Markdown
	3.4 Floating Cells
	3.5 Open-source Implementation

	4 Usage Scenario
	4.1 Exploratory Data Analysis
	4.2 Communicating Machine Learning Models
	4.3 Learning Programming

	5 Limitations & Future Work
	5.1 Support Topological Auto-run
	5.2 Explore Separate States
	5.3 Generalize to Other Notebooks
	5.4 Planned Evaluation

	6 Conclusion
	Acknowledgments
	References

