
70 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/06/$20.00 © 2006 IEEE

D I S C O V E R Y S E R V I C E T E C H N O L O G I E S

Discovery Systems in
Ubiquitous Computing

T
he vision of ubiquitous computing
has been described in terms of the
disappearing computer. In this vi-
sion, we’re free to focus on the inter-
actions of daily life, rather than

attending to the technology assisting us in those
interactions. The machine—while perhaps not
literally invisible—becomes a tool much like a
hammer or pencil, easily appropriated and used

as second nature.
To achieve this effective invis-

ibility, our systems should be as
free as possible from explicit
human administration. This is

especially challenging in ubiquitous computing,
where devices can dynamically enter and leave the
network. If all the devices require explicit config-
uration to work together, the burden of adminis-
tration quickly overwhelms any potential benefit.

Discovery lets services and devices sponta-
neously become aware of the availability and
capability of peers on the network without
explicit administration. In practice, this means
that a client can discover and potentially use a
device without prior knowledge of it. Although
discovery is a necessary component of ubiquitous
computing, the wide range of discovery systems
in use today reflects the varied needs of the com-
munities from which they originated. Some of
these features are appropriate for ubiquitous
computing, but others require further research
and development.

What is discovery?
Discovery is the process by which an entity on

a network (a client) is spontaneously notified of
the availability of desirable services or devices on

the network (resources). More precisely, discov-
ery is a mechanism for dynamically referencing
a resource on the network. These references are
handles or other information that the client can
subsequently use to contact the resource.

Resources entering the network make them-
selves available by registering with the discovery
system. This can involve finding a directory service
and registering with it or simply making periodic
announcements on the network. During this
process, resources provide descriptive informa-
tion (such as their resource type and attributes) as
well as information the client will need to use them
(such as an IP address and port number). Clients
provide criteria describing the resources they’re
interested in, and the system uses these criteria to
identify appropriate resources for the client. This
process might involve querying a directory or sim-
ply filtering resource announcements. In all dis-
covery systems, registration and deregistration are
highly dynamic—as resources come and go, the
discovery system can asynchronously notify clients
of resources’ availability.

This spontaneity makes discovery systems vital
in a ubiquitous computing setting.1 Clients find
resources automatically, rather than needing pre-
configured bindings to specific resources. Spon-
taneity also helps differentiate discovery systems
from naming systems, which on the surface are
similar in that

• both systems let clients retrieve references to
resources,

• both typically provide mechanisms for describ-
ing resources, and

• many of these systems let clients search on the
basis of descriptive criteria.

Ubiquitous computing introduces unique requirements for discovery
technologies, which let services and devices become aware of each other
without explicit human administration.

W. Keith Edwards
Georgia Institute of Technology

Often, architectural similarities also
exist. For example, naming systems use
a potentially distributed directory on the
network that serves as a registry of infor-
mation about available resources. Many
discovery systems also use directories.

True discovery systems differ from
naming systems in three major ways:

• In most naming systems, the direc-
tory’s location must be preconfigured
into clients and resources. In discov-
ery systems, clients and resources
automatically find the directory—if
one is present at all.

• In naming systems, updating the direc-
tory typically requires explicit human
intervention. As resources come and
go, an administrator must edit tables
to reflect the network’s new configu-
ration. This process is automatic in
discovery systems.

• Few naming systems have a way to
notify clients about changes in the set
of registered resources, so clients must
poll the directory. Discovery systems
can asynchronously notify clients as
resources come and go.

On the basis of these criteria, systems
such as the Lightweight Directory Access
Protocol,2 the Domain Name System,3

and the Universal Description, Discov-
ery, and Integration (UDDI)4 protocol
(despite its name) clearly aren’t true dis-
covery systems. For example, LDAP pro-
vides no automatic mechanism for
adding or removing resources in the
directory. Likewise, although standard
DNS provides a powerful, hierarchical
name service, it lacks certain features
required to support discovery. New pro-
tocols can and have supplied some of
these features. For example, the Dynamic
Host Configuration Protocol (DHCP)
mitigates the requirement that DNS server
addresses must be preconfigured into
clients, and Dynamic DNS lets hosts auto-
matically update their DNS registrations.

Still, traditional DNS lacks the automatic
update and asynchronous notifications
needed for discovery (as we shall see,
however, recent extensions to DNS make
it suitable as a discovery protocol).

Discovery-based systems present a
more dynamic, fluid interaction model
than naming-based systems. Naming-
based systems generally expect applica-
tions to know the name of the thing for
which they wish to retrieve a reference.
Discovery-based systems dynamically
provide references, at roughly the time
the resource becomes available.

Characterizing discovery
systems

Although discovery systems’ high-level
goals are largely the same, individual sys-
tems achieve these goals differently. Vari-
ations arise from differences in applica-
tion domain and usage scenarios. The
most important dimensions characteriz-
ing discovery systems are topology, trans-
port, scope, search, and security.

Topology
Different technologies rely on different

topologies. Some systems use one or more
directories to handle resource registration
and client queries. Although these systems
require extra administration to manage
the directory, they generally achieve
higher scalability because most traffic is
in the form of unicast messages to and
from the directory. At the other end of the
spectrum are pure peer-to-peer systems.
In these systems, clients discover resources
directly, rather than indirectly through an
intermediating directory. Peer-to-peer sys-
tems don’t need explicit administration
to run the directory, but they can produce
higher network loads and require clients
to process discovery traffic. Hybrid solu-
tions try to balance these trade-offs for
certain expected usage scenarios.

Transport
Some discovery systems essentially

operate as middleware on top of the tra-
ditional IP infrastructure, letting clients
discover and use IP-based resources. Oth-
ers, such as Bluetooth, are intended for
non-IP networks and have different con-
straints. Still others use out-of-network
mechanisms, in which discovery mes-
sages are carried over a transport not
intended for general data communica-
tion. This family of systems includes
RFID and infrared (IR) beacons. The set
of devices the system aims to support, as
well as the devices’ power, computation,
and connectivity characteristics, often
guide the transport choice.

Scope
Scope is simply the set of resources

that are discoverable by a given client. In
IP-based systems without directories, for
instance, scope is generally limited to
those resources reachable by an adminis-
tratively scoped multicast—that is, re-
sources on the client’s subnet. Directory-
based systems can expand scope by
interlinking directories to provide whole
site (or larger) scopes. Approaches based
on technologies with limited transmission
range (RF and IR, for example) inherently
limit scope to physical proximity.

Search
Some discovery systems let clients

search only on the basis of resource type,
whereas others support queries using full-
blown predicate languages. This dimen-
sion trades computation for flexibility—
powerful search mechanisms require
substantial computation (in either a
directory or in clients themselves) but can
allow fine-grained specification of desired
resources. Settings with numerous re-
sources or resource types can require
such specialized search facilities.

Security
Security mechanisms for discovery

systems range from nonexistent to full-
blown systems for link-layer encryption,

APRIL–JUNE 2006 PERVASIVEcomputing 71

72 PERVASIVEcomputing www.computer.org/pervasive

DISCOVERY SERV ICE TECHNOLOG IES

authentication, and access control. Secu-
rity always has a cost—of computation
or convenience—but can be necessary
where trusted and untrusted devices
come into contact with each other.

Discovery in practice
The choice of discovery technology

depends on the intended application.
Many discovery systems were designed
with the enterprise in mind and embody

design decisions reflecting that intent:
managed directories intended to run on
centralized servers, IP-based transports
compatible with enterprise services, flex-
ible scoping, powerful search mecha-
nisms that execute in the directory ser-
vice, and security to prevent unwanted
access to enterprise resources. While
many ubiquitous computing systems will
fit into these design choices, others won’t.
In particular, mobile systems or systems
that don’t support constant connectivity,
that prioritize low power consumption,
or that have limited computational
capacity might require technology with
a different set of trade-offs.

This article’s space limitations preclude
an exhaustive cataloging of all commer-
cial and research discovery systems, so
here I explore a handful of common sys-
tems that exemplify distinct design points.

Simple Service Discovery Protocol
Universal Plug and Play,5 a technology

defined by a consortium of vendors
including Microsoft, Intel, Sony, and
Samsung, uses the Simple Service Dis-
covery Protocol. UPnP leverages com-
mon Web technologies, such as HTTP,

SOAP, and XML, to provide access to
devices and services.

SSDP reflects UPnP’s Web-centric
focus: it’s defined on top of HTTP and
identifies resources (and resource types)
using uniform resource identifiers. In
UPnP’s multilayered architecture, devices
can host one or more services. For exam-
ple, UPnP can represent a multifunction
printer as a device, and the print, copy,
and fax functionalities as individual ser-

vices. Each service is a discrete, separately
callable functional unit. Both devices and
services have associated types, expressed
as URIs (for example, an Internet gate-
way device type might be specified as
urn:schemas-upnp-org:device:InternetGatewayDevice),
and unique IDs.

SSDP doesn’t use a directory. Instead,
it exploits link-local multicast to let clients
discover resources directly. So, devices
send presence announcements as HTTPMU

(HTTP over multicast User Datagram
Protocol) messages when they come
online. Any party on the local link that’s
listening on the predefined multicast
address will receive these messages.
Clients send discovery requests, also over
HTTPMU. Devices respond to requests by
delivering a reply to the IP address and
port number originating the request.

SSDP supports a simple form of
searching, in which clients specify the
desired resource type’s URI. Several spe-
cial URIs serve as tokens for matching all
devices, specific devices by ID, and so
forth. SSDP doesn’t support searching for
multiple types in the same request, nor
does it provide attribute-based search.
While perhaps somewhat restrictive, this

approach makes it extremely economi-
cal to implement on simple devices.

Initial presence announcements, as
well as responses to discovery requests,
carry essentially the same payload: a URI
identifying the resource’s type, its ID, and
a URL pointing to a description docu-
ment. That is, an XML document pro-
viding information about the device and
the services it offers, including icons and
descriptive text—and URLs for com-
municating with the device.

Developers have recently extended
UPnP with a set of security enhance-
ments, including a secure discovery
mechanism that supports authentication
of discovered devices and a framework
for device access control.

Jini’s discovery protocols
Sun Microsystem’s Jini network tech-

nology is an infrastructure for creating ser-
vices that adapt to change.6 For example,
Jini services and clients can communicate
without shared knowledge of a specific
protocol through mobile code delivered
from a service to a client. Much of Jini’s
power comes through using a common
executable format (Java) more-or-less
ubiquitously throughout the network.

Jini uses a hybrid, or two-stage, topol-
ogy for discovery. In the simplest case,
clients and services use a multicast pro-
tocol to find lookup services on their net-
works. This initial discovery protocol
only bootstraps communication with the
lookup service, which then defines a set
of operations that allows registration,
search, and notification about changes
in the set of available services.

In Jini, services communicate with
clients through proxy objects—complete
Java objects that the service serializes and
transmits over the wire to the client. The
proxy lets the service control both com-
munication end points, thereby hiding the
actual communication protocol from
clients. Because lookup services are also
normal Jini services (that is, they also pro-

Jini services and clients can communicate

without shared knowledge of a specific protocol

through mobile code delivered

from a service to a client.

vide custom code to clients), the initial
bootstrapping discovery phase yields a
proxy for the lookup service itself. This
approach lets different lookup service
implementations exist, using different
mechanisms to communicate with clients.

Jini’s search mechanisms also reflect
Java’s ubiquitous use. Services register
with a lookup service by providing their
proxy, as well as attributes that are also
full-blown Java objects. Clients can
search for services by ID, proxy or
attribute Java language types, or attribute
contents. The overall result is a solution
that, while Java-centric, exploits the
assumptions we can make when we have
a ubiquitous object description and code
execution format. Because this approach
can limit the network’s heterogeneity, a
Java-capable device can act as a surro-
gate for non-Java devices.7

Jini’s two-stage discovery mechanism
lets clients and services participate in dis-
covery without explicit configuration. It
also lets us construct higher-level discov-
ery topologies: because lookup services
can register with other lookup services
on remote networks (albeit with a bit of
configuration), clients can indirectly dis-
cover lookup services that would be inac-
cessible to them via multicast alone. Of
course, lookup services must be on the
network for discovery to work.

As of version 2, Jini provides extensive
service security mechanisms. Because
lookup services use the same mechanisms
as other Jini services, they can exploit
Jini’s security framework, which allows
authentication, communication encryp-
tion, and customizable security policies.

Bluetooth
Bluetooth is a short-range RF-based

communication technology.8 Its rela-
tively low bandwidth (723 Kbits to 2.1
Mbits per second) makes it appropriate
for devices such as PDAs, mobile tele-
phones, and mice. Bluetooth devices
implement one or more standardized

profiles (such as the headset profile for
mobile telephony and the human inter-
face device profile for mice and key-
boards), which define the operations
available to clients.

Of the systems described in this arti-
cle, only Bluetooth uses a non-IP-based
discovery protocol. This is because short-
range radio has unique needs. In par-
ticular, the need for maximum com-
munication efficiency dictates certain

optimizations that an IP-based system
might not need. Also, because Bluetooth
communication is peer-to-peer, it doesn’t
assume a fixed network infrastructure.
Thus, discoverability is based on actual
physical proximity, rather than closeness
in the IP routing infrastructure.

Bluetooth discovery operates at two
distinct layers of the network stack. At
the higher layer, the Bluetooth Service
Discovery Protocol defines a set of prim-
itives for learning about the services
available on a given device. Clients find
SDP-capable devices by using the lower-
level Link Manager Protocol and Logi-
cal Link Control and Adaptation Proto-
col. In effect, Bluetooth separates device
discovery from the discovery of services
on a given device.

To initiate Bluetooth discovery, a client
sends a low-level inquiry message. Blue-
tooth devices in the discoverable state
respond to this message, sending the
client their unique device address. (Blue-
tooth devices can be in a nondiscover-
able state for power management and
security reasons.) After a client gathers
these addresses, it can separately retrieve
human-readable device names from the

identified devices. A client need not
establish a full communications link just
to get a device’s name.

After establishing a communication
link with a device, a client interacts with
the device using SDP to determine its
functionality. SDP is defined as a sepa-
rate profile that lets clients peruse a
device’s available services. A list of attri-
butes describes each service. Each attri-
bute is a key/value pair describing some

aspect of the service—such as unique ID,
type, icon, and name.

SDP attributes differ from those of
other discovery systems covered in this
article, largely because of SDP’s efforts
to conserve communications bandwidth.
Instead of arbitrary strings to denote
attribute keys, SDP uses 16-bit IDs. Ser-
vice type specifications define which IDs
are valid as keys, the type of data con-
tained in values, and the semantics of
values. Attribute values can be any of
several types, including strings, integers,
URLs, and sequences of data elements.
An attribute value type of particular
interest is the 128-bit universally unique
identifier (UUID). A service specification
defines certain attributes as having val-
ues of type UUID. To search for services,
clients send a list of UUIDs to a device.
Any service on that device that contains
every UUID in the search query, regard-
less of their order or which attribute con-
tains the UUID, matches the query.

So, SDP’s search mechanisms use only
attributes that the service specification
has adopted and reduced to a set
of UUIDs. Again, Bluetooth’s overall
goals—storage, computation, and band-

APRIL–JUNE 2006 PERVASIVEcomputing 73

Bluetooth communication is peer-to-peer, so it

doesn’t assume a fixed network infrastructure. Thus,

discoverability is based on actual physical proximity,

rather than closeness in the IP routing infrastructure.

width efficiency—dictate this approach.
A fully arbitrary attribute-search mech-
anism would require clients to transmit
and compare potentially much longer
operands and define and implement
comparison operators for a wider range
of data types. UUID-based search is, in
contrast, much more efficient, albeit
somewhat limited.

SDP provides no security directly. In
Bluetooth, security occurs below the

SDP level, encrypting communication at
the link layer and restricting communi-
cation to peers that share some secret.
It most commonly achieves this through
a pairing procedure, in which a user
gives two devices some a priori trust
information (typically a personal iden-
tification number). After this explicit
trust-configuration step, paired devices
can both discover one another and
exploit link-layer encryption.

Service Location Protocol
The Internet Engineering Task Force’s

Service Location Protocol focuses on dis-
covery in large managed networks, such
as enterprises.9 As such, it combines sev-
eral sophisticated techniques useful in
such networks, including optional direc-
tory services and fine-grained search.

Architecturally, SLP supports two dis-
tinct modes that let it span a range of
administration requirements and net-
work scales. SLP clients and services can
use multicast to directly discover services
on their local network. However, SLP
also supports the use of directory agents
as intermediary service registries. If a DA
is on a network, clients and services will

discover it (through either multicast dis-
covery or explicit configuration) and
direct all their registration and query
traffic to it. So, SLP will use a directory
if one is present but will default to basic
multicast discovery if one isn’t. The pro-
tocol’s format is the same in either case,
although it sends messages via unicast
when communicating with a DA. In
larger networks, a DA can serve as a
cache for service registrations and a cen-

tralization point for query processing.
SLP services are named via URLs that

use the service protocol scheme. For
example, a printer might have the name
service:printer://hostname. SLP supports the
use of abstract and concrete service
types, allowing a service URL to specify
both . For example, a printer abstract type
might be specialized by an lpr concrete
type. Such a printer would be repre-
sented in an SLP service URL as service:
printer:lpr://hostname.

Services publish their existence
through service registration messages
containing their service types, service
URL, and one or more attributes. Attrib-
utes are simple key/value pairs. Strings
can be keys and values can be integers,
strings, Booleans, or opaque data blocks.

Clients issue service request messages
to find desired services. Clients can
search on the basis of the service’s type
(such as service:printer) or attributes. SLP
has an exceptionally rich search mech-
anism: clients provide full LDAP version
3 search filters as predicates to match
service attributes.10 This search lan-
guage provides Boolean and arithmetic-
comparison operators, wild cards, and

grouping. These search capabilities
reflect SLP’s orientation toward enter-
prise service discovery and relatively
heavyweight directories.

In response to clients’ service requests,
they receive a reply containing the URLs
of matching services, time-to-live infor-
mation to control how they cache dis-
covery results, and—optionally—infor-
mation to authenticate the service. SLP
defines a range of separate (and op-
tional) protocol messages for retrieving
service attributes and browsing for all
services on a network.

Bonjour
Although popularized by Apple, the

Bonjour technology is based on work
begun by the IETF’s Zeroconf working
group (www.zeroconf.org) in 1999.
Bonjour’s high-level goal is to enable use-
ful networking in the absence of any
fixed infrastructure, including such IP
stalwarts as DHCP and DNS servers.
Bonjour lets two computers, connected
only with a crossover Ethernet cable or
peer-to-peer wireless network, work
together without end users having to
twiddle network settings or refer to
machines by IP address.

Although the technology goes deeper
than just service discovery, discovery is
integral to Bonjour. Perhaps the most
distinguishing feature of the Bonjour
approach to discovery is that it meshes
closely with existing Internet standards
while operating in the absence of the tra-
ditional managed Internet infrastructure.

Bonjour combines multicast DNS
(mDNS) with DNS service discovery
(DNS-SD) to leverage existing Internet
protocols. mDNS piggybacks DNS by
defining a new top-level domain: .local.
mDNS presumes that names ending in
.local. are meaningful only on the local
link and are thus analogous to link-local
IP addresses (such as 169.254.x.x).
mDNS sends any DNS query for a name
ending in .local. to a special multicast

74 PERVASIVEcomputing www.computer.org/pervasive

DISCOVERY SERV ICE TECHNOLOG IES

Allowing arbitrary hosts to resolve names might

be contentious from a security perspective:

hosts could potentially respond to requests with

bogus information.

address. Hosts on the local link that can
resolve the name respond with their
addresses. The mDNS mechanisms aren’t
specific to discovery; they merely let
hosts resolve names among themselves,
rather than through a separate, managed
DNS server (which would have to be
running, accessible, and configured into
clients).

Allowing arbitrary hosts to resolve names
might be contentious from a security per-
spective: hosts could potentially respond
to requests with bogus information. So,
systems administrators and developers
should use existing security technologies
such as IP security (IPsec) and DNS secu-
rity extensions (DNSsec) with mDNS.

DNS-SD is largely a set of naming

conventions describing how services will
be represented in DNS records. It defines
no new operations and no new DNS
record types. It’s fully compatible with,
but doesn’t require, mDNS.

Clients use DNS-SD by issuing re-
quests for DNS pointer (PTR) records,
indicating the service types they wish to
find. DNS-SD names service types using
the form _type._protocol.domain. So, for ex-
ample, a client might find all the Web
servers in the “example.com” domain
by issuing a query for _http._tcp.example.com.
In this case, _http denotes the applica-
tion-layer protocol the client wants (ser-
vices that speak HTTP), _tcp indicates
that the service runs over TCP/IP, and
example.com denotes the domain to

which the query is directed. When DNS-
SD is coupled with mDNS, clients can
use the .local. domain as well, allowing
service discovery to occur without man-
aged DNS services.

The returned PTR records contain ser-
vice instance names—user-friendly names
for services matching the query. For
example, a query for printers might re-
turn “Joan’s office printer.” In conven-
tional DNS, PTR records typically con-
tain host names; DNS-SD overloads this
request so that when the client passes a
service type in the query, the query re-
turns service instance names. To resolve
a particular service instance name, a
client issues a query for DNS service
(SVC) records for that name. The rec-

APRIL–JUNE 2006 PERVASIVEcomputing 75

TABLE 1
Comparison of current discovery systems.

System Topology Transport Scope Search Security

Simple Service Peer-to-peer Unicast HTTP, Subnet Type or ID Authentication,
Discovery Protocol (P2P) multicast HTTP access control
(SSDP)

Jini Hybrid Unicast TCP, multicast Subnet, Type, ID, or Jini/Java security
User Datagram Protocol bridgeable attribute mechanisms

Bluetooth Service P2P Link Manager Protocol Proximity Type or attribute Link-level or
Discovery Protocol (LMP) and Logical Link (~10 meters) (universally unique service-level
(SDP) Control and Adaptation identifier [UUID] encryption,

Protocol (L2CAP) only) authentication

Service Location P2P or Unicast TCP, Subnet, Type or attribute Optional service
Protocol (SLP) directory multicast UDP bridgeable (Lightweight authentication

Directory Access
Protocol v.3 search
predicates)

Bonjour P2P Multicast DNS (mDNS), Subnet Type Optional IP security
DNS service discovery (IPsec), DNS security
(DNS-SD) extensions (DNSsec)

Salutation P2P or Open Network Computing Depends on Type or attribute RPC authentication
directory remote procedure call transport

(ONC RPC) over arbitrary
transports

Intentional Naming Decentralized, Unicast UDP Administrative Attribute domain None
Service (INS) weakly consistent

directories

Ninja Secure Service Directory Authenticated remote Wide area XML-based Capability-based
Discovery Service method invocation (RMI) (through descriptions access control
(SSDS) hierarchical

directories)

eSquirt IR Beacon-and- Infrared Proximity (~20 None Physical proximity
reader centimeters) required

RFID Beacon-and- Short-range RF Proximity None Physical proximity
reader (~10 cm) required

76 PERVASIVEcomputing www.computer.org/pervasive

DISCOVERY SERV ICE TECHNOLOG IES

ords returned by the query contain the
service’s host and port number.

DNS-SD considers the human-read-
able service instance names to be the ser-
vices’ canonical names. This naming
approach presents a subtle difference
between DNS-SD and many of the other
discovery systems described in this arti-
cle, which (although they might option-
ally support human-readable names) use
globally unique service IDs to disam-

biguate services. In other words, these
other systems consider the ID to repre-
sent the “truth” about service identity.
DNS-SD, on the other hand, makes no
distinction between the notions that sys-
tems and humans use to identify services.

By leveraging existing technology, Bon-
jour exploits developers’ experience with
Internet services and protocols. With only
a few simple modifications to conven-
tional DNS, Bonjour can provide service
discovery on local networks with little or
no administration or configuration.

Other systems
Table 1 summarizes how these sys-

tems, as well as several others, fit into
the larger space of discovery technolo-
gies. The others include Salutation, a
commercial system used primarily by
printer manufacturers,11 the Massachu-
setts Institute of Technology’s Inten-
tional Naming System,12 the University
of California, Berkeley’s Ninja Secure
Service Discovery Service,13 and two
out-of-network, proximity-based dis-
covery systems: Cooltown’s eSquirt IR-
based system14 and RFID tags.15 The last
two represent physical forms of discov-

ery technology, in which users actively
select devices or objects to which they
wish to acquire a digital reference (in
essence, the user, rather than the tech-
nology, provides the search function for
these systems).

New research directions
None of the systems I’ve described

in depth were designed specifically to
address the needs of ubiquitous com-

puting systems. The following sections
outline some of the special requirements
of ubiquitous computing; some of these
might be achievable by layering on top of
existing solutions, while others may
require more open-ended research.

Providing infrastructure,
without the infrastructure

Ubiquitous computing systems must be
able to support discovery in mobile envi-
ronments where there might be no fixed
network or system infrastructure, and
resources might have their homes in dif-
ferent administrative domains, so they have
no shared trust or naming information.

From a research perspective, a key
challenge is getting a fixed infrastruc-
ture’s desirable properties—scalability,
security, easy administration, shared
naming, and so on—without having the
infrastructure itself.

Connecting islands of discoverability
Another requirement derives from the

complex network topologies typical in
ubiquitous computing settings. Using
today’s discovery technology, a seg-
mented, multitransport network pre-

sents multiple isolated islands of discov-
erability because different networking
substrates necessarily impose their own
semantics and constraints and inherently
define the discovery scope differently.

Such hodge-podge solutions partition
resources and force users to understand
the scoping constructs used by different
protocols (having to understand multi-
cast radius or directory service topology
to figure out why a PDA can’t see a
media server, for example). To provide
seamless interconnectivity, we must find
ways to bridge the discovery require-
ments of individual transports in a way
that requires little administration and
doesn’t insist that end users understand
low-level networking concepts.

A search appropriate
for ubiquitous computing

Another issue for discovery in ubiqui-
tous computing concerns how clients
search for resources. Current search
mechanisms rely mostly on relatively
static attributes that resources publish
about themselves. Clients have a range
of tools for matching attributes—from
predicate languages (SLP) to restricted
matching based on prior knowledge of
unique tokens (SDP). These search
mechanisms are all justified given the
intended uses of the various discovery
protocols. Likewise, a discovery tech-
nology rooted in ubiquitous computing’s
needs will likely provide its own search
mechanisms based on these needs.

For example, how does context-aware
computing impact a ubiquitous com-
puting discovery solution? You can eas-
ily imagine applications that need to find
specific resources on the basis of their
users’ current status or the interaction
history. Do these applications require
new features from a discovery system?

The human issue
Discovery is firmly grounded in its net-

working roots. For example, in many

Likewise, a discovery technology rooted in

ubiquitous computing’s needs will likely

provide its own search mechanisms based on

these needs.

systems, scoping is determined by mul-
ticast radius, and services are identified
as URLs. But even though discovery is a
technical mechanism, it has implications
for users. How does the choice of a dis-
covery system influence the user experi-
ence of applications built on top of it?
Discovery systems must provide enough
information “up the stack” and provide
a coherent-enough model so that users
can understand the discovery process.

Technical issues such as how to name
and find resources have huge ramifica-
tions on how users will perceive and work
with discovery-based systems. However,
surprisingly little work has examined the
end-user implications of technical fea-
tures in discovery. One of the only inves-
tigations into such impacts studied the
use of music sharing via Bonjour, in
which the resource being discovered (a
music library) is tightly associated with
an individual.16 In such cases, social
issues of privacy and managing the pre-
sentation of self come into play. We need
to understand how these social effects
should influence discovery system design.

O
f course, discovery is simply
the first step of an applica-
tion’s interaction with some
resource. The next, even-

more-important step is for the applica-
tion to use that resource. Most discov-
ery systems simply provide applications
with a handle for a resource and then get
out of the way. But even if two parties
agree on a discovery platform, this in no
way guarantees that they’ll actually be
able to work together. They must further
agree on the operations and data formats
they will support, as well as the seman-
tics. This isn’t a problem for discovery per
se, but merely a statement that solving dis-
covery’s problems is only a first step. Sev-
eral research projects have begun to look
at more flexible approaches to interoper-
ability. For example, Cooltown leverages

Web technologies to allow spontaneous
interoperation among devices and ser-
vices;14 the Speakeasy project uses a small
set of metainterfaces to let devices ex-
change new behaviors needed for com-
patibility at runtime;17 and systems such
as Stanford’s iRoom use a tuple space as
a common, extensible data representa-
tion to achieve interoperability.18

REFERENCES
1. T. Kindberg and A. Fox, “System Software

for Ubiquitous Computing,” IEEE Perva-
sive Computing, vol. 1, no. 1, 2002, pp.
70–81.

2. J. Hodges and R. Morgan, Lightweight
Directory Access Protocol (v3), IETF RFC
3377, Sept. 2002; www.rfc-editor.org/
rfc/rfc3377.txt.

3. P. Mockapetris, Domain Names—Concepts
and Facilities, IETF RFC 1034, Nov. 1987;
www.rfc-editor.org/rfc/rfc1034.txt.

4. Introduction to UDDI: Important Features
and Functional Concepts, Organization for
the Advancement of Structured Informa-
tion Standards (OASIS), Oct. 2004; http://
uddi.org/pubs/uddi-tech-wp.pdf.

5. M. Jeronimo and J. Weast, UPnP Design
by Example, Intel Press, 2003.

6. K. Arnold et al., The Jini Specification,
Addison-Wesley, 1999.

7. Jini Technology Surrogate Architecture
Specification, Sun Microsystems, 2003;
http://surrogate.jini.org/sa.pdf.

8. Specification of the Bluetooth System, v. 1.1
core, Bluetooth Consortium, 2001; http://
bluetooth.com.

9. E. Guttman, “Service Location Protocol:
Automatic Discovery of IP Network Ser-
vices,” IEEE Internet Computing, vol. 3,
no. 4, 1999, pp. 71–80.

10. T. Howes, The String Representation of
LDAP Search Filters, IETF RFC 2254, Dec.
1997; www.rfc-editor.org/rfc/rfc2254.txt.

11. Salutation Architecture Specification, v. 2.1,
Salutation Consortium, 1999.

12. W. Adjie-Winoto et al., “The Design and

Imp l e -
menta-

tion of an Intentional Naming System,” Proc.
Symp. Operating Systems and Principles,
ACM Press, 1999, pp. 186–201.

13. S. Czerwinski et al., “An Architecture for a
Secure Service Discovery Service,” Proc. 5th
Ann. ACM/IEEE Int’l Conf. Mobile Com-
puting and Networking (MobiCom 99),
ACM Press, 1999, pp. 24–35.

14. T. Kindberg and J. Barton, “A Web-Based
Nomadic Computing System,” Computer
Networks, vol. 35, no. 4, 2001, pp.
443–456.

15. R. Want et al., “Bridging Physical and Vir-
tual Worlds with Electronic Tags,” Proc.
SIGCHI Conf. Human Factors in Comput-
ing Systems (CHI 99), ACM Press, 1999,
pp. 370–377.

16. A. Voida et al., “Listening In: Practices Sur-
rounding iTunes Music Sharing,” Proc.
SIGCHI Conf. Human Factors in Comput-
ing Systems (CHI 05), ACM Press, 2005,
pp. 191–200.

17. W.K. Edwards et al., “Challenge: Recom-
binant Computing and the Speakeasy
Approach,” Proc. 8th Int’l Conf. Mobile
Computing and Networking (MobiCom
02), ACM Press, 2002, pp. 279–286.

18. B. Johanson, A. Fox, and T. Winograd,
“The Interactive Workspaces Project: Expe-
riences with Ubiquitous Computing
Rooms,” IEEE Pervasive Computing, vol.
1, no. 2, 2002, pp. 67–74.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

APRIL–JUNE 2006 PERVASIVEcomputing 77

the AUTHOR

W. Keith Edwards is an
associate professor at the
Georgia Tech College of
Computing, where his
research takes a human-
computer interaction ap-
proach to networking and
security problems. He re-

ceived his PhD in computer science from Geor-
gia Tech. He’s a member of the ACM. Contact
him at the College of Computing, Georgia Inst.
of Technology, Atlanta, GA 30332-0760; keith@
cc.gatech.edu.

