
A Bridging Framework for Universal Interoperability in Pervasive Systems

Jin Nakazawa W. Keith Edwards
Hideyuki Tokuda Umakishore Ramachandran

Graduate School of Media and Governance College of Computing
Keio University Georgia Institute of Technology

5322 Endo Fujisawa, Kanagawa 801 Atlantic Drive NW, Atlanta, GA
252-8520 JAPAN 30332-0280 USA

{jin,hxt}@ht.sfc.keio.ac.jp {keith,rama}@cc.gatech.edu

Abstract

We explore the design patterns and architectural trade-
offs for achieving interoperability across communication
middleware platforms, and describe uMiddle, a bridging
framework for universal interoperability that enables seam-
less device interaction over diverse platforms. The prolifer-
ation of middleware platforms that cater to specific devices
has created isolated islands of devices with no uniform pro-
tocol for interoperability across these islands. This void
makes it difficult to rapidly prototype pervasive computing
applications spanning a wide variety of devices. We discuss
the design space of architectural solutions that can address
this void, and detail the trade-offs that must be faced when
trying to achieve cross-platform interoperability. uMiddle is
a framework for achieving such interoperability, and serves
as a powerful platform for creating applications that are in-
dependent of specific underlying communication platforms.

1 Introduction

Recent years have seen a rapidly increasing array of spe-
cialized computing devices, ranging from small network-
aware gadgets such as GPS receivers and cameras to tradi-
tional general-purpose computers. Paralleling the prolifer-
ation of these devices has been the development of a range
of communication middleware platforms, such as Universal
Plug’n’Play (UPnP) [12], Bluetooth [1], and Jini [16]. Each
platform supports the ability of devices to interoperate with
and use other devices built using the same platform.

From the perspective of the developers of pervasive com-
puting applications, one significant problem with this range
of middleware solutions is that they are virtually incompati-
ble with one another. Thus devices and services based on
one platform cannot easily use those built on a different

platform. For example, two devices built on Bluetooth and
UPnP, respectively, would be unable to interact with each
other, despite the fact that they may use semantically simi-
lar application profiles such as Basic Imaging Profile (BIP)
in Bluetooth and MediaRenderer profile in UPnP. The result
is isolated “islands of interoperability,” in which users and
developers may not actually be able to use the full range of
devices available to them.

Is it possible to bridge these different platforms allowing
interoperation across them in a way that is robust and ex-
tensible, and yet retaining the power of the individual plat-
forms? Achieving such goals would open up a huge range
of application possibilities. For example, many pervasive
computing applications (such as [6] [11] [8] [3] [9]) could
benefit from the ability to seamlessly use devices from di-
verse platforms. Users of such applications gain more flexi-
bility by having a greater range of devices available to them,
and researchers investigating novel applications are more
free to develop and deploy their results using the most prac-
tical devices available.

We start by exploring design patterns and architectural
trade-offs that arise when trying to achieve interoperabil-
ity across communication middleware platforms. We then
present uMiddle, a bridging framework for universal inter-
operability that sits at a compelling point in that design
space. uMiddle is a vehicle for exploring and validating
architectural approaches to interoperability, and also serves
as a powerful platform for creating applications that are in-
dependent of specific underlying platforms.

The rest of the paper is organized as follows. Section 2
explores the design space. Section 3 shows the design and
implementation of uMiddle. Section 4 explores the capabil-
ities of uMiddle by looking at a range of applications built
with it. Section 5 benchmarks the implementation, and Sec-
tion 6 positions our approaches with regard to related work.
Finally, we present our concluding remarks in Section 7.

1



2 Design Patterns for Interoperability

This section discusses the requirements and the design
space of bridging diverse middleware platforms.

2.1 Requirements

To accommodate interoperability across diverse middle-
ware platforms, a bridging framework should support the
following capabilities.

(1) Transport-level Bridging: Transport-level bridging
involves translation of protocols and data types inherent in
the platforms to be bridged. Each platform uses its own
base protocol for device communication, such as SOAP[2]
in UPnP. Using these protocols, devices exchange data for-
matted in their platform-specific types, for example Jini ser-
vices communicate using Java objects. The bridging frame-
work must be able to translate between these different pro-
tocols and data representations to enable devices on differ-
ent platforms to communicate with one another.

(2) Service-level Bridging: If a new device appears in
one platform, the bridging framework must be able to dy-
namically recognize its presence and make it available for
use with other devices. Different platforms utilize differ-
ent discovery mechanisms, for example UPnP uses Simple
Service Discovery Protocol (SSDP), while Bluetooth uses
Service Discovery Protocol (SDP). The bridging framework
must bridge the various discovery mechanisms used by the
individual communication platforms.

(3) Device-level Bridging: This involves translating the
device semantics, such as roles of devices and their compat-
ibility, across the different platforms. They are represented
differently in different platforms. For example, while UPnP
provides device types that encapsulate states, events, and
actions supported by the devices, Bluetooth exploits device
profiles defining their own protocols over the Bluetooth base
protocol. The bridging framework must be able to translate
these different representations of device semantics to enable
devices on different platforms to understand one another.

(4) Future Evolution: To stay current with evolving stan-
dards and technologies, the framework must be able to ac-
commodate new device types of an already supported plat-
form. For example, if the UPnP standard introduces a new
device type, the framework must be extensible to establish
a device-level bridge for this new type. Further, the frame-
work must be extensible to accommodate entirely new com-
munication platforms with new service-level and transport-
level bridges for those platforms. Together, these four traits
describe what we term to be a universal interoperability in-
frastructure, meaning one that can adapt to the presence of
new devices, new device types, and new platforms.

(1-a) Direct Translation

(1-b) Mediated Translation

Figure 1. Translation Models

2.2 Design Patterns

The most important architectural considerations to
achieve the above requirements can be captured by four
dimensions. A point along each of these dimensions em-
bodies its own trade-offs. This section explores these four
dimensions, and the pros and cons associated with each.

2.2.1 Translation Model

One key dimension concerns how the semantics of devices
on disparate platforms are translated. For example, in the
case of bridging a Bluetooth BIP device to a UPnP Media-
Renderer device, a reasonable translation would be that it
“makes sense” conceptually for images from the BIP de-
vice to serve as a source for display on the MediaRenderer.
The translation mechanism is the conceptual basis for ac-
commodating such operations.

One approach is a direct translation (Figure 1-a), in
which the semantics of a device on one platform is di-
rectly translated to that of another platform. In the BIP-
MediaRenderer case, a direct translator would be a mech-
anism that (1) can convert between the Bluetooth and
UPnP communication protocols (transport-level), (2) can
exchange device registrations between their registry ser-
vices (service-level), and (3) can map the concepts and
operations in BIP into the UPnP MediaServer device type
(device-level). This approach benefits from minimized se-
mantic loss in translations, because there is a specific trans-
lator for every device type pair that can accommodate all
the nuances of the types it is bridging. However, it does not
scale well. Any new device type requires a new translator
for each existing device type (n(n-1) translators for n to-
tal device types). As supported device types increase, the

2



(2-a) Scattered Proxies

(2-b) Aggregated Proxies

Figure 2. Semantic Distributions

number of required translators becomes very large.
An alternative approach is a mediated translation (Fig-

ure 1-b). It first translates from the semantics of a device
to common intermediary representations, and then, option-
ally, from those common representations out to different na-
tive semantics (the next section discusses why the second
translation is optional). A mediated translator in the BIP-
MediaRenderer case would be a mechanism that (1) can
translate between the native and common protocols, (2) can
merge device registrations in both Bluetooth and UPnP into
an intermediary registry service, which makes them discov-
erable in the intermediary semantic space, and (3) can map
the concepts and operations of both BIP and MediaRenderer
into the intermediary representation. This approach may
cause certain original device semantics to be lost in trans-
lation, since the common representation must be platform
neutral, and may not be able to cope with the subtleties of a
given new platform. The advantage of this approach is that
it is scalable requiring at most one translator per device type
(to translate between that type and the common format).

2.2.2 Semantic Distribution

The second key architectural dimension concerns whether
devices in a given platform are visible and usable by appli-
cations built on top of a different platform (applications that
are native to a particular platform).

One approach is to scatter (Figure 2-a) proxy represen-
tations of a device from one platform to other platforms,
thereby making the devices visible and usable from any na-
tive platform. For example, a Bluetooth BIP device may
be represented as a MediaServer device to UPnP devices.
Scattered visibility is implied by the direct translation ap-
proach (1-a), since every direct translation creates a native

(3-a) Coarse-grained Representation

(3-b) Fine-grained Representation

Figure 3. Semantics Granularity

representation on another platform after translating the orig-
inal device. It may be combined with mediated translation
as well. In this case, the BIP device is first translated to
the common semantic space, and then out to the UPnP plat-
form. The advantage of this approach is that it allows native
applications to use devices from different platforms with-
out modification. A native UPnP application can compose
a MediaRenderer device with a BIP device (which would be
represented as a proxy UPnP MediaServer device).

An alternative approach is to aggregate (Figure 2-b) the
proxy representations of devices on different platforms in
the intermediary semantic space. In this approach, trans-
lation is done solely to the intermediary semantic space.
Since the device representations are aggregated and visi-
ble only in the intermediary semantic space, native appli-
cations (for example UPnP applications) cannot use the de-
vices from the other peer platforms. However, applications
built on top of the intermediary semantic space can use all
the devices from the various other platforms. Further, this
approach lends itself to portability across different smart
spaces since applications built on top of the intermediary
semantic space do not contain any platform dependencies.

2.2.3 Intermediary Semantics Granularity

The next architectural dimension, which is specific to me-
diated translation, is how native devices are represented in
the intermediary semantic space. The representation deter-
mines the compatibility of any two devices. One approach
is coarse-grained (Figure 3-a) representation that uses de-
vice types encapsulating all the operations and semantics
of devices. Any two given devices are compatible if their
coarse-grained representation types are the same. This is
similar to the device profiles of UPnP or Bluetooth, which

3



Location of Interoperability Layer
(4-a) At-the-Edge (4-b) Infrastructure

Tr
an

sl
at

io
n

M
od

el
s

D
ir

ec
t

M
ed

ia
te

d

Figure 4. Location of Interoperability Layer

encapsulate high-level aggregations of functionality. Its ad-
vantage is that applications can simply match devices with
requests of users via predefined type names. If a user re-
quests an application to print a document, the application
uses a device of “printer” type.

This approach requires an ontology of possible device
types in the common representation space. This require-
ment imposes a number of disadvantages. First, applica-
tions can only use currently defined device types. Since
the common semantic space is required to represent devices
from various platforms each defining new device types oc-
casionally, the common type set could expand rapidly. It
is impractical to expect applications to be updated when-
ever new device types are defined. Second, it narrows the
range of devices with which the applications can interact. In
this approach, any two devices are incompatible when their
types are different even if they might be “partially compat-
ible” conceptually. For example, the MediaRenderer and
a Printer types in UPnP are completely different, requiring
applications to be implemented specifically to communicate
with each type, even though both accept and render content.

An alternative approach is fine-grained representation
(Figure 3-b) that narrows the granularity of compatibility.
It breaks down the original complex device semantics into a
set of communication endpoints and associates a data type
with each endpoint. Any two devices are compatible if they
contain either input or output endpoints where the same
data types are associated. Since new data types are less-
frequently defined than device types, this approach can al-
low applications to cope with greater range of devices with-
out frequent modification. However, because the device in-
terfaces themselves no longer encode the specific role of the
device (that it is a printer, for example), this approach re-
quires some augmentation to enable an application to spec-
ify the role of a target device with which it wants to interact.

2.2.4 Location of Interoperability Layer

The final dimension concerns the location of translators.
This dimension only concerns where translation happens at
runtime, and is distinct from previously described issues of
whether intermediary representations are used, and so forth.
Figure 4 shows possible locations in relation to the transla-
tion models discussed in Section 2.2.1.

One approach is at-the-edge translations (Figure 4-a), in
which each device somehow acquires the ability to trans-
late their own semantics for other platforms. A given de-
vice would be augmented with specialized knowledge of
each peer, allowing it to communicate with peers using
their native protocols. This choice allows for direct com-
munication without the need for an intermediary; how-
ever, it is impractical in many situations. For example, al-
though Speakeasy[4] supports at-the-edge mediated topol-
ogy through mobile code, this capability necessitates extra
facilities on each participating device (special protocols to
exchange mobile code, and a runtime environment for exe-
cuting it). Even with such facilities, however, an at-the-edge
choice cannot support communication between devices over
different physical transports, since it is impractical to ex-
pect devices in a platform like a UPnP MediaRenderer TV
to have physical transports specific to other platforms such
as Bluetooth, or vice versa.

An alternative approach is translation in infrastructure
(Figure 4-b), in which an intermediary node on the network
performs the translation. It requires no changes to the de-
vices themselves, or the presence of any special facilities. It
can also allow the bridging of different physical transports
as long as the intermediary can use the necessary transports.

2.3 Mutual Compatibility

Certain design choices from the previous subsections are
mutually dependent on one another. Table 1 shows com-

4



Table 1. Mutual Compatibility Chart
1 2 3 4

a b a b a b a b

1 a - - O - - - O O
b - - O O O O O O

2 a O O - - O O O O
b - O - - O O O O

3 a - O O O - - O O
b - O O O - - O O

4 a O O O O O O - -
b O O O O O O - -

patibility between the approaches, where O means given
two approaches can coexist, while - means they cannot.
In particular, the approaches of aggregated visibility (2-b),
coarse-grained representation (3-a), and fine-grained repre-
sentation (3-b) are specific to the mediated translation (1-b);
hence they cannot coexist with the direct translation (1-a) in
one design. In other words, when taking the direct transla-
tion approach (the first row), the only design choice is be-
tween at-the-edge (4-a) and in the infrastructure (4-b). The
aggregated visibility (2-b) approach is incompatible with
the direct translation (1-a). The coarse-grained representa-
tion (3-a) and fined-grained representation (3-b) is specific
to the intermediary semantic space, hence is incompatible
with the direct translation (1-a).

3 uMiddle: A System for Universal
Interoperability

In this section we describe uMiddle, a bridging frame-
work that enables seamless device interaction over diverse
middleware platforms. Our goal for uMiddle is to provide a
universal and extensible bridging middleware that also en-
ables platform-independent application development with-
out requiring changes to existing devices.

3.1 uMiddle Design Approach

Based on its goals of universality and extensibility,
uMiddle embodies the following design choices with re-
spect to the architectural trade-offs presented in Section 2.

Mediated translation (1-b): This choice lowers the barrier
to enabling support for new device types and new platforms
and thus achieves extensibility. With mediated translation,
each new device requires at most one translator to support
it, rather than n-1 direct translations.

Aggregated visibility (2-b): This choice allows applica-
tions to be used in arbitrary smart spaces taking advantage
of any and all platforms that exist in the environment. Ap-
plications built atop the intermediary semantic space are

platform-independent, thereby achieving such universality.

Fine-grained representation (3-b): In terms of universal-
ity, applications should also be able to take advantage of a
wide range of devices including the definition of new device
types. The choice of fine-grained representation ensures
this ability without relying on the existence of an overar-
ching device ontology.

In-the-Infrastructure (4-b): Universality also requires
uMiddle to bridge over different physical transports. The
choice of locating the interoperability layer in the infras-
tructure enables bridging across different physical trans-
ports without the need to change the native devices.

Each point in the design space entails not only certain
advantages, but also a set of challenges that must be met. In
our case, such challenges are (1) minimizing the semantic
loss caused by mediated translation and (2) enabling appli-
cations to specify device roles despite a fined-grained de-
vice representation. We address these challenges by three
major features. We first provide an overview of the uMid-
dle system followed by a description of these features.

3.2 System Overview

uMiddle is a universal interoperability system imple-
mented in Java. Figure 5 shows its architecture with a
Bluetooth digital camera and a UPnP MediaRenderer TV
as example devices that are bridged. We call such devices
bridged from communication platforms “native devices.”

uMiddle realizes interoperability via two abstractions
called mappers and translators. A mapper establishes
service-level and transport-level bridges discussed in Sec-
tion 2.1. Figure 5 contains mappers for Bluetooth and
UPnP. It discovers a native device via a platform-specific
discovery protocol, and imports it into the intermediary se-
mantic space by instantiating the device-specific translator.
It also contains a base-protocol support for the target plat-
form, such as the base Bluetooth protocols or SOAP in the
case of UPnP.

A translator works as a device-level bridge for a na-
tive device. First, it projects the device-specific semantics
into the intermediary semantic space. For example, the BIP
Translator in Figure 5 translates BIP-specific semantics into
the common representation. Second, it acts as a proxy for
that device, causing any connections to the translator to trig-
ger actual connections to the native device. Therefore, the
BIP camera device transmits images through its translator
to destination devices. Finally, a translator embodies any
protocol and semantics that are native to the particular de-
vice that is associated with it. Thus with reference to Figure
5, the BIP Translator implements the OBEX protocol using
the base-protocol support provided by the Bluetooth map-
per. In other words, the platform-specific knowledge of a

5



Figure 5. System Architecture

device is concealed by its translator and the mapper, and
the rest of the system is platform-independent.

Multiple hosts on a network may run the uMiddle run-
time. Devices directly connected to these hosts, or dis-
coverable by them, can be freely used with devices known
to other uMiddle runtimes. To support this functionality,
the uMiddle directory module handles the exchange of de-
vice advertisements among hosts. This provides a discov-
ery mechanism that allows notification about the presence
of devices, across uMiddle runtimes, independent of the ac-
tual discovery protocols used by particular devices. Further,
the uMiddle transport module serves to allow communica-
tion among translators situated in different nodes. In Fig-
ure 5, two translators for a Bluetooth BIP digital camera
and a UPnP MediaRenderer TV, that are respectively hosted
by intermediary translator nodes H1 and H2, communicate
through the transport modules on their respective hosts.

Currently, uMiddle can bridge a range of platforms, in-
cluding UPnP and Bluetooth devices, the Berkeley Motes
platform, MediaBroker[13], Java RMI, and various web ser-
vices. uMiddle is extensible along two dimensions to ac-
commodate new standards and technologies. First, a new
device type in a known platform can be incorporated into
uMiddle by simply writing a translator for that device. Sec-
ond, a new communication platform can be incorporated
into uMiddle by writing a mapper specific to that platform
along with a set of associated translators.

3.3 Service Shaping

The challenge with a fine-grained representation is to
provide a facility that empowers applications to specify the
role of devices with which they want to interact. We ad-
dress this challenge through a technique that we call Service
Shaping[14]. In the service shaping technique, the seman-
tics of a native device are represented as a set of commu-
nication endpoints, called ports. uMiddle defines two types
of ports digital and physical that define the capabilities of a
device. Digital ports are used for communication between
devices, while physical ports describe the user-perceptible

(1) Collection lookup(Query query) — Gets profiles of transla-
tors that match the given query.

(2) void addDirectoryListener(DirectoryListener l) — Registers
a component to receive a notification when a new native de-
vice is mapped to uMiddle.

Figure 6. Directory API

effects of a device in the physical world, and are used to
generically define the roles various devices may play.

A digital port is an endpoint owned by a translator, which
transmits digital information to and from the network. For
example, the BIP translator in Figure 5 would contain a dig-
ital port for image output. Each digital port is tagged with a
MIME-type, and uMiddle applications can check interoper-
ability of any two translators simply by comparing MIME-
types of digital ports owned by those translators. A physical
port is a conceptual entity that causes or senses some per-
ceptible change in the physical world, and it is tagged with
a combination of a perception type and a media type. The
former represents how users can perceive the change, and
can be one of visible, audible, and tangible. The latter rep-
resents the physical media that carries the information. We
call this information associated with ports of a given trans-
lator the “shape,” since this information represents the affor-
dances of the device with which the translator is attached.

Consider, for example, a translator for a PostScript
printer. It would contain a “text/ps” digital input port and a
“visible/paper” physical output port. In this case, “visible”
is a perception type, and “paper” is a media type. From an
application’s point of view, the physical data type can be
used to specify the affordance of devices needed by the ap-
plication. If a user wishes to view a document in one way
or another, the application can select a device with an input
port of the document’s MIME-type and physical output port
of “visible/*”. If the user wants to print it, the application
specifies “visible/paper”. Programmers of uMiddle applica-
tions can discover the translators that match a given shape,
using APIs listed in Figure 6.

3.4 Universal Service Description

We created a new XML-based language, called Univer-
sal Service Description Language (USDL) that is used to
support the representation of semantics of native devices
in uMiddle’s intermediary semantic space for both humans
and machines. A mapper creates a translator (and the shape)
of a native device based on a USDL definition for that
device. For example, a USDL document for UPnP light
devices describes how to represent UPnP-specific actions,
such as SetPower, in uMiddle. The SetPower action is spec-
ified to switch on a light when it gets “1” as a parameter.
Therefore, the USDL document defines two digital input

6



(1) void connect(OutputPort src, InputPort dst) — Establishes a
communication path between specific input and output ports.

(2) void connect(Port src, Query dst) — Establishes a dynamic
message path between a specific port owned by a translator
and the ports matching a given query.

Figure 7. Transport API

ports to the translator corresponding to the light device; one
is to switch on passing “1” to the native UPnP light, and the
other is to switch off passing “0” to it.

USDL documents describe how mappers configure
translators for specific devices given a generic translator im-
plementation. For example, since notions such as states, ac-
tions, and events are common abstractions in every UPnP
service, it is possible to create a generic translator for the
UPnP platform which is then mechanically parameterized
for any given UPnP device by a USDL document describing
that device. Similarly, any Bluetooth BIP device defines im-
age transmission capability, but its role (such as camera or
printer) can be determined at runtime. Thus, we can provide
a generic Bluetooth BIP translator implementation which is
parameterized for these different specific types of devices
based on different USDL documents. Therefore the imple-
mentation of translators can be generic, assuming such a
document-based runtime configuration.

3.5 Dynamic Device Binding

This mechanism enables applications to establish con-
nections between translators based on their shapes rather
than their specific identity. uMiddle applications are al-
lowed to establish a communication path between transla-
tors using the transport APIs listed in Figure 7. Such a path
exists in Figure 5 between the BIP and UPnP MR transla-
tors. The applications can connect a digital port with peers
by specifying either a specific port instance (Figure 7-(1))
or a generic template shape as a query object. Since na-
tive devices are mapped and unmapped in uMiddle dynam-
ically, such a template-based connection is important in our
framework. When an application creates a dynamic mes-
sage path, the uMiddle runtime hosting the source port eval-
uates the given template shape adaptively to the presence of
translators in a network. If a translator matching the tem-
plate appears in the network, a new message path to the
translator is established being aware of the data type; it is
bound to the port owned by the target translator, whose data
type is equivalent to the source port.

The dynamic template-based type-aware connection en-
ables a fine-grained device polymorphism in the common
semantic space. A device can be connected to others with
different roles and implementations through their transla-
tors. For instance, the BIP Translator in Figure 5 can be

connected to a player device, a storage device, and others
if their MIME-types match by issuing only one template-
based connection request. Once a connection is made, the
sender can interact with the receiver being unaware of its
behavior. On the other hand, if programmatic types were to
be used for interoperability, such dynamic compositions are
possible only if the devices are fully statically defined to the
others. This situation is not practical to expect as described
in Section 2.2.3. In uMiddle, since we narrowed the gran-
ularity of compatibility to data types, a device can directly
interact with wider range of other devices.

3.6 System Characteristics

Our design choices result in the following system char-
acteristics. First, uMiddle does not allow applications built
on native platforms to access devices on other platforms.
Instead, based on our primary goal to enable platform-
independent application development, uMiddle allows ap-
plications built on the common semantic space to have uni-
versal interoperability. Second, the choice of infrastructural
translation enables flexible deployment, because mappers
in our framework can be distributed over a network. If the
framework is used in a small area, such as in a room, the
user can co-locate mappers for different platforms in one
computer. If it is used to cover a larger area, such as a house
or a university campus, mappers can be located in differ-
ent rooms based on the specifics of the environment. In a
room where only Bluetooth devices are used, an intermedi-
ary translation node would be configured with the Bluetooth
mapper. In another room where Bluetooth, UPnP, and other
devices are used, an intermediary node would host map-
pers for those various platforms. These intermediary nodes
communicate with one another through the directory and
transport modules in our framework to form the common
intermediary semantic space.

4 Experiences with uMiddle

This section presents our experience with uMiddle by de-
scribing two applications: one is event and control-oriented,
and the other is multimedia-oriented.

4.1 uMiddle Pads

Pads is a GUI-based application generator that allows
device composition across different platforms. It provides
cross-platform “virtual cabling,” in which the user need not
care whether the devices being interconnected are based
on Bluetooth, UPnP, or other platforms. Figure 8 shows
a screen shot of the Pads application containing transla-
tors for twenty-two devices, including one Bluetooth and
three UPnP devices. The other eighteen are native uMiddle

7



Figure 8. Screen Shot of uMiddle Pads

devices, by which we mean services built directly against
uMiddle as their native middleware platform. Its key func-
tionalities include: (1) a visual representation of the inter-
mediary semantic space of a particular uMiddle environ-
ment by showing the translators as icons, (2) a simple hot-
wiring capability that allows an application developer to
establish device connections by drawing lines between the
translators shown in the GUI, and (3) a runtime environment
on top of uMiddle backing the GUI causing end-to-end de-
vice communications to be established across the different
platforms. While such a cross-platform application devel-
opment usually requires intensive knowledge about the en-
vironment and the platforms therein, uMiddle’s platform-
independent semantic space coupled with this tool lowers
the barrier for application development, and makes it as low
as drawing lines on a GUI.

4.2 G2UI: Geographical User Interface

G2UI is a real-world user interface toolkit built with
uMiddle to improvise intuitive and adaptive multimedia ap-
plications using pervasive off-the-shelf devices. The key
ideas of G2UI are that (1) gadgets, including media stor-
age, player, and capture devices, can be registered to be “lo-
cated” at certain regions in a geographical coordinate sys-
tem; and (2) co-location of devices within the coordinate
space triggers geoplay, which involves playback of media
acquired from one or more co-located storage or capture
devices, or geostore, where a storage device stores data re-
ceived from a co-located capture device. Since this appli-
cation is built on top of the common semantic space, the
above operations work across diverse communication plat-
forms. For example, if a user co-locates a Bluetooth digital
camera and a UPnP MediaRenderer TV, the images in the
camera would serve as the source for the TV via a uMid-
dle’s dynamic message path. Universality and extensibility
of uMiddle ensure that the co-located services will work
with future evolutions of device types and platforms.

Figure 9. G2UI Atlas Application

5 Benchmarks

This section evaluates the systems performance for trans-
lations. The benchmarks are conducted using (1) IBM
ThinkPad T42p (Pentium M 2.0GHz, 2GB RAM, Windows
XP Service Pack 2) (UPnP mapper), (2) IBM ThinkPad
T42p (Pentium M 2.0GHz, 2GB RAM, Fedora Core 3
Linux) (Bluetooth Mapper), and (3) IBM ThinkPad T42p
(Pentium M 2.0GHz, 2GB RAM, Fedora Core 3 Linux)
connected by a 10Mbps Ethernet hub.

5.1 Service-level Bridging

This section evaluates performance of service-level
bridging. In particular, we benchmark UPnP and Bluetooth
mappers to show the lower-bound of the system’s perfor-
mance to cope with device presence in pervasive environ-
ments. The experiment illustrates the time needed by the
uMiddle mapper to dynamically generate translators for de-
vices after they are discovered in their native platforms. We
use the Linux BlueZ library to create the Bluetooth mapper,
and the CyberLink Java library for the UPnP mapper.

Figure 10 shows the performance of the mapping oper-
ation for UPnP and Bluetooth. The mapping overhead de-
pends on the complexity of the translators. In this bench-
mark, the translator for a UPnP clock device contains four-
teen ports and two more uMiddle entities for the UPnP
service/device hierarchy, and takes more than 1.4 seconds.
This means this particular configuration of the UPnP clock
translator can be generated at approximately 0.7 instances
per second. The instantiation of the translators for the other
UPnP devices (air conditioner and light) is much faster
yielding a performance of approximately four instances per
second. Since UPnP devices are mostly immobile con-
nected to an IP network, we believe that the performance
of the current UPnP mapper implementation is adequate.

As can be seen from Figure 9, the instantiation of Blue-
tooth device translators is quite good (roughly 5 instantia-

8



Figure 10. Service-Level Bridging

tions per second for a HIDP mouse). Considering the lo-
cality of a Bluetooth network (at most eight devices in one
piconet covering a few tens of meters), the mapping perfor-
mance is adequate to cope with the moderate device mobil-
ity expected in environments such as a classroom.

5.2 Device-level Bridging

This section evaluates performance of device-level
bridging for a Bluetooth mouse device and an emulated
UPnP light switch device included in the CyberLink library.
Device-level translation is done on top of the base protocol
to translate device-specific protocols and data representa-
tions. In the UPnP case, the benchmark involves the trans-
lator for the light switch device, receiving UPnP actions a
hundred times from a uMiddle application. The Bluetooth
case involves the translator for the mouse device receiving
mouse click signals a hundred times from the mouse and
then sending them out to another uMiddle device.

The average time to control the UPnP light switch is 160
milliseconds. This includes 150 milliseconds consumed
in the UPnP domain (marshaling/unmarshaling XML mes-
sages and controlling the light switch), and the rest in uMid-
dle (translating a control request dispatched by the applica-
tion to a UPnP action object). In the Bluetooth case, the av-
erage overhead is 23 milliseconds that involves translating
the mouse signal to a Vector Markup Language document as
the common representation, and passes it to the uMiddle’s
transport module. These results show that the infrastructure
itself contributes little to the performance overhead.

5.3 Transport-level Bridging

This section evaluates performance of transport-level
bridging using a Java RMI mapper and a MediaBroker
(MB)[13] mapper to show the system’s bottleneck. The
MB system is a distributed media transformation infrastruc-
ture developed at Georgia Tech. The benchmark uses a Java
RMI service on node (3) and an MB service on node (1).

Figure 11. Transport-level Bridging

Node (2) runs a uMiddle runtime containing TCP/IP-based
transport module. Node (1) and (3) host an MB server and
a Java RMI registry program, respectively.

In this network, we conduct the following three tests.
First, the MB service sends 1400-bytes messages to its
translator on node (2), and the messages are echoed back
to the same service (MB test). Second, similarly to the first,
the Java RMI service sends 1400-bytes messages to itself
through uMiddle (RMI test). These tests illustrate the base-
line throughput of the Java RMI and MB service through
uMiddle. Third, the same MB service sends the messages
to the Java RMI service through uMiddle (RMI-MB test).
This shows the overhead of the transport-level bridging.

Figure 11 shows the performance of these. With
7.9Mbps TCP baseline throughput, these test marked
2.9Mbps (RMI-MB test), 3.2Mbps (RMI test), and 6.2Mbps
(MB test). This means that the process of transport-level
bridging, requiring marshaling and unmarshaling of data
encapsulated in platform-specific data packets, causes ad-
ditional end-to-end communication delay. In addition, if
one of the services uses narrower bandwidth network, such
as Java RMI service in this case or Bluetooth services, the
service would be a bottleneck that causes the data sent
from other services to accumulate in the uMiddle’s trans-
lation buffer. Therefore, the universal interoperability layer
should provide some QoS control mechanism.

6 Related Work

Systems aimed at achieving platform interoperabil-
ity include Universally Interoperable Core (UIC)[15] and
Speakeasy [4]. UIC provides a component-based middle-
ware framework, which can bridge multiple communica-
tion platforms. Speakeasy allows arbitrary computational
entities to interact with one another. Interestingly, from
our point of view, these two take the same design choices,
which are mediated translation (1-b), aggregated visibility
(2-b), coarse-grained (3-a), and at-the-edge (4-a). However,
they require that devices be modified to enable an at-the-

9



edge translation; for example in Speakeasy, by adding the
common platform for mobile code execution. Our approach
does not require the device modification, since we locate the
interoperability layer in the infrastructure.

In UIC, devices, such as user-side handheld terminals,
must have knowledge to communicate with devices on other
platforms. Though UIC allows specialization of the hand-
held devices with such knowledge, we cannot expect such
specialization to happen on a device-by-device basis each
time a new communication mechanism appears. In uMid-
dle, such specialization is only required in the intermediary
nodes in the infrastructure, and not in application nodes. By
providing a generic object interface, UIC’s implementation
tries to narrow the intermediary semantics; however, since
UIC allows devices to export arbitrary interfaces in addition
to the generic one, which brings with it the downside of the
coarse-grained representation.

Several systems exploit user interface migration to allow
users to access devices easily. Kangas et al. presents a sys-
tem architecture [10] for controlling ubiquitous embedded
devices with a migratory object approach. Munson et al.
propose an architecture to control information appliances
with an XML-based user interface markup language [5].
Hodes and Katz’ Document-Based Framework [7] also pro-
poses an XML-based language that enables user interface-
based device compositions. With such systems, users are
allowed to use devices without considering their platform
difference; however, they cannot use them as a means to
achieve device-to-device interoperability.

7 Conclusions

We have discussed design patterns and architectural
trade-offs that arise when trying to achieve interoperabil-
ity across communication middleware platforms, and de-
scribed uMiddle: a system for universal interoperability.
uMiddle enables platform-independent application devel-
opment without requiring changes to existing devices. It
sits at a particular point in the space of the architectural
trade-offs, and we have addressed the challenges in our de-
sign choices with three unique features. They are the Ser-
vice Shaping approach for common device representation to
maximize device interoperability, an XML-based language
called USDL for dynamic translator generation, and a dy-
namic device binding mechanism to provide a device-level
polymorphism based on the device shapes. We have shown
that the current implementation achieves platform interop-
erability with minimal overhead, and have also described
how a number of applications can be implemented using it.
The major future work is QoS control in the service-level
bridge. Since different platforms entail different QoS se-
mantics, the service-level bridge needs to translate between
such different semantics.

References

[1] Bluetooth Consortium. Specification of the Bluetooth Sys-
tem, Version 1.2, Core, Nov. 2003.

[2] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer. Sim-
ple object access protocol (soap) 1.1, May 2000. W3C Note.

[3] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer.
Easyliving: Technologies for intelligent environments. In
Second International Symposium on Handheld and Ubiqui-
tous Computing, HUC 2000, pages 12–29, Sept. 2000.

[4] W. K. Edwards, M. W. Newman, J. Z. Sedivy, T. F. Smith,
and S. Izadi. Challenge: Recombinant computing and the
speakeasy approach. In Proceedings of the Eighth ACM In-
ternational Conference on Mobile Computing and Network-
ing (MobiCom 2002), Sept. 2002.

[5] K. F. Eustice, T. J. Lehman, A. M. G., M. C. Muson, S. Ed-
lund, and M. G. G. A universal information appliance. In
IBM Systems Journal, 38(4), pages 575–601, 1999.

[6] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster.
The anatomy of a context-aware application. Wireless Net-
works, 8(2/3):187–197, 2002.

[7] T. D. Hodes and R. H. Katz. A document-based framework
for internet application control. In Proceedings of the Sec-
ond USENIX Symposium on Internet Technologies and Sys-
tems (USITS ’99), pages 59–70, Oct. 1999.

[8] S. S. Instille. Designing a home of the future. In IEEE Per-
vasive Computing Magazine 1(2), pages 80–86, Apr. 2002.

[9] B. Johanson, A. Fox, and T. Winograd. The interactive
workspaces project: Experiences with ubiquitous comput-
ing rooms. In IEEE Pervasive Computing Magazine 1(2),
pages 71–78, 2002.

[10] K. Kangas and J. Röning. Using Mobile Code for Service
Integration in Ubiquitous Computing. In Proceedings of the
5th Mobile Object Systems Workshop, June 1999.

[11] C. D. Kidd, R. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa,
B. MacIntyre, E. Mynatt, T. E. Starner, and W. Newslet-
ter. The aware home: A living laboratory for ubiquitous
computing research. In Proceedings of the Second Inter-
national Workshop on Cooperative Buildings - CoBuild’99,
Oct. 1999.

[12] Microsoft, Corp. Universal plug and play device architecture
reference specification, 1999.

[13] M. Modahl, I. Bagrak, M. Wolenetz, P. Hutto, and U. Ra-
machandran. Mediabroker: An architecture for pervasive
computing. In IEEE PerCom 2004, pages 253–276, Mar.
2004.

[14] J. Nakazawa, J. Yura, and H. Tokuda. A service shaping
approach for task-based computing middleware. In Interna-
tional Workshop on Computer Support for Human Tasks and
Activities, Apr. 2004.

[15] M. Roman, F. Kon, and R. H. Campbell. Reflective middle-
ware: From your desk to your hand. IEEE Distributed Sys-
tems Online, Special Issue on Reflective Middleware, July
2001.

[16] Sun Microsystems, Inc. Jini Architecture Specification,
Nov. 1998. http:// www.javasoft.com/ products/ jini/ specs/
jini-spec.pdf.

10


