
W. K. Edwards et al.: An Extensible Set-Top Box Platform for Home Media Applications

Contributed Paper
Manuscript received August 3, 2005 0098 3063/05/$20.00 © 2005 IEEE

1175

An Extensible Set-Top Box Platform

for Home Media Applications

W. Keith Edwards, Mark W. Newman, Trevor F. Smith, Jana Sedivy, Shahram Izadi

Abstract — The number of different types of devices on the

home network is expanding greatly. While this explosion of
innovation provides compelling new devices to consumers, it
problems with ensuring compatibility among these devices,
and providing a useful overall user interface for them. This
paper describes an experimental set-top box platform for
home media applications. The key feature of this platform is
that it can dynamically exchange code with other devices on
the home network, allowing it to not only acquire new
capabilities at runtime, but also provide new capabilities to
peer devices on the network. These new capabilities can take
the form of new data transmission protocols, CODECs, or
user interfaces. We describe the underlying architecture of our
platform, as well as the user interface that allows control over
a variety of home devices.1

Index Terms — set-top box, home network, mobile code, user

interfaces.

I. INTRODUCTION

The home network is rapidly increasing in complexity:
every year brings an expanding array of connected consumer
electronics devices, intended for deployment on the home
network. While this rapid churn delivers innovative devices to
the consumer, it also brings a number of problems,
particularly: (1) how to achieve interoperability among the
expanding array of devices, and (2) how to achieve a unified
point of control for this expanding array of devices.

In a relatively “closed” environment—one serviced by a
single vendor, or one in which all devices on the network can
be co-developed to be compatible and present a unified user
interface—these problems are less pressing. The home,
however, is a deeply heterogeneous environment, combining
devices from multiple vendors, from different hardware
generations, added to the home over time. In such a setting,
problems arise of how to achieve compatibility while allowing
evolution, and how to achieve a consistent and unified user
experience.

1 This work was supported in part by the U.S. National Institute of

Standards and Technology (NIST).
W. Keith Edwards is currently at the Georgia Institute of Technology,

Atlanta, GA 30332-0760 USA (email: keith@cc.gatech.edu). He was
previously at the Palo Alto Research Center (PARC).

Mark W. Newman and Trevor Smith are at the Palo Alto Research Center
(PARC), Palo Alto, CA 94304 USA (email: mnewman@parc.com,
tfsmith@parc.com).

Jana Z. Sedivy was formerly at the Palo Alto Research Center; she now
resides in Ottawa, Ontario, Canada (email: janasedivy@yahoo.com).

Shahram Izadi is at Microsoft Research, Cambridge, UK (email:
shahrami@microsoft.com). He was formerly at the Palo Alto Research Center
(PARC).

One of the chief architectural reasons these problems exist
is that, in most connected device platforms today, the software
both devices involved in an interaction must be explicitly
written to know about each other. For example, in the UPnP
platform, a control point that interacts with a MediaServer
device must be written to know about this specific type of
device. New types of devices that appear on the network
would not be usable by this control point until it had been
updated to work with them. This dependency on knowledge of
peer devices limits the degree to which compatibility can be
maintained in the presence of an evolving network of device
types. It also restricts the creation of holistic control user
interfaces to situations in which all device types are known
ahead of time.

We have been exploring solutions to these issues through an
experimental middleware platform for extensible
interoperability, called Obje. This platform is intended for a
range of applications, including especially home media
applications. (See [3][4] for a description of a number of other
applications of the technology, outside of the home media
domain.)

This paper describes a prototype set-top box (STB)
application built using the Obje middleware. This STB
application runs on commodity (PC-like) hardware, as well as
a number of small footprint commercial systems such as home
server appliances, and Pocket PCs. It provides a number of
traditional media-oriented STB services, and also acts as a
unified point of control for other devices and services on the
home network. One of the key features of the STB is that it
can dynamically adapt to the presence of new, Obje-
compatible devices through a mobile code mechanism, that
allows the STB to acquire new media handling behaviors
necessary for interactions with new devices.

The next sections describe the underlying middleware
system used by the set-top box, as well as its architecture and
interface, and details of its implementation.

II. MIDDLEWARE PLATFORM

The most distinguishing feature of our middleware platform
is that it allows runtime extensibility of devices and
applications, allowing new devices that enter the network to
provide code to peers to allow them to interoperate with the
new device.

This functionality is exposed as a bootstrap protocol
layered atop TCP/IP, which provides a number of operations
designed to support runtime extensibility. Most importantly,
the protocol allows a new device on the network to provide a
peer device with:

IEEE Transactions on Consumer Electronics, Vol. 51, No. 4, NOVEMBER 2005 1176

• An implementation of a new network protocol needed to
communicate with the device.
• An implementation of one or more CODECs, to render or
process media received from the new device
• An implementation of new user interface (UI) controls,
which can be used to control the device remotely
We call this protocol a bootstrap protocol because it is used

for the initial negotiation and transfer of new capabilities
necessary for compatible communication. Once this transfer
has been completed, two devices communicate with each other
directly, using these new capabilities.

These implementations of new capabilities are in the form
of mobile code—self-contained executable content delivered
over the network to the peer device. Our middleware platform
allows for a variety of code formats, including platform-
independent code (e.g., Java [1]) as well as highly-tuned,
platform-specific code (which of course would only be
executable on a compatible target device).

Obje devices or services (which we generically call
components) must carry an implementation of the bootstrap
protocol, may have one or more versions of mobile code
intended for user by peers (these would typically be carried in
some form of stable storage, such as firmware, flash, or on a
disk), and may have the ability to execute code received over
the network.

I. Bootstrap Protocol and Code Formats

The Obje bootstrap protocol is defined as a profile on the
Blocks Extensible Exchange Protocol (BEEP) [11], a generic
application protocol kernel for bidirectional, connection-
oriented messages. BEEP provides facilities for TLS-based
security, providing message integrity and privacy, as well as
authentication of peers on the network.

Devices advertise their presence over the local link via
multicast DNS; these advertisements take the form of Uniform
Resource Identifiers (URIs) that indicate the address of the
device. Once a URI for a given device has been discovered, an
Obje peer may communicate with it using the bootstrap
protocol. A message called FetchRequest returns
ComponentDescriptors for the discrete services running at that
device. ComponentDescriptors are short XML documents that
provide descriptive information about a component (name,
icon, and so forth) as well as information about the roles a
component may play (source of data, recipient of data, and so
forth), and any mobile code that may be provided by the
component.

We call stand-alone bundled of mobile code granules, and
they are represented in the protocol via elements called
GranuleDescriptors. Each GranuleDescriptor indicates a
location from which the mobile code may be loaded (typically
from the device itself), as well as parameters used to initialize
loaded code granules, a unique version identifier that may be
used by clients to cache code granules, and a specification of
the platform requirements of the code granules.

Devices that can send or receive media content declare in
their ComponentDescriptors any content types that they may
be able to process “natively”—meaning, without the need to

acquire any code granules from a peer. These declarations are
in the standard MIME format [2], and provide a mechanism
for common content types to be handled without the need for
mobile code.

Depending on the role a component plays, it may provide a
number of granules for specialized uses. For example,
components that can act as originators of data (called
DataSources) may be able to transmit specialized granules that
provide new protocol implementations or new CODEC
implementations. Other sorts of components may provide
custom UI implementations or custom discovery protocol
implementations. There are a fixed number of component
roles defined by Obje, and thus a fixed number of granule
types.

Once a granule, such as a new protocol implementation, is
transferred to a peer, it can be executed directly by that peer.
Thus, after the initial bootstrap phase to exchange any code
necessary for compatibility, two Obje peers can communicate
directly with one another, using the protocol and data types
provided by the source component. This further
communication does not involve the bootstrap protocol itself.

Effectively, this mechanism allows peers to be built against
a static protocol specification (the bootstrap protocol), which
is then used to exchange new capabilities necessary for
compatibility, as new peers enter the network.

In our current implementation, granules are not cached. In
other words, code is transferred between devices at the start of
each pairwise interaction. This arrangement is well-suited for
devices with low memory capacities; other systems, however,
may cache granules to save on network bandwidth and
transmission time at the expense of storage space.

As noted earlier, any given device may provide granules in
multiple executable formats—a platform-indepenent version
and a more highly tuned platform-dependent version, for
example. These executable formats are named via simple
strings that indicate the intended platform, such as “java-
jdk1.2” or “x86-win32.”

II. Benefits

By shifting the burden of agreement from development time
to runtime, we can achieve a number of important benefits that
are especially useful in the home media setting.

For example, a vendor may produce a new, highly-efficient
data communication protocol tuned for a certain class of
media. Normally, delivering such a new protocol in the
marketplace would likely require standardization, buy-in from
other vendors, and time for implementations of the protocol to
become widespread on deployed devices. Under our dynamic
extension architecture, such a vendor could create such a new
protocol, include an implementation of it on a new device, and
have that device deliver the protocol to any peers equipped to
speak the Obje bootstrap protocol. This arrangement
effectively allows the device to be able to use its own custom
code at both endpoints of the communication channel.

This same mechanism can also be used for CODEC
implementations. A device that provides a new media
encoding can deliver the capability to decode and render this

W. K. Edwards et al.: An Extensible Set-Top Box Platform for Home Media Applications 1177

format to peer devices, as needed. This arrangement can allow
more rapid experimentation and delivery of new media
formats into the home network.

In situations where a vendor may wish to exercise control
over which devices may be able to accept a certain media
stream, necessary granules may be encrypted, allowing only
peers with the necessary key to obtain and load the code
necessary to process that media.

III. AN EXPERIMENTAL SET-TOP BOX

We have used the platform described in the previous section
to build an experimental home media hub—a set-top box that
(a) provides a number of services that are accessible
throughout the home network, (b) can discover and use other
devices that enter the home network, and (c) provides a
unified UI for interacting with and combining the various
services and devices throughout the home.

Our initial implementation of this experimental box has
focused on the software aspects of extensible interoperability.
Thus, our system has been developed on commodity
hardware: a small footprint, PC-based system with onboard
video hardware, hard disk-based storage, infrared receiver,
USB and IEEE 1394 ports, and DVD playback capability.
While this development hardware provides perhaps more
computational power than many current commercial STBs, it
serves as an excellent development environment for software
prototyping. Since our initial prototype, we have successfully
deployed the platform on less powerful devices, such as
commercial home gateway/server appliance and various
WindowsCE devices.

Run on the commodity development hardware, the system
exposes a number of services to the home network:

• Storage (for audio, video, and image collections)
• DVD playback
• Television/cable tuner and digitization/encoding
• Audio playback (when connected to speakers)
• Video playback (when connected to a television or other
monitor)
• Connectivity to devices through USB and IEEE 1394
ports
Many of these services are found on current commercial

set-top boxes; indeed, when used as a standalone device, this
prototype emulates the functionality of current STBs. For
example, media stored on the box can be rendered to attached
speakers or monitor.

However, because all of box’s services is implemented as
discrete Obje components, these services can be individually
discovered, used by, and combined with other devices on the
home network. For example, the audio and video outputs of
the box are exposed as a network-accessible service, and can
be used to render content from arbitrary Obje-enabled devices
on the home network. Likewise, incoming content (such as
from a ripped DVD, or digitized television program) can be
streamed over the network to a storage device connected on a
PC.

Perhaps more importantly, the extensibility features of our
platform allow the services on the box to be used with entirely
new types of devices that enter the network (as long as those
devices can communicate using the Obje bootstrap protocol).
For example, a new digital audio player device may use an
audio encoding format unknown to the STB. Such a device
would be created by its developers to carry an implementation
of a CODEC needed to process the media encoding;
optionally, the developers of the device may provide a number
of implementations of the CODEC, such as a platform-neutral
implementation (which perhaps performs slowly) and one or
more tuned platform-specific implementations. These latter
would likely be created to target common hardware platforms
(such as Windows) or the vendor’s own hardware families.

Fig. 1. The extensible STB sits at the hub of the home, exchanging

capabilities as needed with new devices that enter the network. Media

from remote devices can be streamed to the monitor and speakers

connected to the STB; likewise, content stored on the STB can be

streamed to networked devices throughout the home.

When connected to the network, the digital audio player

would appear to the STB as an audio source. If a user initiates
a connection to the digital audio player (as described in the
section, User Interface, below), the DAP would first negotiate
with the STB on which executable formats it can process, then
transfer the necessary CODEC via the bootstrap protocol.
After this point, the audio is streamed and rendered by the
STB, using the newly acquired CODEC.

In a sense the capabilities of the STB are “exploded,”
incorporating devices elsewhere on the home network, and
able to be freely recombined with those devices. New devices
carry with them the behaviors needed for the STB to flexibly
communicate with them and deal with their media formats,
allowing these devices to be incorporated into the home
network.

IEEE Transactions on Consumer Electronics, Vol. 51, No. 4, NOVEMBER 2005 1178

Figure 1 illustrates this concept. Here, the STB is at the hub
of an expanding and open-ended array of devices. The
components hosted on the STB communicate among
themselves, and with off-board devices, using the same
extensible mechanisms. The UI provided by the STB
aggregates these devices into a consistent interface.

I. Set-Top Box User Interface

Our experimental STB platform provides an animated
graphical user interface (GUI) that is displayed on the
connected television, and can be controlled with an included
IR remote. This GUI allows users to interact with not only the
on-board services on the STB itself, but also with devices
discovered on the home network. Further, the GUI is
dynamically modified in response to the comings and goings
of devices on the network; for example, as new sources of
audio appear (such as connected digital audio players), the
menus adapt appropriately.

Figure 2 shows the main screen of the GUI, for a basic
configuration of devices on the network. The main menu items
include:

• Watch TV
• Audio Library
• Video Library
• Image Library
• DVD
• Internet Radio
When no other devices are present on the network—

meaning that the STB is operating as a standalone appliance—
these menu items connect services running on the STB itself.
For example, the “Watch TV” item connects the television
tuner service to the video display service that drives the
external monitor. Likewise, the various “Library” menu
options allow connection of the STB’s onboard storage service
to onboard video and audio output services. These within-box
connections use the same Obje mechanisms as do outside-of-
box connections.

Fig. 2. Top-level on-screen user interface for our prototype set-top box.

Users interact with the controls via an IR remote.

When external devices are present on the home network,
however, these menu items adapt to their presence. For

example, as other devices capable of displaying content
become available—meaning, devices that can play the role of
data recipient for visual data, and can either accept streaming
video data in the formats provided by the STB or can execute
granules provided by the STB to allow them to do so—
selecting the Watch TV menu will bring up a list of possible
recipient devices throughout the home.

Likewise, if new devices that store audio, video, or image
content—such as digital audio players or cameras—are
connected, then selecting one of the Library menu options will
bring up a list of discovered content sources. After selecting
one, the system allows the user to select a target recipient—
either the onboard monitor and speaker outputs, or compatible
recipients discovered on the network. Figure 3 shows the user
interface after a sound file has been selected; here, it can be
played through the connected speakers, to transferred to a
“File Space” storage service elsewhere on the network.

This UI design embodies a number of concepts we believe
are important. First, the top-level menus are relatively stable,
ensuring predictable operation to allow users to easily learn
the system. Second, in simple cases—where the endpoints of
an interaction are unambiguous—the system implicitly
assumes these endpoints rather than asking the user. Finally,
the system adapts the UI in specific ways to the presence of
new devices. This approach allows the user to select first a
source, and then the system filters and presents compatible
potential destinations in a menu.

Fig. 3. When multiple devices are present on the network, the STB

presents the user with a choice for where to send media content. Here, the

connected speakers and a remote “File Space” service are available. If

other STBs, or other Obje-compatible speakers or devices were present,

they would be presented here to.

II. Bridging to Non-Obje Devices

While our framework provides a platform for extensible
interoperability of Obje-enabled devices, we realize that no
devices outside our laboratory are equipped with our
experimental middleware. Thus, an essential aspect of our
STB architecture is a facility to bridge “legacy” (meaning non-
Obje) devices into the network.

The STB software platform is equipped with an adapter
module that can transparently bridge a number of common

W. K. Edwards et al.: An Extensible Set-Top Box Platform for Home Media Applications 1179

hardware classes into the Obje environment. This adapter
detects the presence of a range of USB devices connected to
the STB, and creates virtual Obje devices that represent these.
Currently this support is limited to USB cameras and digital
audio players, though it could be extended to other sorts of
USB devices, as well as non-USB devices (such as Bluetooth
and IEEE 1394 peripherals).

These virtual devices appear on the network as discrete,
discoverable entities, and work in the same was as native Obje
devices do. The STB adapter module communicates with
peers using the bootstrap protocol on behalf of these virtual
devices, effectively allowing devices with extremely limited
computation capabilities and no native networking capabilities
to be usable on the network as full-fledged Obje peers.

For example, a digital audio player connected to the STB
appears as an audio source in the STB’s menus, and is also
discoverable by other devices elsewhere on the network, and
usable by them. Audio can be streamed from the connected
player over the network to other STBs, to PCs or laptops, or to
network-connected speakers.

We have also isolated this adapter module into a standalone
software installation for PCs and laptops, allowing them to
proxy for devices connected to their USB ports onto the Obje
network. Thus, a digital camera connected to a laptop will
appear on the STBs menus, as well as being accessible to any
other Obje device on the network.

IV. IMPLEMENTATION

As noted earlier, our current hardware platform for the STB
is a small form-factor PC, to allow easier development of our
software infrastructure. Our software system has been ported
to a number of smaller devices, however, including a
commercial home gateway/server appliance and the
WindowsCE environment.

The STB software is implemented in Java, with platform-
specific extensions to handle interaction with I/O devices on
the hardware platform. These include interactions with the
television tuner, DVD player, and hardware-assisted video
CODEC and rendering card. The STB software itself is
approximately 1.9MB, including the services hosted on the
box, but of course also requires the bootstrap protocol
implementation as well as a JVM.

The current bootstrap protocol implementation is also in
Java, and is approximately 1.3MB including all necessary
libraries.

While we have targeted Java for portability and speed of
development, nothing in either the STB platform or bootstrap
protocol require Java. Alternative implementations could be
created in other languages, potentially with lower storage,
memory, and computation requirements.

Our platform’s architecture imposes an initial startup
latency when two peers begin communication; this is the
period during which initial negotiation happens, and any
necessary transfer of mobile code takes place. The process
requires two roundtrips after discovery (once to request and
receive the device’s ComponentDescriptor, and once to

request and receive any needed mobile code). This exchange
happens only once per connection between peers, and is
generally not perceptible to the end-user, as most message
payloads are on the order of hundreds of bytes, and most code
granules in our prototype system are on the order of a few
kilobytes. Once a code granule has been transmitted and
loaded, the bootstrap protocol is no longer involved, and
performance is determined by the efficiency of whatever per-
device transfer protocol the device developer may have
created, as well as that of the underlying physical transport. In
other words, after the initial negotiation and code loading
phase, performance can be the same as a device developer
would have provided natively.

V. RELATED WORK

A number of systems, from both the research and commercial
spaces, have explored platforms for networked media in the
home. The Universal Plug and Play [5] platform, for example,
uses a combination of “web-friendly” protocols (SOAP, HTTP,
RTP) coupled with the standardization of device type-specific
profiles (for MediaServers, MediaRenderers, Scanners, Printers,
and so forth) to support networked home media services. One
crucial difference between our platform and UPnP is that UPnP
requires agreement on device profiles, protocols, and media
types be built into all communicating devices at development
time; our platform requires only base-level agreements (for the
bootstrap protocol) and defers other mechanisms necessary for
communication until runtime.

The Jini platform [12] is perhaps closest to ours in spirit, as it
relies on mobile code for dynamic exchange of object
implementations at runtime. Jini itself, however, does not
combine this mechanism with an architecture specifically
designed to support media exchange; it does not, for example,
define common interfaces for new protocol handlers or
CODECs. Also, Jini—as a Java-centric platform—does not
allow the easy delivery of non-Java mobile code, nor does it
lend itself well to non-Java implementations, for footprint or
performance reasons.

Systems built around the Open Services Gateway Initiative
(OSGi) [10], such as [7][9] are analogous to ours in a number of
ways. First, they rely on a connected gateway box as a
centralized hub for home management and control. Second,
they have the ability to download new “bundles” of executable
content from a remote service provider, allowing them to extend
their functionality to new circumstances. One chief difference
between OSGi-based systems and ours, however, is the fact that
our platform supports peer-to-peer delivery of new capabilities,
allowing new devices that enter the network to immediately
extend their peers to be able to interact with them.

From the research community, Stanford’s iRoom system [6]
also supports dynamic interactions among devices and services.
Their system, however, is not intended specifically for home
media applications. Their architecture is focused primarily on
exchanging of control and event data through a “tuple space”
mechanism, rather than extensible streaming media data.

IEEE Transactions on Consumer Electronics, Vol. 51, No. 4, NOVEMBER 2005 1180

HP’s Cooltown system [8] likewise provides the ability for
ad hoc interactions among devices and services, using a web-
centric framework of protocols. While Cooltown leverages the
advantages of the web (simplicity, familiarity to developers),
it is also bound by the limitations of the web (limited range of
acceptable protocols and media formats, in particular), which
may weaken its appeal for streaming media applications.

VI. CONCLUSIONS

This paper has described a prototype software platform for
extensible set-top boxes, which aims to overcome some of the
limitations of current systems. Namely, our platform allows
devices on the home network to extend each others
capabilities, preserving compatibility as new sorts of devices
enter the network. We believe that this approach has the
potential to reduce consumers’ frustrations with
incompatibilities, repeated software updates and driver
downloads, by allowing decentralized distribution of
necessary software components at runtime.

This approach also has the potential to allow much more
lightweight experimentation with—and introduction of—new
media formats into the home network. By removing the
requirement that peer devices agree on specific content types
(which usually requires a standardization process), vendors
can more easily deploy custom content encodings, with their
required protocols and CODECs, and yet retain
interoperability; rather than requiring agreement on the
content encodings themselves, our approach requires only
agreement on the initial bootstrap protocol. Approaches such
as this have the potential to allow greater differentiation and
innovation without incurring the loss of compatibility, which
is usually a cost of evolution on the network.

The architecture of the system does impose a number of
costs, however. The chief among these is the requirement that
devices be able to accept and execute mobile code from peers
in order to achieve the full benefits of extensibility. Obviously,
devices that can provide and accept platform-independent
code deliver the broadest extensibility, but this requires that
they include an execution environment for Java bytecodes or
other similar portable execution formats. The system does
fully support native granules, which can potentially be
executed by peers without the overhead of a portable
execution environment, and potentially at higher performance;
in such a case, however, extensibility is limited to those
devices that can exchange compatible code granules.

The system’s reliance on mobile code also raises security
issues, of course. There are a number of solutions to this
problem, the most direct of which is for devices to only accept
granules signed by known providers. Thus, a vendor could
create a compatible, yet extensible, family of products that
would only accept “known safe” granules from products
signed by that vendor. Other approaches are possible,
including preventing mobile code loading from devices that
are not part of a restricted trust group, perhaps defined by the
owner of the devices—for example, to create a trusted group
of all of the devices within one household.

As noted earlier, another potential risk is through unwanted
distribution of CODECs or other code to unlicensed devices
on the network. Similar mechanisms can be used to protect
against such distribution, by encrypting code granules so that
they can only be decrypted (and thus, executed) on licensed
devices that possess the necessary key.

We are continuing our work to refine other aspects of our
STB platform and core protocol as well. One possibility that
we believe holds great promise is to use the granule capability
to deliver new Digital Rights Management (DRM)
implementations to peer devices. In much the same way that
Obje devices can deliver custom CODECs necessary to render
the media content they provide, these devices could also
provide custom DRM implementations, securing delivered
content, and providing whatever access rights are appropriate
to that content. In our model, the device that delivers the
content has opportunity to deliver the code that handles this
content, effectively allowing the content provider to control
both endpoints of the communications channel.

REFERENCES

[1] K. Arnold, J. Gosling, D. Holmes. 2000. The Java Programming
Language, Third Edition. Addison-Wesley, Sun Microsystems
Press. June 2000.

[2] N. Borenstein. and N. Freed. 1992. MIME (Multipurpose
Internet Mail Extensions): Mechanisms for Specifying and
Describing the Format of Internet Messages. Internet RFC 1341.

[3] W. K. Edwards, M. W. Newman, J. Z. Sedivy, T. F. Smith, and
S. Izadi. 2002. Challenge: Recombinant Computing and the
Speakeasy Approach. In Proceedings of the The Eighth ACM
International Conference on Mobile Computing and Networking
(Mobicom 2002), Atlanta, GA USA, September 23-28, 2002.

[4] W. K. Edwards, Mark W. Newman, Jana Z. Sedivy, Trevor F.
Smith. 2004. Supporting Serendipitous Integration in Mobile
Computing Environments. International Journal of Human-
Computer Studies, Vol. 60, No. 5-6, pp. 666-700. May, 2004.

[5] M. Jeronimo and J. Weast. 2003. UPnP Design by Example.
Intel Press, 2003.

[6] B. Johanson, A. Fox, and T. Winograd. 2002. The Interactive
Workspaces Project: Experiences with Ubiquitous Computing
Rooms. IEEE Pervasive Computing Vol. 1, No. 2, pp71-78.
2002.

[7] D. O. Kang, K. Kang, S. Choi, J. Lee. 2005. UPnP AV
Architectural Multimedia System with a Home Gateway
Powered by the OSGi Platform. IEEE Transactions on
Consumer Electronics, Vol. 51, No. 1, pp. 87-93, February
2005.

[8] T. Kindberg and J. Barton. 2001. A Web-Based Nomadic
Computing System. Computer Networks 35, 4, 443-456.

[9] X. Li and W. Zhang. 2004. The Design and Implementation of
Home Network System Using OSGi Compliant Middeware.
IEEE Transactions on Consumer Electronics, Vol. 50, No. 2, pp.
528-534. May 2004.

[10] OSGI Alliance. 2003. OSGi Service Platform, Release 3. IOS
Press, Amsterdam, The Netherlands. 2003.

[11] M. Rose. 2001. RFC 3080: The Blocks Extensible Exchange
Protocol Core. Internet Engineering Task Force (IETF). March,
2001.

[12] J. Waldo. 1999. The Jini Architecture for Network-centric
Computing. Communications of the ACM. pp. 76-82. July,
1999.

W. K. Edwards et al.: An Extensible Set-Top Box Platform for Home Media Applications 1181

Keith Edwards is an Associate Professor at the Georgia
Tech College of Computing, where his research applies
an HCI focus to problems of networking and security.
Prior to joining Georgia Tech he was a Principal
Scientist at the Palo Alto Research Center (PARC)
where he started and led the Speakeasy/Obje project, and
was involved in a number of other efforts combining
human-computer interaction research with systems and
networking infrastructure research.

Mark W. Newman is a research scientist at the Palo Alto
Research Center and a doctoral student in computer
science at the University of California Berkeley. Since
joining PARC in 2000, he has worked as part of the Obje
project to explore how users interact with ubiquitous
computing environments, and how systems can be
designed to better support those interactions. Mark was a
founding member of UC Berkeley's Group for User

Interface Research, where he was a key contributor to the design and
development of DENIM and the Designer's Outpost--two systems that helped
define the space of “informal user interfaces.”

Jana Z. Sedivy .was a research scientist at PARC from
between 2000 and 2005, during which time she was a
key contributor to the development of the Obje
Interoperability Framework. Her research spans the
intersection of Ubiquitous Computing and Human
Computer Interaction. She currently resides in Ottowa,
Ontario and serves on the board of directors for the

World Computer Exchange.

Trevor F. Smith is a member of the ubicomp group in
the computing science laboratory at the Palo Alto
Research Center.

Shahram Izadi is a research scientist within the
Computer Mediated Living Group at Microsoft Research,
Cambridge UK. His research centers on enabling novel
user experiences in a world of richly interconnected
devices and software services. His PhD, awarded at the
University of Nottingham, explored interaction with
diverse display technologies, in particular the intersection
between large situated displays and mobile devices.
Shahram has been involved in a number of research
projects including Equator and Dynamo, through which

he has created a variety of applications, and UI and middleware toolkits.

