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Abstract — The number of different types of devices on the 

home network is expanding greatly. While this explosion of 
innovation provides compelling new devices to consumers, it 
problems with ensuring compatibility among these devices, 
and providing a useful overall user interface for them. This 
paper describes an experimental set-top box platform for 
home media applications. The key feature of this platform is 
that it can dynamically exchange code with other devices on 
the home network, allowing it to not only acquire new 
capabilities at runtime, but also provide new capabilities to 
peer devices on the network. These new capabilities can take 
the form of new data transmission protocols, CODECs, or 
user interfaces. We describe the underlying architecture of our 
platform, as well as the user interface that allows control over 
a variety of home devices.1 
 

Index Terms — set-top box, home network, mobile code, user 

interfaces.  

I. INTRODUCTION 

The home network is rapidly increasing in complexity: 
every year brings an expanding array of connected consumer 
electronics devices, intended for deployment on the home 
network. While this rapid churn delivers innovative devices to 
the consumer, it also brings a number of problems, 
particularly: (1) how to achieve interoperability among the 
expanding array of devices, and (2) how to achieve a unified 
point of control for this expanding array of devices. 

In a relatively “closed” environment—one serviced by a 
single vendor, or one in which all devices on the network can 
be co-developed to be compatible and present a unified user 
interface—these problems are less pressing. The home, 
however, is a deeply heterogeneous environment, combining 
devices from multiple vendors, from different hardware 
generations, added to the home over time. In such a setting, 
problems arise of how to achieve compatibility while allowing 
evolution, and how to achieve a consistent and unified user 
experience. 
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One of the chief architectural reasons these problems exist 
is that, in most connected device platforms today, the software 
both devices involved in an interaction must be explicitly 
written to know about each other. For example, in the UPnP 
platform, a control point that interacts with a MediaServer 
device must be written to know about this specific type of 
device. New types of devices that appear on the network 
would not be usable by this control point until it had been 
updated to work with them. This dependency on knowledge of 
peer devices limits the degree to which compatibility can be 
maintained in the presence of an evolving network of device 
types. It also restricts the creation of holistic control user 
interfaces to situations in which all device types are known 
ahead of time. 

We have been exploring solutions to these issues through an 
experimental middleware platform for extensible 
interoperability, called Obje. This platform is intended for a 
range of applications, including especially home media 
applications. (See [3][4] for a description of a number of other 
applications of the technology, outside of the home media 
domain.) 

This paper describes a prototype set-top box (STB) 
application built using the Obje middleware. This STB 
application runs on commodity (PC-like) hardware, as well as 
a number of small footprint commercial systems such as home 
server appliances, and Pocket PCs. It provides a number of 
traditional media-oriented STB services, and also acts as a 
unified point of control for other devices and services on the 
home network. One of the key features of the STB is that it 
can dynamically adapt to the presence of new, Obje-
compatible devices through a mobile code mechanism, that 
allows the STB to acquire new media handling behaviors 
necessary for interactions with new devices. 

The next sections describe the underlying middleware 
system used by the set-top box, as well as its architecture and 
interface, and details of its implementation. 

II. MIDDLEWARE PLATFORM 

The most distinguishing feature of our middleware platform 
is that it allows runtime extensibility of devices and 
applications, allowing new devices that enter the network to 
provide code to peers to allow them to interoperate with the 
new device. 

This functionality is exposed as a bootstrap protocol 
layered atop TCP/IP, which provides a number of operations 
designed to support runtime extensibility. Most importantly, 
the protocol allows a new device on the network to provide a 
peer device with: 
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• An implementation of a new network protocol needed to 
communicate with the device. 
• An implementation of one or more CODECs, to render or 
process media received from the new device 
• An implementation of new user interface (UI) controls, 
which can be used to control the device remotely 
We call this protocol a bootstrap protocol because it is used 

for the initial negotiation and transfer of new capabilities 
necessary for compatible communication. Once this transfer 
has been completed, two devices communicate with each other 
directly, using these new capabilities. 

These implementations of new capabilities are in the form 
of mobile code—self-contained executable content delivered 
over the network to the peer device. Our middleware platform 
allows for a variety of code formats, including platform-
independent code (e.g., Java [1]) as well as highly-tuned, 
platform-specific code (which of course would only be 
executable on a compatible target device). 

Obje devices or services (which we generically call 
components) must carry an implementation of the bootstrap 
protocol, may have one or more versions of mobile code 
intended for user by peers (these would typically be carried in 
some form of stable storage, such as firmware, flash, or on a 
disk), and may have the ability to execute code received over 
the network. 

I. Bootstrap Protocol and Code Formats 

The Obje bootstrap protocol is defined as a profile on the 
Blocks Extensible Exchange Protocol (BEEP) [11], a generic 
application protocol kernel for bidirectional, connection-
oriented messages. BEEP provides facilities for TLS-based 
security, providing message integrity and privacy, as well as 
authentication of peers on the network. 

Devices advertise their presence over the local link via 
multicast DNS; these advertisements take the form of Uniform  
Resource Identifiers (URIs) that indicate the address of the 
device. Once a URI for a given device has been discovered, an 
Obje peer may communicate with it using the bootstrap 
protocol. A message called FetchRequest returns 
ComponentDescriptors for the discrete services running at that 
device. ComponentDescriptors are short XML documents that 
provide descriptive information about a component (name, 
icon, and so forth) as well as information about the roles a 
component may play (source of data, recipient of data, and so 
forth), and any mobile code that may be provided by the 
component. 

We call stand-alone bundled of mobile code granules, and 
they are represented in the protocol via elements called 
GranuleDescriptors. Each GranuleDescriptor indicates a 
location from which the mobile code may be loaded (typically 
from the device itself), as well as parameters used to initialize 
loaded code granules, a unique version identifier that may be 
used by clients to cache code granules, and a specification of 
the platform requirements of the code granules. 

Devices that can send or receive media content declare in 
their ComponentDescriptors any content types that they may 
be able to process “natively”—meaning, without the need to 

acquire any code granules from a peer. These declarations are 
in the standard MIME format [2], and provide a mechanism 
for common content types to be handled without the need for 
mobile code. 

Depending on the role a component plays, it may provide a 
number of granules for specialized uses. For example, 
components that can act as originators of data (called 
DataSources) may be able to transmit specialized granules that  
provide new protocol implementations or new CODEC 
implementations. Other sorts of components may provide 
custom UI implementations or custom discovery protocol 
implementations. There are a fixed number of component 
roles defined by Obje, and thus a fixed number of granule 
types. 

Once a granule, such as a new protocol implementation, is 
transferred to a peer, it can be executed directly by that peer. 
Thus, after the initial bootstrap phase to exchange any code 
necessary for compatibility, two Obje peers can communicate 
directly with one another, using the protocol and data types 
provided by the source component. This further 
communication does not involve the bootstrap protocol itself. 

Effectively, this mechanism allows peers to be built against 
a static protocol specification (the bootstrap protocol), which 
is then used to exchange new capabilities necessary for 
compatibility, as new peers enter the network. 

In our current implementation, granules are not cached. In 
other words, code is transferred between devices at the start of 
each pairwise interaction. This arrangement is well-suited for 
devices with low memory capacities; other systems, however, 
may cache granules to save on network bandwidth and 
transmission time at the expense of storage space. 

As noted earlier, any given device may provide granules in 
multiple executable formats—a platform-indepenent version 
and a more highly tuned platform-dependent version, for 
example. These executable formats are named via simple 
strings that indicate the intended platform, such as “java-
jdk1.2” or “x86-win32.” 

II. Benefits 

By shifting the burden of agreement from development time 
to runtime, we can achieve a number of important benefits that 
are especially useful in the home media setting. 

For example, a vendor may produce a new, highly-efficient 
data communication protocol tuned for a certain class of 
media. Normally, delivering such a new protocol in the 
marketplace would likely require standardization, buy-in from 
other vendors, and time for implementations of the protocol to 
become widespread on deployed devices. Under our dynamic 
extension architecture, such a vendor could create such a new 
protocol, include an implementation of it on a new device, and 
have that device deliver the protocol to any peers equipped to 
speak the Obje bootstrap protocol. This arrangement 
effectively allows the device to be able to use its own custom 
code at both endpoints of the communication channel. 

This same mechanism can also be used for CODEC 
implementations. A device that provides a new media 
encoding can deliver the capability to decode and render this 



W. K. Edwards et al.:  An Extensible Set-Top Box Platform for Home Media Applications 1177

format to peer devices, as needed. This arrangement can allow 
more rapid experimentation and delivery of new media 
formats into the home network. 

In situations where a vendor may wish to exercise control 
over which devices may be able to accept a certain media 
stream, necessary granules may be encrypted, allowing only 
peers with the necessary key to obtain and load the code 
necessary to process that media.  

III. AN EXPERIMENTAL SET-TOP BOX 

We have used the platform described in the previous section 
to build an experimental home media hub—a set-top box that 
(a) provides a number of services that are accessible 
throughout the home network, (b) can discover and use other 
devices that enter the home network, and (c) provides a 
unified UI for interacting with and combining the various 
services and devices throughout the home. 

Our initial implementation of this experimental box has 
focused on the software aspects of extensible interoperability. 
Thus, our system has been developed on commodity 
hardware: a small footprint, PC-based system with onboard 
video hardware, hard disk-based storage, infrared receiver, 
USB and IEEE 1394 ports, and DVD playback capability. 
While this development hardware provides perhaps more 
computational power than many current commercial STBs, it 
serves as an excellent development environment for software 
prototyping. Since our initial prototype, we have successfully 
deployed the platform on less powerful devices, such as 
commercial home gateway/server appliance and various 
WindowsCE devices. 

Run on the commodity development hardware, the system 
exposes a number of services to the home network: 

• Storage (for audio, video, and image collections) 
• DVD playback 
• Television/cable tuner and digitization/encoding 
• Audio playback (when connected to speakers) 
• Video playback (when connected to a television or other 
monitor) 
• Connectivity to devices through USB and IEEE 1394 
ports 
Many of these services are found on current commercial 

set-top boxes; indeed, when used as a standalone device, this 
prototype emulates the functionality of current STBs. For 
example, media stored on the box can be rendered to attached 
speakers or monitor. 

However, because all of box’s services is implemented as 
discrete Obje components, these services can be individually 
discovered, used by, and combined with other devices on the 
home network. For example, the audio and video outputs of 
the box are exposed as a network-accessible service, and can 
be used to render content from arbitrary Obje-enabled devices 
on the home network. Likewise, incoming content (such as 
from a ripped DVD, or digitized television program) can be 
streamed over the network to a storage device connected on a 
PC. 

 

Perhaps more importantly, the extensibility features of our 
platform allow the services on the box to be used with entirely 
new types of devices that enter the network (as long as those 
devices can communicate using the Obje bootstrap protocol). 
For example, a new digital audio player device may use an 
audio encoding format unknown to the STB. Such a device 
would be created by its developers to carry an implementation 
of a CODEC needed to process the media encoding; 
optionally, the developers of the device may provide a number 
of implementations of the CODEC, such as a platform-neutral 
implementation (which perhaps performs slowly) and one or 
more tuned platform-specific implementations. These latter 
would likely be created to target common hardware platforms 
(such as Windows) or the vendor’s own hardware families. 

 
Fig. 1. The extensible STB sits at the hub of the home, exchanging 

capabilities as needed with new devices that enter the network. Media 

from remote devices can be streamed to the monitor and speakers 

connected to the STB; likewise, content stored on the STB can be 

streamed to networked devices throughout the home. 

 
When connected to the network, the digital audio player 

would appear to the STB as an audio source. If a user initiates 
a connection to the digital audio player (as described in the 
section, User Interface, below), the DAP would first negotiate 
with the STB on which executable formats it can process, then 
transfer the necessary CODEC via the bootstrap protocol. 
After this point, the audio is streamed and rendered by the 
STB, using the newly acquired CODEC. 

In a sense the capabilities of the STB are “exploded,” 
incorporating devices elsewhere on the home network, and 
able to be freely recombined with those devices. New devices 
carry with them the behaviors needed for the STB to flexibly 
communicate with them and deal with their media formats, 
allowing these devices to be incorporated into the home 
network. 
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Figure 1 illustrates this concept. Here, the STB is at the hub 
of an expanding and open-ended array of devices. The 
components hosted on the STB communicate among 
themselves, and with off-board devices, using the same 
extensible mechanisms. The UI provided by the STB 
aggregates these devices into a consistent interface. 

I. Set-Top Box User Interface  

Our experimental STB platform provides an animated 
graphical user interface (GUI) that is displayed on the 
connected television, and can be controlled with an included 
IR remote. This GUI allows users to interact with not only the 
on-board services on the STB itself, but also with devices 
discovered on the home network. Further, the GUI is 
dynamically modified in response to the comings and goings 
of devices on the network; for example, as new sources of 
audio appear (such as connected digital audio players), the 
menus adapt appropriately. 

Figure 2 shows the main screen of the GUI, for a basic 
configuration of devices on the network. The main menu items 
include: 

• Watch TV 
• Audio Library 
• Video Library 
• Image Library 
• DVD 
• Internet Radio 
When no other devices are present on the network—

meaning that the STB is operating as a standalone appliance—
these menu items connect services running on the STB itself. 
For example, the “Watch TV” item connects the television 
tuner service to the video display service that drives the 
external monitor. Likewise, the various “Library” menu 
options allow connection of the STB’s onboard storage service 
to onboard video and audio output services. These within-box 
connections use the same Obje mechanisms as do outside-of-
box connections. 

Fig. 2. Top-level on-screen user interface for our prototype set-top box. 

Users interact with the controls via an IR remote. 

 

When external devices are present on the home network, 
however, these menu items adapt to their presence. For 

example, as other devices capable of displaying content 
become available—meaning, devices that can play the role of 
data recipient for visual data, and can either accept streaming 
video data in the formats provided by the STB or can execute 
granules provided by the STB to allow them to do so—
selecting the Watch TV menu will bring up a list of possible 
recipient devices throughout the home. 

Likewise, if new devices that store audio, video, or image 
content—such as digital audio players or cameras—are 
connected, then selecting one of the Library menu options will 
bring up a list of discovered content sources. After selecting 
one, the system allows the user to select a target recipient—
either the onboard monitor and speaker outputs, or compatible 
recipients discovered on the network. Figure 3 shows the user 
interface after a sound file has been selected; here, it can be 
played through the connected speakers, to transferred to a 
“File Space” storage service elsewhere on the network. 

This UI design embodies a number of concepts we believe 
are important. First, the top-level menus are relatively stable,  
ensuring predictable operation to allow users to easily learn 
the system. Second, in simple cases—where the endpoints of 
an interaction are unambiguous—the system implicitly 
assumes these endpoints rather than asking the user. Finally, 
the system adapts the UI in specific ways to the presence of 
new devices. This approach allows the user to select first a 
source, and then the system filters and presents compatible 
potential destinations in a menu. 

Fig. 3. When multiple devices are present on the network, the STB 

presents the user with a choice for where to send media content. Here, the 

connected speakers and a remote “File Space” service are available. If 

other STBs, or other Obje-compatible speakers or devices were present, 

they would be presented here to. 

 

II. Bridging to Non-Obje Devices 

While our framework provides a platform for extensible 
interoperability of Obje-enabled devices, we realize that no 
devices outside our laboratory are equipped with our 
experimental middleware. Thus, an essential aspect of our 
STB architecture is a facility to bridge “legacy” (meaning non-
Obje) devices into the network. 

The STB software platform is equipped with an adapter 
module that can transparently bridge a number of common 
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hardware classes into the Obje environment. This adapter 
detects the presence of a range of USB devices connected to 
the STB, and creates virtual Obje devices that represent these. 
Currently this support is limited to USB cameras and digital 
audio players, though it could be extended to other sorts of 
USB devices, as well as non-USB devices (such as Bluetooth 
and IEEE 1394 peripherals). 

These virtual devices appear on the network as discrete, 
discoverable entities, and work in the same was as native Obje 
devices do. The STB adapter module communicates with 
peers using the bootstrap protocol on behalf of these virtual 
devices, effectively allowing devices with extremely limited 
computation capabilities and no native networking capabilities 
to be usable on the network as full-fledged Obje peers. 

For example, a digital audio player connected to the STB 
appears as an audio source in the STB’s menus, and is also 
discoverable by other devices elsewhere on the network, and 
usable by them. Audio can be streamed from the connected 
player over the network to other STBs, to PCs or laptops, or to 
network-connected speakers. 

We have also isolated this adapter module into a standalone 
software installation for PCs and laptops, allowing them to 
proxy for devices connected to their USB ports onto the Obje 
network. Thus, a digital camera connected to a laptop will 
appear on the STBs menus, as well as being accessible to any 
other Obje device on the network. 

IV. IMPLEMENTATION 

As noted earlier, our current hardware platform for the STB 
is a small form-factor PC, to allow easier development of our 
software infrastructure. Our software system has been ported 
to a number of smaller devices, however, including a 
commercial home gateway/server appliance and the 
WindowsCE environment. 

The STB software is implemented in Java, with platform-
specific extensions to handle interaction with I/O devices on 
the hardware platform. These include interactions with the 
television tuner, DVD player, and hardware-assisted video 
CODEC and rendering card. The STB software itself is 
approximately 1.9MB, including the services hosted on the 
box, but of course also requires the bootstrap protocol 
implementation as well as a JVM. 

The current bootstrap protocol implementation is  also in 
Java, and is approximately 1.3MB including all necessary 
libraries.  

While we have targeted Java for portability and speed of 
development, nothing in either the STB platform or bootstrap 
protocol require Java. Alternative implementations could be 
created in other languages, potentially with lower storage, 
memory, and computation requirements. 

Our platform’s architecture imposes an initial startup 
latency when two peers begin communication; this is the 
period during which initial negotiation happens, and any 
necessary transfer of mobile code takes place. The process 
requires two roundtrips after discovery (once to request and 
receive the device’s ComponentDescriptor, and once to 

request and receive any needed mobile code). This exchange 
happens only once per connection between peers, and is 
generally not perceptible to the end-user, as most message 
payloads are on the order of hundreds of bytes, and most code 
granules in our prototype system are on the order of a few 
kilobytes. Once a code granule has been transmitted and 
loaded, the bootstrap protocol is no longer involved, and 
performance is determined by the efficiency of whatever per-
device transfer protocol the device developer may have 
created, as well as that of the underlying physical transport. In 
other words, after the initial negotiation and code loading 
phase, performance can be the same as a device developer 
would have provided natively. 

V. RELATED WORK 

A number of systems, from both the research and commercial 
spaces, have explored platforms for networked media in the 
home. The Universal Plug and Play [5] platform, for example, 
uses a combination of “web-friendly” protocols (SOAP, HTTP, 
RTP) coupled with the standardization of device type-specific 
profiles (for MediaServers, MediaRenderers, Scanners, Printers, 
and so forth) to support networked home media services. One 
crucial difference between our platform and UPnP is that UPnP 
requires agreement on device profiles, protocols, and media 
types be built into all communicating devices at development 
time; our platform requires only base-level agreements (for the 
bootstrap protocol) and defers other mechanisms necessary for 
communication until runtime. 

The Jini platform [12] is perhaps closest to ours in spirit, as it 
relies on mobile code for dynamic exchange of object 
implementations at runtime. Jini itself, however, does not 
combine this mechanism with an architecture specifically 
designed to support media exchange; it does not, for example, 
define common interfaces for new protocol handlers or 
CODECs. Also, Jini—as a Java-centric platform—does not 
allow the easy delivery of non-Java mobile code, nor does it 
lend itself well to non-Java implementations, for footprint or 
performance reasons. 

Systems built around the Open Services Gateway Initiative 
(OSGi) [10], such as [7][9] are analogous to ours in a number of 
ways. First, they rely on a connected gateway box as a 
centralized hub for home management and control. Second, 
they have the ability to download new “bundles” of executable 
content from a remote service provider, allowing them to extend 
their functionality to new circumstances. One chief difference 
between OSGi-based systems and ours, however, is the fact that 
our platform supports peer-to-peer delivery of new capabilities, 
allowing new devices that enter the network to immediately 
extend their peers to be able to interact with them. 

From the research community, Stanford’s iRoom system [6] 
also supports dynamic interactions among devices and services. 
Their system, however, is not intended specifically for home 
media applications. Their architecture is focused primarily on 
exchanging of control and event data through a “tuple space” 
mechanism, rather than extensible streaming media data. 
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HP’s Cooltown system [8] likewise provides the ability for 
ad hoc interactions among devices and services, using a web-
centric framework of protocols. While Cooltown leverages the 
advantages of the web (simplicity, familiarity to developers), 
it is also bound by the limitations of the web (limited range of 
acceptable protocols and media formats, in particular), which 
may weaken its appeal for streaming media applications. 

VI. CONCLUSIONS 

This paper has described a prototype software platform for 
extensible set-top boxes, which aims to overcome some of the 
limitations of current systems. Namely, our platform allows 
devices on the home network to extend each others 
capabilities, preserving compatibility as new sorts of devices 
enter the network. We believe that this approach has the 
potential to reduce consumers’ frustrations with 
incompatibilities, repeated software updates and driver 
downloads, by allowing decentralized distribution of 
necessary software components at runtime. 

This approach also has the potential to allow much more 
lightweight experimentation with—and introduction of—new 
media formats into the home network. By removing the 
requirement that peer devices agree on specific content types 
(which usually requires a standardization process), vendors 
can more easily deploy custom content encodings, with their 
required protocols and CODECs, and yet retain 
interoperability; rather than requiring agreement on the 
content encodings themselves, our approach requires only 
agreement on the initial bootstrap protocol. Approaches such 
as this have the potential to allow greater differentiation and 
innovation without incurring the loss of compatibility, which 
is usually a cost of evolution on the network. 

The architecture of the system does impose a number of 
costs, however. The chief among these is the requirement that 
devices be able to accept and execute mobile code from peers 
in order to achieve the full benefits of extensibility. Obviously, 
devices that can provide and accept platform-independent 
code deliver the broadest extensibility, but this requires that 
they include an execution environment for Java bytecodes or 
other similar portable execution formats. The system does 
fully support native granules, which can potentially be 
executed by peers without the overhead of a portable 
execution environment, and potentially at higher performance; 
in such a case, however, extensibility is limited to those 
devices that can exchange compatible code granules. 

The system’s reliance on mobile code also raises security 
issues, of course. There are a number of solutions to this 
problem, the most direct of which is for devices to only accept 
granules signed by known providers. Thus, a vendor could 
create a compatible, yet extensible, family of products that 
would only accept “known safe” granules from products 
signed by that vendor. Other approaches are possible, 
including preventing mobile code loading from devices that 
are not part of a restricted trust group, perhaps defined by the 
owner of the devices—for example, to create a trusted group 
of all of the devices within one household.  

As noted earlier, another potential risk is through unwanted 
distribution of CODECs or other code to unlicensed devices 
on the network. Similar mechanisms can be used to protect 
against such distribution, by encrypting code granules so that 
they can only be decrypted (and thus, executed) on licensed 
devices that possess the necessary key. 

We are continuing our work to refine other aspects of our 
STB platform and core protocol as well. One possibility that 
we believe holds great promise is to use the granule capability 
to deliver new Digital Rights Management (DRM) 
implementations to peer devices. In much the same way that 
Obje devices can deliver custom CODECs necessary to render 
the media content they provide, these devices could also 
provide custom DRM implementations, securing delivered 
content, and providing whatever access rights are appropriate 
to that content. In our model, the device that delivers the 
content has opportunity to deliver the code that handles this 
content, effectively allowing the content provider to control 
both endpoints of the communications channel. 
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