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ABSTRACT 
Privacy mechanisms are important in mixed-presence 
(collocated and remote) collaborative systems. These 
systems try to achieve a sense of co-presence in order to 
promote fluid collaboration, yet it can be unclear how 
actions made in one location are manifested in the other. 
This ambiguity makes it difficult to share sensitive 
information with confidence, impacting the fluidity of the 
shared experience. In this paper, we focus on mixed reality 
approaches (blending physical and virtual spaces) for mixed 
presence collaboration. We present SecSpace, our software 
toolkit for usable privacy and security research in mixed 
reality collaborative environments. SecSpace permits 
privacy-related actions in either physical or virtual space to 
generate effects simultaneously in both spaces. These 
effects will be the same in terms of their impact on privacy 
but they may be functionally tailored to suit the 
requirements of each space.  We detail the architecture of 
SecSpace and present three prototypes that illustrate the 
flexibility and capabilities of our approach. 
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INTRODUCTION 
Mixed presence collaboration, or collaboration between 
collocated and remote individuals, is becoming 
commonplace. In healthcare, telepresence has long been a 
topic of research [1], and is now supported by a variety of 
specialized systems. Virtual classrooms link groups of 
students and educators across distances, sometimes using 
immersive video or virtual worlds [2]. In the office, 
meetings often include remote participants connected via 
videoconference and/or shared desktop software.  

During co-located collaboration, many physical privacy-
related actions occur. These include managing the visibility 
(and sharing) of documents with others in a room, and 
using one’s position and orientation relative to others to 
glance at personal information in private. During extended 
collaborations, smaller groups may also wish to achieve 
visible and/or audible privacy, or signal that they wish 
privacy based on their position relative to those in the larger 
group [3]. We are also cognizant of the current and likely 
future locations and actions of our collaborators and of 
others. For example, we maintain an awareness of who else 
is in a meeting room to manage sharing of sensitive 
information, and rely on social norms inherent in the 
collaborative activity and/or the environment: for example 
strangers in a cafe may eavesdrop on our conversation, but 
they are less likely to walk up to our table and peer intently 
at the work we are doing.  Beyond individual meetings, 
physical information security policies are often in place in 
institutions (such as hospitals) that share large amounts of 
sensitive paper materials, and architecture also considers 
ways to support the need for privacy and security. 

In mixed presence collaboration we have to manage privacy 
and security across two “channels”—the physical or co-
located, and the virtual or remote—simultaneously. The 
privacy mechanisms used in each channel often differ. For 
example, once content is shared on the network we become 
concerned with encryption and access permissions. We are 
also challenged to maintain situational awareness across 
both channels. While we may know who is in the room with 
us, we can often be unaware of who is in the room with our 
remote collaborator(s). Technologies providing security 
policy specification and enforcement are often too brittle to 
apply during synchronous collaboration due to the 
negotiated and situated nature of privacy in these situations. 

Recently, the technology for co-presence has advanced to 
the point where physical (and possibly virtual) collaborative 
spaces can be combined into a spatially fused environment 
(a shared or blended space as defined by O’Hara et al. [4]). 
Mixed reality environments blend physical and virtual 
spaces, such that they together form a hybrid space 
[5][6][7]. Mixed reality has been used quite extensively in 
locative games [35] , and increasingly as a mechanism to 
encourage a sense of co-presence during mixed presence 
collaboration [8][9][10]. Mixed reality holds several 
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potential benefits as an approach for mixed presence 
collaboration, including: not requiring expensive and 
identical technical setups at each linked physical location, 
not requiring a video presence while still providing a visual 
representation of collaborators, providing a shared 
repository for work that can be spatially meaningful, giving 
a sense of a shared “place” for collaboration that can exist 
beyond a single meeting, and supporting both asynchronous 
and synchronous collaboration. 

Further, mixed reality offers interesting potential solutions 
to the multiple channel problems when managing privacy. 
Specifically, since the virtual/online channel is manifested 
as a space—and more specifically, the virtual is connected 
spatially to the physical place where co-located work 
happens—we might be able to transfer the physical 
privacy/security mechanisms so that they exist in physical 
and virtual simultaneously. Consistency in how privacy and 
security are achieved may make it easier for remote 
collaborators to understand what is happening in the 
physical space, and for local collaborators to understand 
what is happening in the virtual space. It may also reduce 
the overhead for privacy and security: those collaborating 
locally act within a single channel (the physical) and remote 
collaborators act solely in the virtual, knowing that their 
actions will affect both spaces. Mixed reality collaborative 
environments pose specific challenges to collaboration, 
however: actions and representations in a virtual space can 
be misinterpreted due to a literal interpretation of the spatial 
metaphor. Even though the physical and virtual may look 
the same and/or are linked together spatially, the expressive 
capacities of physical and virtual spaces are very different. 
Therefore, it is not a straightforward matter of replicating 
physical privacy mechanisms in the virtual. For example, in 
the physical world one can selectively show a portion of a 
document by folding it or holding one’s hand over a 
sensitive portion of the document, while doing the same in 
a virtual world would likely require a number of user 
interactions to secure a portion of a document’s content 
before displaying what one wishes to share.  

According to Bødker [11] and McCarthy and Wright [12] , 
we should emphasize experience during user-centered 
design of ICT tools. Often privacy and security mechanisms 
do not clearly reflect this user-centric approach: instead 
they focus on establishing secure procedures that users 
should follow, specifying proper security policies, and 
providing end-user assistance with these procedures or 
specifications [13][14]. Our broader research goal is to 
explore potential designs to support privacy in 
heterogeneous, document-centric, mixed presence 
collaboration. In particular, we want to determine how 
people ‘naturally’ manage security and privacy while 
performing some of these tasks both in the digital and real 
world. Therefore we want to use an exploratory approach to 
look for physical patterns of security-related behavior and 
to generate and evaluate design ideas pertaining to user-
centric privacy and security for mixed reality collaboration.  

In order to do this, we have developed a framework that 
allows the rapid development of privacy and security 
mechanisms that are manifested in both physical and 
virtual. The primary contribution of our work is the 
SecSpace framework, permitting rapid prototyping and 
evaluation of usable privacy and security mechanisms for 
collaborative mixed reality.  

We also introduce several physical privacy and security 
mechanisms that might be useful in collaborative mixed 
reality. We illustrate these mechanisms through a set of 
three SecSpace prototypes. They serve to show the 
capabilities of the framework, and are not presented here as 
validated security mechanisms. 

The first prototype considers mixed presence collaboration 
around a whiteboard. This carries a number of implicit 
security-related issues. For example, we can see who is 
using a whiteboard and decide whether or not to share 
information (orally or on the whiteboard). This changes 
when the whiteboard’s content is mapped onto to a 
whiteboard in a virtual world.  

The remaining prototypes consider mixed presence 
collaboration around a table. While collaborating around a 
table participants manage what documents to share and 
when. When the document content on the table is mapped 
to a table in a virtual world these practices break down. For 
instance placing a document in the middle of a table 
normally implies that collaborators are allowed to view the 
document, while taking the paper back normally implies 
that the view permission is now expired. There is no 
guarantee that the same is achieved in the virtual space. 

There are several key challenges to achieving a shared 
experience in these types of scenarios, in particular: 

 how to manifest the physical cues employed by 
collocated collaborators in the views used by 
remote collaborators,  

 how to enable remote collaborators to easily and 
naturally generate cues that are visible to and 
understood by the collocated group, and 

 how to ensure that collaborators are aware of how 
their actions are manifested in the other space. 

SecSpace allows researchers to explore ways to address 
each of these challenges.  

BACKGROUND 

Co-located Collaboration 
A number of privacy and security approaches have been 
considered for co-located collaboration at a range of 
physical and temporal scales.  

UbiTable [15] provides different levels of security and 
privacy when sharing documents. UbiTable defines three 
sharing semantics:  private, personal, and public. Private 
documents will not be accessible or visible to others, 



personal documents (semi-private) are located on the side 
of the table close to the owner and can be shared if the 
owner chooses, and public data are accessible and visible 
equally to all users.  

Semi-Public Display [16] promotes awareness and 
collaboration in small co-located group environments. 
Building on practices such as email status reports, shared 
calendars, and instant messenger status, the display is 
divided into  a space for reminders, a collaboration space, a 
graphical representation of group activity over time, and an 
abstract visualization of planned attendance at shared 
events. The system protects the  privacy of group members 
by using abstract visualizations and icons, such that casual 
viewers will not easily decipher its contents.  

Virtual walls [17] provides a metaphor for user-defined 
privacy policies in sensor-rich pervasive environments. 
Users are given control over their digital footprints by 
defining how “visible” they will be in different regions of 
the physical space.  

Shared Spaces 
Shared space techniques seen in research prototypes like 
VideoArms [18], ShareTable [19], WaaZam! [20] and 
Carpeno [21] attempt to create the illusion of a single fused 
space, where interaction is identical in all connected 
locations; however, this is not possible when one or more 
parties do not have the required technical infrastructure. 
Furthermore, when a group of people are co-located and are 
working (or playing) with just one or two remote 
collaborators, it may be desirable to allow the collocated 
group continue to use the spaces and tools in their 
environment (like real playing cards, for example), while 
not requiring remote collaborators to do the same. This 
heterogeneous experience is not supported in many shared 
space tools, and while some permit alternative setups 
(VideoArms.[22], [12] for example), they often require 
significant resources such as calibrated cameras and large 
screens at each node.  

Tools for remote collaboration on the desktop emphasize 
user-driven privacy and security through explicit sharing 
settings (e.g. Screen Sharing Item [23] for the Community 
Bar system). Shared spaces introduce new privacy and 
security concerns, and the absence of desktop-style 
interaction requires that we reimagine how to support 
privacy and security. For example, the ShareTable [16] 
system consists of video chat and a shared tabletop space. 
Targeted for communications between a separated parent 
and their children, it provides facilities for drawing, 
learning support, and physical document sharing. 
ShareTable raises some issues about the privacy of those 
around the users, and of the users themselves, with respect 
to what they are saying and doing.. To overcome these 
issues the authors suggested placing the system in the 
child’s room and arranging the best time to make calls, but 
this kind of measure may not be feasible in all 
circumstances. While some guidelines exist for managing 

privacy in always-on media spaces [38], more research is 
required to identify privacy and security mechanisms for 
shared spaces and mixed presence collaboration. 

Mixed Reality 
Benford et al. [24] categorize shared spaces based on three 
attributes: transportation, artificiality, and spatiality. 
Transportation means the possibility of moving a group of 
objects and participants from their local space into a new 
remote space to meet and collaborate with others. 
Artificiality considers the degree to which the environment 
is synthetic or relies on the physical world. For example, 
video conferencing is seen as the physical extreme while 
Collaborative Virtual Environments (CVEs) are seen as the 
synthetic extreme. Spatiality is the degree of support for 
physical spatial properties such as containment, topology, 
distance, orientation, and movement [24]. Mixed Reality 
can be seen as a form of shared space that combines the 
local and remote, the physical and synthetic—merging real 
and virtual worlds to create an environment for physical 
and virtual objects to interact in real time. While privacy is 
identified as a concern in mixed reality collaboration, to our 
knowledge SecSpace is the only reported framework 
targeting research in this area. 

Privacy Approaches in Mixed Reality Environments  
To help promote the exploration of how people naturally 
manage privacy in mixed reality collaborative spaces, we 
derived five strategies, inspired by our own ethnographic 
research into privacy issues in office work and healthcare 
and the co-design of collaborative mixed reality concepts 
for these domains [32][37]. This is not meant to be a 
complete list, and we are not recommending that all 
approaches be present in a single usable privacy solution. 
Rather, they form a core set of requirements for SecSpace. 
In the interest of space we list the strategies here: 1. use 
privacy mechanisms that are appropriate to the physical and 
virtual worlds, 2. visually represent the current policies in 
both worlds, 3. build on social norms when negotiating 
privacy mechanisms between the worlds, 4. enforce privacy 
mechanisms based on context, and 5. provide simple 
authentication and permission controls. 

SYSTEM IMPLEMENTATION 
Creating smart interactive spaces for collaboration has been 
a research topic in Ubiquitous Computing for some time; 
iRoom [26], NIST smart room [27],i-LAND [28] are 
examples of earlier projects in this area. However, these 
systems are useful for collaboration between people who 
are located in a single smart space.  Connecting a virtual 
world to a smart room has been proposed as a way to bring 
mixed presence collaboration to these spaces. Virtual 
worlds can provide accurate, real time information about 
the location and orientation of participants and their actions 
in the virtual world, as a form of virtual sensing [5]. Recent 
advances in localized indoor tracking of both objects and 
humans make it possible for physical interactive smart 
rooms and virtual worlds to behave similarly, and in many 



respects give the feeling of being in one location to all 
participants. 

SecSpace is an extension of the TwinSpace software 
framework for collaborative mixed reality applications [25]. 
TwinSpace provides a flexible mapping approach between 
objects and services in linked virtual and physical 
environments, allowing for example the movement of 
physical objects to cause linked virtual objects to move, or 
dynamically remapping how the virtual environment is 
manifested in a connected physical space based on the 
activity taking place. The architecture of TwinSpace is 
detailed in [25]. It is built using a document-centric 
collaborative virtual world called OpenWonderland [26], a 
blackboard model distributed messaging backbone 
(EventHeap [29]), and a context engine built using 
Semantic Web technologies (Apache Jena). In this section, 
we consider four core features of TwinSpace, and detail 
how each feature is exploited in SecSpace.  

Distributed Communication 
TwinSpace provides a distributed physical-virtual 
communication mechanism. This allows virtual entities to 
take part in distributed sensing and control, and includes a 
model of virtual Observers and Effectors that serve as 
counterparts to sensors and actuators in the physical world.  

SecSpace defines Observers that detect events relevant to 
privacy and security and communicate these via the 
distributed communications channel. For example, the 
ProximityObserver detects when avatars come within a 
specified range of a location or entity. A set of Effectors is 
used to apply privacy and security policies in the virtual 
world in response to commands coming from the 
distributed communications channel. For example, the 
PermissionEffector can set global, group or individual 
permissions for a shared document. The set of Observers 
and Effectors currently available are listed in Table 1.  

Table 1: SecSpace virtual Observors, Effectors and Proxies. 
Modified TwinSpace components are marked by *. 

Category Name Description 
Observers Login User logs on or off 

Proximity User approaches object 
UICapture* User interacts with object 
ObjectCreated* Object is created 
NewlySecured Objects is secured 
Permission Object permission change 

Effectors AddSecurity Secures target object 
AddUICapture* Log all object interaction 
Permission Change object permission 
Movement* Move object in world 
Creation* Create new object 
Destruction* Destroy object 

Proxies Display* Virtual display 
CardGame Manages game events 

Observers and Effectors combine to form privacy and 

security mechanisms in the virtual world. For example, the 
PermissionEffector can set which users can read a 
document; and the UICaptureObserver can then be used to 
determine whether a document will reveal its contents when 
clicked, or if a warning message appears instead. Similarly, 
a ProximityObserver and MovementEffector can be used to 
keep objects or avatars away from a given location.  

Security-related messages coming from virtual Observers, 
physical sensors, and applications get placed on the 
distributed messaging backbone, as do security-related 
commands and policies coming from either the physical or 
virtual spaces, to be interpreted by corresponding virtual 
Effectors, physical actuators and applications. This model 
provides a great deal of flexibility in defining how entities 
communicate, share data, enforce and apply rules. For 
example, a dedicated server can manage all privacy and 
security by receiving all messages, determining relevant 
actions and communicating them via the backbone. A 
completely decentralized model is also possible, by letting 
each entity determine what messages it will listen for and 
how it will translate these into privacy and security-
preserving actions. Mixed models are also possible, and 
developers can define and evolve specific approaches over 
time, facilitating prototyping and policy experimentation.  

Importantly, SecSpace does not provide secure distributed 
communication. While it is possible to integrate SecSpace 
with middleware security technologies (e.g. the Event Heap 
iSecurity model [30]), this is not the goal of our work. 
SecSpace is a framework for exploring usable privacy and 
security approaches within the context of mixed reality 
collaboration. 

Shared Ontology 
TwinSpace [25] defines a common ontology for addressing, 
manipulating and linking physical and virtual objects, 
allowing a single set of rules to be defined that can be 
applied in both physical and virtual spaces. The ontology 
has evolved from a subset of the SOUPA ontology for 
pervasive computing applications [36], including classes for 
Location, Person, Document, among others. A set of proxy 
objects permit common concepts (such as Display, 
CardGame) to be used across physical and virtual 
environments when these concepts are not directly present 
in one environment, or where they are present in very 
different ways. Proxy objects typically wrap a set of 
Observers and Effectors that together provide the expected 
behavior for the object.  

The ontology is also used for reasoning across objects and 
events in both spaces, for example to infer activity. An 
inferencing component called the Context Engine pulls 
relevant tuples from the backbone, adding them to the 
context state. Rules are evaluated which can generate 
commands to specific entities or classes of entity.  

SecSpace uses this feature to define privacy rules once for 
both physical and virtual spaces, to link shared resources 



that have physical and virtual manifestations (paper and 
digital documents, for example), and to respond to 
contextual events (such as the approach of an unidentified 
person) that can occur in physical, virtual, or both spaces 
simultaneously. For example, both physical display and 
virtual Displays (proxy objects) share the same ontological 
class. We could define a rule such that when an unidentified 
Person enters either space, all Displays display a 
notification. Alternately, we could define a rule that 
displayed a notification only on those Displays with the 
MainDisplay attribute. We can then link a specific physical 
display to a specific virtual display by assigning this 
attribute to each of them. If we use the Context Engine 
component, rules are interpreted and applied dynamically. 
Because of this, it is possible to replace or update rules at 
runtime, which is useful for both ad hoc testing and 
controlled experiments. To continue with our example, one 
experimental condition may apply the global Display 
notification policy, while another condition applies the 
MainDisplay notification policy.  

Interface Mechanisms 
TwinSpace provides a set of lightweight interface 
mechanisms that link physical and virtual. These include 
virtual world clients that can be used as addressable portals 
in a physical environment, and mechanisms for dynamically 
linking input devices to these clients. The virtual world 
clients can listen for relevant messages on the distributed 
communication backbone, and can be connected to using a 
dedicated communications channel (typically OSC) where a 
high degree of control and responsiveness is required. 

SecSpace can control how interface mechanisms function, 
as a way of enforcing privacy policies in the connected 
physical space. For example, a smartphone app reads 
touchscreen events and converts them into control 
commands for a virtual portal’s camera. SecSpace can 
control which portal(s) are controlled by which phone(s), 
and can define allowable camera paths or ranges. In this 
way, we can experiment with policies that apply to 
collocated groups as a whole, and to define access 
permissions to individuals in collocated groups.  

Decoupled Components 
TwinSpace offers a great deal of flexibility when deciding 
how to prototype mixed reality interaction. For example, 
most early prototypes do not use the Context Engine, 
connecting physical and virtual entities more directly via 
the messaging backbone to save one level of indirection. 
While the ontology helps maintain consistency in messages 
across distributed code, a developer can decide not to use it 
when testing out an idea. When the interaction between 
physical and virtual is minimal, all communication can take 
place through a single virtual world client, rather than use 
the backbone to communicate with the virtual world server. 
OpenWonderland’s module-based extension feature allows 
us to package a subset of TwinSpace’s functionality to suit 
a specific application. 

When using SecSpace, developers can choose to use the 
elements of the framework that best suit their purpose. If 
the research involves context inference (for example, 
determining when a group splits into subgroups) or adaptive 
privacy policies (either when evaluating candidate policies 
in a comparative study or as a feature of a prototype’s 
design), the Context Engine is useful.  
The messaging backbone is useful if a prototype needs to 
respond to simple, discrete events (such as someone 
entering a room), or when non-VW visualizations and 
applications form part of a prototype (for example, 
maintaining a 2D abstract visualization of activity 
progress). If a prototype emphasizes providing a visual 
indication of what is happening remotely (for example 
when choosing to share the view of a specific remote 
collaborator), the addressable portals are most useful. 

PROTOTYPE EXAMPLES 
To demonstrate the capabilities of SecSpace we describe 
four prototypes. The prototypes were built for two specific 
mixed reality environments. One was designed in 
collaboration with Steelcase, Inc. [32], and is an example of 
a “project room” [33], a dedicated  space for synchronous 
and asynchronous collaboration around a single project. 
The room features several distinct ‘collaboration regions’, 
including an area for brainstorming equipped with an 
interactive whiteboard (used in the “Cone of Engagement” 
prototype), and an area for active table work (used in the 
“Card Game” prototype). The second environment mimics 
a more public mixed reality setting, linking a virtual public 
space (a café), manifested on large displays surrounding an 
interactive tabletop in our lab. The Card Game prototype 
was ported to the café setting, and two additional tabletop 
prototypes were developed inspired by this configuration (a 
guessing game and a facility for sharing portions of paper 
documents). The Cone of Engagement, Card Game and 
Guessing Game prototypes are presented in turn below. We 
discuss the privacy mechanisms inherent in each prototype, 
and consider how SecSpace supports them. 

Privacy around a physical/virtual whiteboard  
We embedded a virtual whiteboard in a physical space by 
linking it with a physical interactive whiteboard, such that 
collocated and remote collaborators can edit and discuss 
whiteboard contents in real time. Projecting a straight-on 
view of the virtual whiteboard onto the physical whiteboard 
“links” the physical and virtual whiteboards. Because of 
this, in-room collaborators have a limited perspective on the 
virtual environment when using the whiteboard.  

While it is clear who is working at the whiteboard in the 
physical team room, we considered several ways to 
advertise when a remote collaborator joins the group at the 
virtual whiteboard. Our ultimate design was to directly 
translate the physical act of approaching the whiteboard 
into the virtual environment, and augment this with visual 
aids and event triggers: the remote collaborator moves their 
avatar into a visible “cone of engagement”, which fans out 
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decoupled message passing of the Event Heap and 
redirection capability of OSC permits robustness when 
some components aren’t present, but this will depend on the 
way the prototype is designed. Complex prototypes with 
deeply interlocking components benefit less from these 
features, and can be difficult to set up correctly and to 
debug. Finally, while SecSpace (and TwinSpace) were 
designed to permit different rendering and virtual world 
engines, they were built using OpenWonderland. This 
means that certain features (specifically the mechanics and 
capabilities of particular Effectors and Observors) will be 
reliant on the availability of features (such as document 
editing and related permissions) on the base platform. We 
plan to port SecSpace to a Unity-based platform in future, 
and will be able to better assess the generality of our model. 

CONCLUSION 
We have presented SecSpace, a software framework for 
prototyping usable privacy and security mechanisms for 
mixed reality collaborative environments. Its key features 
are distributed communication, shared physical-virtual 
ontology and reasoning, a set of interface mechanisms for 
real-virtual interaction, and a high degree of feature 
decoupling permitting a range of development strategies. 
We demonstrated the value of SecSpace through the 
description of three prototypes, one focused on a shared 
whiteboard and the others a shared tabletop. Developing 
and modifying prototypes using SecSpace has contributed 
to our understanding of usable privacy in mixed presence 
collaboration, inspiring targeted research. We also 
identified a number of current limitations that we hope to 
address in future work: a high learning curve, difficulty 
transitioning between simple and more complete system 
models, and difficulties understanding system status when 
developing highly interconnected prototypes.  
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