
Computer Supported Cooperative Work9: 33–51, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

33

A Tale of Two Toolkits: Relating Infrastructure and
Use in Flexible CSCW Toolkits

PAUL DOURISH and W. KEITH EDWARDS
Xerox Corporation, Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
(E-mail: {dourish, kedwards}@parc.xerox.com)

(Received 5 February 1999)

Abstract. The design of software toolkits embodies a fundamental tension. On the one hand, it aims
to reduce programmer effort by providing prefabricated, reusable software modules encapsulating
common application behaviours. On the other, it seeks to support a range of applications, which
necessitates avoiding an overly-restrictive commitment to particular styles of application behaviour.

We explore this tension in the domain of collaborative applications, which we believe are
particularly subject to problems arising from this tension. Based on an analysis of the basic issues
of flexibility in toolkit design, we explore opportunities for the design of toolkits which avoid
application style commitments, with illustrations from two toolkits which we have developed. A
comparative analysis of these two approaches provides insight into the underlying questions and
suggests new design opportunities for toolkits that provide a framework for application enhancement
and extension.

Key words: collaboration infrastructure, collaborative toolkits, reuse, specialisation, tailorability,
toolkit design

1. Introduction

Flexibility and tailorability – the ability to accommodate individual differences
in needs, use, style or task – are endemic problem in software systems. Most
systems are created to be used by multiple people, in multiple organisations, on
multiple computers, at multiple times, and generally in a wide range of settings that
require different forms of support and engagement. Collaborative applications are,
if anything, subject to even more stringent demands due to the extra requirements
to accommodate individual differences within the same group, as well as the range
of ways in which groups organise and engage in their activities. The problems
of tailorability have been studied in the context of use, in both single-user and
group settings, in investigations such as those of Trigg et al. (1987), MacLean et
al. (1990), Nardi and Miller (1991) and Trigg and Bodker (1994).

We are concerned with flexibility in a different domain, the domain of software
toolkit design. However, we are motivated byjust the sameconcerns that motivated
the studies cited above. In other words, even though we are going to be talking
about software toolkits and discussing questions of applicationimplementation,



34 PAUL DOURISH AND W. KEITH EDWARDS

our concern is withuse. In particular, we are concerned with how toolkits can
be designed to accommodate the wide range of potential applications and situ-
ations in use. This is a more complex problem than simply the design of flexible
applications, because of the nature of toolkits and toolkit design.

Software toolkits ease the implementation of software systems by providing
reusable components and behaviours designed to be applicable in a range of
circumstances. Like building houses from prefabricated parts, this makes the
application developer’s task simpler (and, with luck, faster) since the work now
focuses on assembling and configuring components rather than on creating them
from scratch. As well as reducing effort and speeding application development,
this reuse of software components also offers a common conceptual framework for
application development, which can aid both application designers and users.

The components themselves arise out of common patterns of software structure
that occur across a range of applications in a particular domain. So for example, a
toolkit for constructing user interfaces provides interface “widgets” such as scroll-
bars and buttons which occur in different interfaces, and from which interfaces can
be constructed, as well as commonly-occurring behaviours such as mouse-tracking,
keyboard event processing and so on. A toolkit for image processing applications
might provide common objects such as pixel arrays and color maps and common
behaviours such as filtering, scaling and rotating image objects. Applications are
constructed using these components as building blocks.

The designer of a software toolkit, then, is faced with a complex task. The
toolkit designer doesn’t write applications, but writes software to beusedin appli-
cations; the details of those applications – what they will do, how they will do it,
and who will use them – are not available at the time when the toolkit is being
written. There are multiple levels of developers and users. The toolkit designer
is developing software that implements a toolkit. The “users” of the toolkit are
themselves programmers, who then generate applications whichthemselveshave
users. In order to provide a valuable and widely-applicable set of software compo-
nents, the software toolkit designer must anticipate the needs of the application
developers by anticipating the sorts of applications which will be created using the
toolkit, and so in turn must anticipate the behaviour and requirements of the users
of those applications. The toolkit developer’s conception of the likely applications
will influence the design of the software components provided in the toolkit.

It is from this two-level problem that the fundamental tension of toolkit design
arises. On the one hand, the toolkit designer must offer pre-packaged software
components, which come with pre-packaged behaviour and hence pre-packaged
expectations of usage patterns. At the same time, the toolkit designer’s goal is to
produce a set of components that can be used in as many different applications
as possible, thus making the application developers’s job easier. More specialised
toolkit components make the application development task easier, but limit the
range of applications which can be developed. The most fundamental issue in
toolkit design is to resolve this dilemma.



A TALE OF TWO TOOLKITS 35

Figure 1. For the toolkit developer, anticipating the needs of application developers
means anticipating the requirements of as-yet-unforumated applications and the needs of
as-yet-unknown users.

Typically, the two levels of the design problem – the design of the toolkit for
the purposes of the application developer, and the design of the applications for
the purposes of the user – are addressed independently. Although the needs and
requirements of specific applications and their users clearly play a major role in
the design of a toolkit, the decisions about toolkit design and application design
are usually made in isolation. In this paper, we aim to develop an approach which
brings them together, and which looks at software toolkit design in terms of the
constraints that toolkits introduce for the users of applications which might be
generated from that toolkit. Our concern is with an approach to toolkit design that
preserves the benefits of reuse but supports application-specific programming and
adaptation of the toolkit itself.

We look at this problem particularly in the domain of collaborative systems.
Although the issues we raise for toolkit design are general ones, we believe that the
demands of collaborative applications demonstrate them particularly well, not least
because of the range of ways in which different groups can engage in superficially
similar tasks.

We begin in Sections 2 and 3 by looking at the problem of flexibility in two
domains. First we explore flexibility in the domain of collaborative infrastructures,
and look at the approaches taken by previous work to support a range of applica-
tions with a limited set of toolkit components. Second, we examine flexibility in the
context of use – that is, flexibility required by the social and interaction dynamics
of collaboration. Our thesis is that there is a fundamental tension between these two
forms of flexibility, made manifest in the ways in which software infrastructures
embody commitments to particular working styles – commitments that may inter-
fere with the requirements of both application developers and end-users. Section
Four introduces a set of issues that highlight this tension.

From our discussion of the problem of flexibility we will then consider the ways
in which software toolkit developers have addressed these problems, and consider
toolkit flexibility in terms of the notions of genericity, extensibility, and specificity.
We will then outline our approaches, and give illustrations from two systems we
have developed – Intermezzo (Edwards, 1996a) and Prospero (Dourish, 1996a).



36 PAUL DOURISH AND W. KEITH EDWARDS

The details of these toolkits have been presented elsewhere, and we will not dwell
on them here. Rather, our intention is to step back and consider the relationship
between the techniques that they employ, and to try to learn from their orientation
to the problems of flexibility.

The design of these toolkits is based on a reconsideration of the boundary
between the application and toolkit. Like conventional toolkits, they offer applica-
tion programmers common structures and run-time behaviours; but unlike conven-
tional toolkits, they provide application programmers with the means to incorporate
their own functionality to specialise those structures and behaviours to the needs of
specific applications. Although Intermezzo and Prospero take different approaches,
the common elements in their design suggest new opportunities for a model of
collaborative toolkit design which helps bridge the gap between infrastructure and
use by creating toolkits that can incorporate application-specific detail.

2. Flexibility in CSCW infrastructure implementation

The need to support a variety of application behaviours, and to support them across
a wide range of potential implementation substrates (e.g. different network topo-
logies and characteristics) has led collaboration toolkit developers to confront a
bewildering array of potential areas of flexibility and control. The basic entities
out of which a collaborative application might be constructed using a particular
toolkit – abstractions such as “shared object” or “workspace” – embody a range of
implementation decisions and options. We refer to this level of system provision as
“infrastructure”, since it provides a common level of technological support on top
of which applications will be implemented. We consider a number of elements of
this infrastructure here.

2.1. ASPECTS OF INFRASTRUCTURE FLEXIBILITY

Data distributionconcerns the ways in which the computational representations
of data available to participants (the text in a collaborative writing system, the
records in a multi-user database or the marks on a shared whiteboard) will be
located, found, accessed and moved in a collaborative system. For example, a
single copy of any data item may be located on a central server, or multiple copies
may be accessible at each node in the network. Data objects may be stored at fixed
locations through the course of a session or collaboration, or may move around
according to the pattern of access which emerges. Access to this distributed data
must be regulated so as to maintain consistency in each user’s view. Suchconsis-
tency controlmay be achieved through regulating access to the shared data store,
or by requiring clients to obtain locks on data items, or by outlawing sequences
of action which might result in inconsistency.Accessto the data store may be
governed by permission settings, by roles, or by opportunity.Sessionsmay arise



A TALE OF TWO TOOLKITS 37

simply through the individual actions of collaborators, or may be set up explicitly,
and might be managed on an invitation basis, or regulated by an individual.

Dourish (1995a) outlines three aspects of flexibility in the design of CSCW
systems.Static flexibility refers to the extent to which the system can support a
variety of collaborative needs (such as “synchronous” or “asynchronous” work.1)
Dynamicflexibility reflects a system’s ability to respond to the changing circum-
stances of a collaborative session (such as changes in group membership).Imple-
mentationflexibility refers to the ability of a system to operate over a range of
implementation substrates (such as different forms of network or network topology,
or different approaches to data store management). To one extent or another, each
of these is a concern for the development of any toolkit, just as a failure of any, in
a toolkit or an application, can itself move from being an infrastructure problem to
one of use.

2.2. EXISTING APPROACHES

To illustrate the ways in which toolkit developers attempt to offer flexibility to
support different applications, we will briefly discuss programmer control in three
sample systems – Suite, Oval and COLA.

Suite is multi-user application toolkit which focuses on editor-based interfaces
implemented over a shared data model (Dewan, 1990; Dewan and Choudhary,
1992). Programmer control over aspects of the infrastructure is provided through
the coupling mechanism betweenshared active variablesandinteraction variables
(Dewan and Choudhary, 1995). Shared active variables are the abstract variables
of the shared workspace, available (in one form or another) to the different parti-
cipants in a collaborative session, while interaction variables are the local proxies
of the shared active variables in any one user’s interface. In other words, if three
people are editing a form simultaneously, there is one “shared active variable”
representing the contents of a particular field, and three “interaction variables”,
one in each person’s interface. User interaction happens “at” the interaction vari-
ables, and coordination between users happens “at” the shared active variables. The
coupling between these variable types, then, is essentially where the multi-user
interaction resides. Interaction variables are organised intocoupling sets, which
are in turn described bycoupling attributes(controlling the degree of sharing of
data values, presentation, etc.) andtransmission attributes(controlling the circum-
stances under which one user’s changes will be reflected in the interfaces of others).
By allowing programmers to select different attribute parameters for different sets
of variables, Suite provides the opportunity to manage coupling fluidly for different
application needs.

Oval is a “radically tailorable” toolkit for collaborative applications which is
derived from a considerable body of research into the use of “semi-structured”
information systems (Malone et al., 1995). Oval is named for its four basic
components –Objects, Views, Agentsand Links – out of which applications



38 PAUL DOURISH AND W. KEITH EDWARDS

are constructed. Objects are semi-structured records; Views are visualisations of
objects and object collections; Agents are production rules which can be triggered
by conditions such as Object field values; and Links are connection between
objects, to form networks, hierarchies, etc. Oval’s radical tailorability is essen-
tially a form of end-user programming, allowing the construction of applications
in terms of these basic components, and an environment which allows this to be
done visually and incrementally. Users essentially combine and configure the pre-
packaged components (such as particular Views) to create new applications. The
“radical” aspect of this approach is that it applies techniques from traditional tailor-
able systems and uses them to create, essentially, a specialised visual programming
language for collaborative application production.

COLA (Cooperative Objects in Lightweight Transactions) is a CSCW support
platform based on a distributed system perspective (Trevor et al., 1995). COLA
employs two primary mechanisms for achieving flexibility. The first is the use of
“object adaptors” (Trevor et al., 1994), which allow objects to present different
views and functionality, and to be handled differently from different perspectives
within the system. The second, and more wide-ranging, is that COLA rigorously
enforces a distinction betweenmechanismandpolicy. This approach is based on
a strong separation between, on the one hand, the fundamental components of
a system and their inherent behaviours (the mechanisms of the system) and, on
the other, the way they are combined in order to create higher-level interactive
behaviours (driven by policy). One common example in user interface develop-
ment is a scroll-bar; the system can provide mechanisms (such as mouse-sensitive
regions and a coupling between mouse movement and pane movement), without
embodying a commitment to interface policy (such as whether the scroll-bar
appears to the left or the right of the contents, which mouse buttons operate it,
and where the arrow buttons might appear). Similarly, in COLA, policy decisions
(concerning how users will work together) are left to the application, and the toolkit
simply provides fundamental mechanisms necessary for the creation of a range of
policy-driven instances.

In these and other systems, then, the concerns of flexibility in infrastructure
have been a significant element of the development of collaborative toolkits, and
these systems illustrate a range of solutions – parameterisation, customisation and
the mechanism/policy separation – which have been employed to address them.

3. Flexibility in collaborative application use

The previous section examined the problems inherent in addressing flexibility
from the standpoint of infrastructure developers; this section explores flexibility
in the context of application use. Studies of cooperative working have repeatedly
emphasised the importance of fluidity and flexibility of coordination and activity.

Dourish and Bellotti (1992) report on a study of the use of the ShrEdit shared
text editor (McGuffin and Olson, 1992) in cooperative design tasks by small groups



A TALE OF TWO TOOLKITS 39

in an experimental setting. In comparison with a number of other cooperative
writing tools of the same period, ShrEdit is highly unstructured. The group can
share any number of textual documents, in which each author has an individual
insertion point, and in which any number of authors can be working concurrently.
ShrEdit employs an implicit locking mechanism, but locks at the level of charac-
ters, so that authors only come into conflict when two of them attempt to place
their edit point at exactly the same character in the document. Changes made by
any author are reflected almost immediately in the windows of the other authors
(presuming that their view is scrolled to include the areas where the others are
working), so that they have real-time access to each other’s work.

Dourish and Bellotti’s observations repeatedly emphasise the fluid and self-
organising nature of the cooperative group activity engaged in by a number of
sets of authors. Far from finding the lack of structured support for the cooperative
writing process problematic, the authors would negotiate and manage the structure
of their collaborative process in a natural and straightforward way. Groups varied in
how they did this; some took separate responsibility for different parts of a single,
long document, some worked largely in their own documents and then integrated
their work towards the end of the experimental period, and others would essentially
engage in free-for-all activity over the whole document. Perhaps more importantly,
no group worked solely in any one way; rather, the “shared feedback” that the
synchronous shared workspace provided to the group as a whole acted as a resource
both for the individuals and for the groups as a whole to manage the group process
on a moment-by-moment basis. This shared context allowed them to respond to the
immediate circumstances of their work, build on what they could see each other
doing, and negotiate, both explicitly and implicitly, the informal division of labour
by which their activity was organised.

Beck and Bellotti (1993) report on other experiences of co-authoring, in quite
different settings; the primary collaboration described was the naturally-occurring
collaborative writing of an academic conference paper by two authors separated by
six thousand miles and eight time zones. (Elsewhere, Beck (1994) has reported on
other studies of collaborative authoring that provide further supporting evidence
for the observations made in this study.) A significant finding in this work was
that, while the authors would establish a division of labour and a plan for the
coordination of their joint work over the document, this pre-arranged plan would
be regularlyand unproblematicallyignored in the actual performance of the work.
That is, while the authors might divide up responsibility for two sections of docu-
ment, they would each, in fact, make contributions to the other’s section, whether
to correct typos or to add substantive material relevant to their own sections, as
relevant. In fact, Beck and Bellotti observe, the success of the collaborative process
may in many cases depend on just this sort of “opportunistic” action that success-
fully advances the group’s work while failing to uphold the separation of individual
activities.



40 PAUL DOURISH AND W. KEITH EDWARDS

As we can see, the collaborative setting requires a fluid and flexible style of
interaction to be effective. This requirement of flexibility in use is, however, often
at odds with the choices made by toolkit developers in attempting to provide infra-
structure flexibility, and discussed previously. In the next section, we explore the
tensions between application infrastructure and application use.

4. The interaction of use and infrastructure

By definition, collaboration involves the activities of multiple users, the presence
of whom affects the nature of the systems we build. On the systems side, our
applications and toolkits must be cognizant of multiple input streams, must address
consistency control, and may potentially have to deal with problems of distribution.

The presence of multiple users also has implications for the social aspects
of the systems we create. A multiuser application becomes a medium for inter-
personal exchange, with all of the potential concerns (as well as benefits) which
that entails (Bentley and Dourish, 1995). Examples of the more socially-oriented
aspects of collaborative systems that must be addressed include privacy of parti-
cipants, awareness, and support for the rapidly shifting roles of the participants in
the collaboration.

So, these concerns, the “social” and the “technical”, are deeply intertwined.
However, despite this, they are typicallyexploredin isolation; not just in different
papers, but in different rooms at conferences. Toolkit designers focus primarily
on the range of applications they wish to support in motivating and evaluating the
flexibility of their toolkits. Those engaging in user studies or studies of collabo-
rative work settings typically do this with reference to the facilities provided by
specific applications or the requirements for new ones. In other words, the focus
of the toolkit designer suggests that applications can be thought of independently
of the situations in which they will be used; while those studying collaborative
activities suggest, inversely, that applications can be studied independently of the
toolkits and infrastructure facilities which give rise to them. We believe that neither
position is workable.

Our concern, then, is not with the implications for applications of flexible
patterns of group work, nor with the implications for application development
of flexible infrastructure. Rather, we are primarily concerned with the direct
interaction between use and infrastructure, and its consequences.

For example, the decision of a particular toolkit to provide locking, or optimistic
serialization, or some other concurrency control mechanism affects the style of
use of the applications built with that toolkit.2 For instance, one way to ensure
consistency is to require that any process (and so, any user) must hold a lock on a
shared object before that object can be modified. However, a heavyweight locking
mechanism like this can interfere with the ways in which a group will organise
their work. For example, if each region (or each pixel) of a shared whiteboard is
thought of as a shared object, then a heavyweight locking strategy would prevent



A TALE OF TWO TOOLKITS 41

two users from drawing lines that cross (since they would both have to modify the
same region at once, at the point of intersection). Clearly, this is an inappropriate
degree of structure for a casual, lightweight interaction, but since it is imposed
by the toolkit (which handles shared objects and consistency management), the
application developer has little control.3 Greenberg and Marwood (1994) have
examined a range of such concurrency control techniques and their influence on
interaction.

Consider as a second example a toolkit that uses the notion of roles to estab-
lish access control for data objects. In a shared text editor application, these roles
might include editor, author, and commentator. Such roles codify a set of social
practices that exist at a certain moment in time, but are not easily adaptable to new
situations and cannot accommodate the moment-to-moment shifting interactions
which characterize so much of interpersonal communication. Previous work by
Dewan et al. (1994) and Neuwirth et al. (1990) has noted such problems.

Both of these examples illustrate how choices in infrastructure design can
influence the user interface and multiuser “social interface” of our systems.

The point of these examples is not to say that certain styles of locking or access
control are necessarily bad; rather, they show that any choice of implementation
strategy can potentially influence application functionality and hence usage. Any
toolkit designer endeavors to accommodate a wide range of applications. But
designers of toolkits for collaborative systems must take special care they not only
allow but supportthe construction of applications that are responsive to the fluid
styles of interaction required by collaboration.

5. Aspects of flexibility

In order to consider the relationship between the functionality and variability
offered in a toolkit and the requirements of both application developers and end-
users, we need some ways to think about toolkit flexibility. We will consider
flexibility here in terms of three concepts –generic, extensibleandspecialisable
systems.

Generic systems exploit the fundamental aspect of toolkit design that we intro-
duced at the start of the paper. Toolkit components are designed to be applicable
in a range of circumstances; that is, they are generic. Designs emphasise common
functionality, independent of circumstances. The extent to which components are
generic varies from case to case. For instance, consider a user interface component
that provides a scroll bar. One way to do this (the “scroller” approach) is to provide
a component that can be attached to a window, and that can be used to move the
viewport so that the window pans over content in a larger workspace. Another
way to do it (the “slider” approach) is to provide a component that users can
move around and that controls the value of an associated variable. Clearly, the
slider approach can be used to create a scrollbar (by moving the window contents
when the variable changes), although this involves more work by the application



42 PAUL DOURISH AND W. KEITH EDWARDS

developer than the pre-packaged scrollbar approach; so the slider approach is more
generic. In the “generic” mode, then, the variability in the system component is
how it is connected to the rest of the system; generic components are built to be
“plugged in” to systems in a variety of contexts. The component itself doesn’t
change, but is general enough to apply widely.

The idea of extensible systems refers to the opportunities the toolkit offers
programmers to extend its functionality by incorporating new objects and beha-
viours as if they were predefined ones. Extensible toolkits are ones whose function-
ality can be extended beyond their original boundaries. For example, Suite provides
not only particular styles of interface coupling, but also the means to define new
ones that can be used in just the same ways as the originals. So, in extensible
systems, the variability lies in the way that new behaviours can be made available
alongside existing ones, as new parts of the design.

Specialisation refers to the ability toadjust (rather than extend) toolkits
structures to meet the demands of specific applications and specific application
requirements. We draw a distinction, then, between the creation of new objects
and behaviours (extensibility) and the modification of existing ones (specialisa-
tion). This distinction is a fine one, but crucial; there are many cases in which
extensibility fails because of the internal relationships between components. For
example, consider a case where we wish to modify a collaborative toolkit so make it
suitable for use in presentations, and in particular where we want to give it a shared
cursor that is considerably larger than the default. In an extensible toolkit, we could
create a new shared cursor object and make it larger and more prominent, but it
would only be available in applications that used our new type of cursor. Existing
applications, or existing components that used cursors, would be unaffected and
would still be using the original cursor. In other words, extensibility creates new
functionality, whereas specialisation augments or refines existing behaviour.

Generic, extensible and specialisable techniques are by no means mutually
exclusive routes to flexibility in toolkit design. Instead, they areaspectsof flexi-
bility, reflecting particular styles and approaches. We introduce the terms as a form
of characterisation, not as a taxonomy. Toolkits, or even particular techniques, are
not uniformly of one sort or another, but tend to combine aspects of each. For
instance, take the example of the larger shared cursor again. The original cursor
object may have some parameters that could be adjusted to control its appearance.
Perhaps it has a “big” flag that doubles it size. Perhaps it offers four different size
settings, or perhaps ten. Perhaps it has an internal control for adjusting its scale
to any size. Perhaps it offers similar controls over its color, or its transparency. At
what point does this sort of parametric control cease to be a form of genericity and
begin to be a form of specialisation? There is no clear dividing line; we use the
terms instead to reflect aspects of how the toolkit’s flexibility is offered, rather than
as absolute categorisations.

The generic, extensible and specialisable approaches give us a framework to
consider the issues of flexibility in toolkit design. Generic and extensible toolkits



A TALE OF TWO TOOLKITS 43

provide their users (the developers of applications) with the means to create
and incorporate new behaviours. In contrast with fixed techniques, they give the
application developer much more control, and begin to blur the distinction between
“toolkit” and “application” (or between “toolkit programming” and “application
programming”). Specialisation blurs that boundary further, by providing a means to
incorporate understandings about the application requirements and behaviour into
the infrastructure the toolkit provides. In the next section, we discuss two toolkits
we have developed and show their approaches to specialisation.

6. New approaches to CSCW toolkit flexibility

We will illustrate these issues and potential solutions with reference to two partic-
ular toolkits that we have designed and implemented: Intermezzo (Edwards, 1996a)
and Prospero (Dourish, 1996a). Intermezzo is designed to support thecoordina-
tion aspects of collaboration: the tasks associated with rendezvous of participants,
awareness, and policy. A principal element in the toolkit’s design is that it reifies
the setting in which the collaboration occurs by gathering and exposing information
about user activity to applications. Further, applications can modify the behavior
of the toolkit based the situational context of the collaboration represented by
this activity information. Prospero (Dourish, 1996a) deals largely with the areas
of distributed data management and consistency control. It exploits an architec-
tural approach called “Open Implementation” (Kiczales, 1992, 1996) in which the
abstractions and mechanisms offered by a system (such as a toolkit) can not only
be used by its clients (applications), but can also be examined and manipulated,
and hence specialized to the needs of particular situations.

While Intermezzo and Prospero were developed independently, and take
different approaches to the problem of toolkit flexibility, they have a number of
interesting features in common. First, they are motivated by many of the same
concerns with the interaction of toolkit structure and application use; and second,
they share a common technical concern with flexibility through specialisation
rather than through genericity. This section presents the approaches taken by both
systems to provide flexibility to application writers.

Intermezzo and Prospero have both been described elsewhere. Our goal here
is not to provide another presentation of their structure and use. Instead, we use
the two systems to illustrate the specialisation approach to infrastructure flexibility
and customisation, as a stepping stone towards a fuller discussion of the approach
to infrastructure development based on the relationship between infrastructure and
use.

6.1. EXAMPLE: FLEXIBILITY THROUGH AWARENESS IN INTERMEZZO

Intermezzo addresses flexibility by providing an infrastructure by which some of
the technical aspects of collaborative applications can be mediated by input about



44 PAUL DOURISH AND W. KEITH EDWARDS

the social setting in which the collaboration occurs. For example, a collaborative
writing application may need to accommodate different styles of session manage-
ment or access control during the course of a collaboration based on the shifting
goals and needs of the participants. To support this form of dynamic flexibility,
Intermezzo brings information about the participants of the collaboration, their
activities, and their environment into the realm of the toolkit. This information is
made available to applications (modulo privacy restrictions) in a machine-parsable
format. Further, the toolkit itself uses this information about situational context to
regulate its internal operations.

Intermezzo relies on information about the state of the world that is repre-
sented as a database of objects describing user activity. Representations of activity
are hierarchical and allow application-specific “views” of the world state at any
number of semantic levels. Activity information has a structured format and
supports links between related objects. In the Intermezzo model, applications them-
selves are responsible for maintaining the global view of the world, and the toolkit
provides support (much of it automatic) for publishing and updating this informa-
tion. For example, when an Intermezzo-based collaborative writing tool is started,
it will publish information describing itself (the tool), its users, and the documents
being edited. The format of the published data allows it to be searched, updated,
and viewed easily by other applications.

The principal way in which Intermezzo provides flexibility to applications is by
allowing them to adapt not just their own behaviour, but also the behavior of the
toolkit in reaction to the changing dynamics of the world in which they are run.
Applications change toolkit behaviour in two ways. The first is by downloading
code into the runtime system that runs in response to changes in world state. This
downloaded code can be tied to any change in the environment, and can directly
affect application or toolkit state.

Downloaded code, which is written in an extended version of the Python
language (Van Rossum, 1995), can be directly executed by the runtime system
at the time it is transmitted; can be set to “fire” when a particular change on a
specific object occurs in the activity database; or can fire whenever the database
state achieves a certain “pattern,” as described via a pattern matching language. By
associating portions of application code with objects “in the world,” application
behavior can be directed and influenced by changes in situational context.

The second way applications can change the behavior of the toolkit is through
the use of situationally-based access control (Edwards, 1996b). Intermezzo uses
strong, cryptographically-secure access control throughout. The objects to which
access is controlled are not just the objects created by the application to maintain
domain-specific application state, they also include objects used internally by the
toolkit. By constraining access to toolkit functions and data, applications can effect
global changes in the behaviour of the toolkit itself. For example, application code
can provide situational control over inter-application behaviour such as session
management through this technique (Edwards, 1994).



A TALE OF TWO TOOLKITS 45

The actual access control settings of various objects – both in the application
and in the toolkit – are under the control of a language-based policy system that
uses information about the situational context as an input. Applications use the
access control system by writing “policies” – which are essentially access control
templates – and binding them to “roles.” Unlike traditional roles, however, the
membership of an Intermezzo role isdescribedby a predicate function, rather
thandefinedby a membership list. This technique allows applications to be written
in terms of general descriptions of user behavior and context, rather than more
limiting specific definitions. For example, an application could respond to general
description of “the set of people currently in my lab,” rather than the more static
and restrictivea priori enumeration of the names of specific people often found in
my lab.

By mediating the systems-oriented aspects of access control, session manage-
ment, and awareness with input about the context in which a collaboration is
occurring, Intermezzo provides applications withdynamicflexibility – the ability
to match and adapt to the changes in a group’s interactions over time. Intermezzo
enables applications to more easily support groups that move fluidly between
various styles of work.

6.2. EXAMPLE: FLEXIBLE CONSISTENCY CONTROL IN PROSPERO

One of Prospero’s major areas of concern is consistency control for collabora-
tive applications. Consistency control is the mechanism by which a collaborative
system ensures that the potentially simultaneous actions of multiple users over a
shared data space do not result in inconsistent views of the data space. For instance,
consider a medical system supporting shared access to patient records. To ensure
speedy response, the system might replicate the database, placing copies of the
patient records at different points in the network. If two users were to simultan-
eously update the same record, and their changes were to be made to their own
copies of the records before being sent across the network, then an inconsistency
would have arisen, since their respective copies of “the same” record would display
different information.

Since the shared spaces of collaborative systems can be modeled as databases,
most CSCW systems have looked to the models provided in distributed database
design for consistency mechanisms. The most common mechanisms in database
design are forms of “locking,” in which a “lock” for data to be modified is obtained
before the changes can be made. The locking mechanism forces clients to declare
their intent to update records before the updates are actually made, and so provides
an opportunity to avoid inconsistency by having the system refuse to grant locks
if the actions might conflict with others. If multiple clients simultaneously request
“read locks” (locks obtained by clients which intend to read data), then they can
all be granted, because there is no opportunity for inconsistency to arise, since
read operations will not change the data. However, if one client has already been



46 PAUL DOURISH AND W. KEITH EDWARDS

granted a “write lock” for a piece of data, then no other client will be granted a
second “write lock” until the first client has finished, because two simultaneous
writes might result in inconsistency – a write/write conflict. In many situations,
an outstanding write lock might also prevent any further read locks being granted,
because the reading client might receive data which has become out of date.

The database model, with its read and write semantics, is very generic; it
supports a wide range of potential collaborative activities. However, drawing on
the interaction of use and infrastructure outlined above, we can identify a number
of problems. Locking out operations because of potential conflicts can interfere
with the smooth progress of collaboration; and the read and write semantics are
such that many activities look like conflicts even if, in fact, they will not lead
to inconsistency. For example, consider two users working on a bibliographical
database, which records citation details for publications. Adding two records at
once will not lead to conflicts; either they’re the same record (in which case,
they match to the same new record to be added, which should be an acceptable
operation), or they’re different records (in which case, they should both be added).
However, to the database substrate, these will look like two write operations, and
so a conflict will be flagged. In other words, the configuration of the infrastructure,
a database storage layer with a conflict avoidance mechanism based on read and
write semantics, will interfere with the execution of collaborative work, forcing
users to interleave their activities.

Prospero’s approach is to allow consistency control to be specified in terms of
the domain semantics of particular collaborative applications (Dourish, 1996b).
The paradox, of course, is that this makes consistency management a toolkit
concern, but yet the toolkit, as a general facility, must be free of exactly the
type of specific application features from which we want to construct this mech-
anism. The toolkit itself, then, does not operate in terms of pre-defined application
semantics (although it provides a reusable and extensible core set of potential prop-
erties applicable in some range of situations). Instead, it provides the framework
within whichthey can be defined. So, the developer of the bibliographical database
example would describe the semantic properties of application operations (such as
the non-destructive writes implied by adding new entries to the database), and then
the toolkit can manage consistency in these terms. The toolkit is specialised to the
needs of the particular implementation.

Prospero uses a pairwise comparison of operation properties, much like the
read/write comparison model, to decide when sets of operations might conflict.
However, using the metalevel control (that is, the mechanism for programmers
to modify or augment internal toolkit facilities) allows the programmer to gain
control over this process and cast it in terms of the application specifics. Since the
comparison is done in terms of operations which are meaningful at the application
level, rather than simply those meaning at the infrastructure level, the toolkit can
support a range of behaviours specific to each situation, which would be disallowed
by a traditional approach implemented over a standard database model. In this



A TALE OF TWO TOOLKITS 47

way, a link is achieved between the configuration of the infrastructure and the
particularities of each particular application.

7. The design of flexible CSCW toolkits

Intermezzo and Prospero illustrate two different approaches to achieving flexibility
in toolkit design. However, they share a common set of concerns, and in particular,
a common reaction to the traditional mechanisms of toolkit flexibility.

The standard approach to flexibility in toolkit design (in any domain, not just
CSCW) is throughgeneric design. This approach involves the design ofgeneric
toolkit facilities, applicable to the widest range of applications. For instance, a
standard database model, with access control and consistency management based
on “read” and “write” access, is highly generic, and can therefore serve as an
infrastructure for a very wide range of CSCW applications. Access to the shared
data store can be implemented in terms of read and write operations, in whatever
way the application might then use those reads and writes to support the specific
application needs. As a generic mechanism, then, the traditional approach takes the
read/write database model as a useful basis for the design of a toolkit which can be
used to build CSCW applications of all sorts.

Intermezzo and Prospero take almost theoppositeapproach to the provision
of flexibility in CSCW toolkits. Their primary concern is with the design of
effective, functional CSCW applications, and so they are concerned with the highly
specificbehaviours observed in collaborative settings. As we have explored in this
paper, these behaviours depend in crucial ways on the variety of infrastructural
configurations within which cooperation takes place.

The implication, then, is that applications require widely different infrastructure
provisions, rather than a single highly generic mechanism onto which a variety of
application requirements can somehow be “mapped”. The question of flexibility in
Intermezzo and Prospero, then, is how the toolkit can be specialised and adapted to
the particular needs of a given collaborative situation, rather than how that partic-
ular situation can be described in terms of whatever toolkit components happen
to be lying around. The latter would argue for an arbitrarily large “vocabulary” of
toolkit building blocks. Instead, we argue for the ability to specialise the toolkit in a
“deep” way to the needs of its applications. The generic design approach attempts
to remove from the infrastructure any dependency on particular contexts of use,
but it provides no means for context to be re-established. Specialisation gives us a
way to incorporate context again, and this is what Intermezzo and Prospero do. In
doing this, though, they focus on different concerns.

Intermezzo primarily addressesdynamic flexibility: the ability of applications
to track the changing circumstances in which they are run and adapt their behavior
accordingly. The infrastructure mediates its own operation through application-
supplied code that takes as input a repository of information about the application’s
context. Architecturally, Intermezzo takes a “programming language” approach,



48 PAUL DOURISH AND W. KEITH EDWARDS

providing specialised languages in which the needs of specific applications can be
described.

Prospero primarily addressesimplementation flexibility: the ability of appli-
cations to “open up” the internal constructs of the toolkit and adapt it to their
particular requirements. Applications can modify and specialize toolkit-internal
constructs, which the toolkit will then use to provide application support. At the
same time, it provides novel mechanisms such as the divergence/synchronisation
approach to distributed data management (Dourish, 1995b) which generalise across
the traditional boundaries of collaborative systems, as a means to address (by
reformulating) issues of static flexibility. Architecturally, Prospero is based on the
“Open Implementation” approach which makes aspects of the toolkit, traditionally
only available for “use” by applications, amenable to examination, modification
and control. (It is perhaps interesting that the Open Implementation approach is
derived from work in the theory and design of programming languages. Perhaps
this work lends further support to the theory that Computer Science is a bell-shaped
curve around programming language design and implementation.)

The different architectures, however, belie a shared underlying technical goal:
to let application code “push semantics” into the toolkit to accomplish particular
goals. This goal is motivated by both technical and social or observational needs.
Technically, providing such a mechanism is a solution to the perennial problem
of flexibility in toolkit design. Socially, semantic features (the “meaning” and
behavioural consequences of toolkit configurations) are seen to be crucial in the
emergence of forms of group behaviour, and so are ineliminably the concern of
application developers and users, not of toolkit designers, who, by definition, are
separated from the situations in which the toolkit mechanisms will be realised in
particular applications and put to use in particular circumstances.

8. Conclusions

The days when CSCW applications were build by hand, from scratch, are long
behind us. Not only is such an approach increasingly technologically impractical
(as systems get larger and more complex, and as users demand more and more from
the applications they use), but it is also inviable commercially. Like applications
in any other domains, CSCW applications depend on toolkits to provide them
with standard, reusable approaches to application design and mechanisms to be
deployed. The critical concern for the designer of a CSCW toolkit is the range of
behaviours (and hence of applications) which can be supported.

The design of toolkits, and the flexibility implied by the range of mechanisms
they provide and the range of ways in which they can be combined, has typically
been approached purely as a technical problem. However, the radical degrees of
flexibility implied and required by collaborative work, and observable in studies
of groups working together, undermines this position. Observational studies have
pointed to the range of ways in which collaborators organise (and reorganise) their



A TALE OF TWO TOOLKITS 49

work, and these studies illustrate how group behaviour is critically dependent not
simply on the “high-level” facilities which collaborative applications offer, but also
on the “low-level” issues of infrastructure configuration which lies beneath these
applications.

These observations suggest that the problem of toolkit flexibility is not one of
providing generic mechanisms, but rather is one of gaining control over the rela-
tionship between the application and the infrastructure. Semantic issues cannot be
locked inside a toolkit, inaccessibly to the application designer and the user; rather,
the semantics required of the toolkit come from applications and circumstances
of use. In other words, the focus for design should be the three-way relationship
amongst toolkits, applications and use, rather than the traditional pair of two-way
relationships (toolkit/application and application/use). In this way, the problem of
tailorability – incorporating local modifications and specialisations to adapt a tool
to the needs of a particular set of users – is a problem not only for interface design,
but for the deeper areas of system development.

We have outlined and motivated these problems by appeal to a number of
studies, and shown how two toolkits, Intermezzo and Prospero, tackle these prob-
lems. Intermezzo and Prospero were designed independently, employ different
computational architectures and address different domains of concern to the
designer of a CSCW toolkit. However, they share a concern with the relation-
ship between application and infrastructure, and with making this accessible so
that application developers can free themselves from the rigid models which
are embodied (and often hidden) in CSCW toolkits. Intermezzo and Prospero
both emphasise flexibility through application specialisation, rather than flexibility
through abstraction and genericity.

The general concern which motivates these two systems, and the mechan-
isms which they embody, point the way towards a new model of toolkit design
which is grounded not simply in the technical concerns of generic infrastructure
mechanisms, but rather which is based in understandings of how collaboration
works.

Acknowledgments

Prospero was designed and implemented while Paul was employed at the Rank
Xerox Research Centre (formerly EuroPARC) and studying at University College,
London; Intermezzo was designed and implemented while Keith was studying in
the College of Computing at Georgia Institute of Technology. We would like to
thank the voices that spoke to us and told us what to say. Some of these belonged
to Beth Mynatt, John Stasko, Dik Bentley, Jon Crowcroft, Beki Grinter, and Prasun
Dewan.



50 PAUL DOURISH AND W. KEITH EDWARDS

Notes

1. We do not believe these terms are unproblematic – hence the “scare quotes” – but use them
to refer to a set of relatively well-understood application usage situations recognised in the
literature.

2. We will discuss approaches to consistency control in more detail later.
3. The most likely strategy in this case would be to write the whiteboard application in such a

way that each user has a private cache which is then updated in the background, so that users
don’t have to deal with locks. This is a more complex structure that the application requires,
but is necessitated by the underlying structure of the toolkit. This is what Kiczales (1992) called
“coding between the lines.”

References

Beck, E. and V. Bellotti (1993): Informed Opportunism as Strategy. InProceedings of the Third
European Conference on Computer-Supported Cooperative Work ECSCW ’93, Milano, Italy.
Dordrecht: Kluwer.

Beck, E. (1994):Practices of Collaboration in Writing and their Support. PhD thesis, University of
Sussex (Technical Report CSRP 340, ISSN 1350 3162).

Bentley, R. and P. Dourish (1995): Medium vs. Mechanism: Supporting Collaboration Through
Customisation. InProceedings of the European Conference on Computer-Supported Cooperative
Work ECSCW ’95, Stockholm, Sweden. Dordrecht: Kluwer.

Crowley, T., P. Milazzo, E. Baker, H. Forsdick and R. Tomlinson (1990): MMConf: An Infrastruc-
ture for Building Shared Multimedia Applications. InProceedings of the ACM Conference on
Computer-Supported Cooperative Work CSCW ’90, Los Angeles, California. New York: ACM.

Dewan, P. (1990): A Tour Through the Suite User Interface Software. InProceedings of the ACM
Symposium on User Interface Software and Technology UIST ’90, Snowbird, Utah. New York:
ACM.

Dewan, P. and R. Choudhary (1992): A High-Level and Flexible Framework for Implementing Multi-
User Interfaces. InProceedings of the ACM Conference on Computer-Supported Cooperative
Work CSCW ’92, Toronto, Canada. New York: ACM.

Dewan, P., R. Choudhary and H. Shen (1994): An Editing-based Characterization of the Design
Space of Collaboration Applications.Journal of Organizational Computing, vol. 4, no. 3,
pp. 219–240.

Dewan, P. and R. Choudhary (1995): Coupling the User Interfaces of a Multiuser Program.ACM
Transactions on Computer-Human Interaction, vol. 2, no. 1, pp. 1–39.

Dourish, P. and V. Bellotti (1992): Awareness and Coordination in Shared Workspaces. InProceed-
ings of the ACM Conference on Computer-Supported Cooperative Work CSCW ’92, Toronto,
Canada. New York: ACM.

Dourish, P. (1995a): Developing a Reflective Model of Collaborative Systems.ACM Transactions on
Computer-Human Interaction, vol. 2, no. 1, pp. 40–63.

Dourish, P. (1995b): The Parting of the Ways: Divergence, Data Management and Collaborative
Work, in Proceedings of the European Conference on Computer-Supported Cooperative Work
ECSCW ’95, Stockholm, Sweden. Dordrecht: Kluwer.

Dourish, P. (1996a):Open Implementation and Flexibility in a CSCW Toolkit. PhD dissertation,
Department of Computer Science, University College, London.

Dourish, P. (1996b): Consistency Guarantees: Exploiting Application Semantics for Consistency
Management in a Collaboration Toolkit. InProceedings of the ACM Conference on Computer-
Supported Cooperative Work CSCW ’96, Boston, MA. New York: ACM.



A TALE OF TWO TOOLKITS 51

Edwards, K. (1994): Session Management in Collaborative Applications. InProceedings of the ACM
Conference on Computer-Supported Cooperative Work CSCW ’94 Chapel Hill, North Carolina.
New York: ACM.

Edwards, K. (1996a):Coordination Infrastructure in Collaborative Systems. PhD dissertation,
College of Computing, Georgia Institute of Technology, Atlanta, Georgia.

Edwards, K. (1996b): Policy and Roles in Collaborative Applications. InProceedings of the ACM
Conference on Computer-Supported Cooperative Work CSCW ’96, Boston, MA. New York:
ACM.

Greenberg, S. and D. Marwood (1994): Real-Time Groupware as a Distributed System: Concurrency
Control and its Effect on the Interface. InProceedings of the ACM Conference on Computer
Supported Cooperative Work CSCW ’94, Chapel Hill, North Carolina. New York: ACM.

Hill, R., T. Brinck, S. Rohall, J. Patterson and W. Wilner (1994): The Rendezvous Architecture and
Language for Multi-User Applications.ACM Transactions on Computer-Human Interaction, vol.
1, no. 2, pp. 81–125.

Kiczales, G. (1992): Towards a New Model of Abstraction in the Engineering of Software. In
Proceedings of the IMSA Workshop on Reflection and Metalevel Architecture, Tokyo, Japan.

Kiczales, G. (1996): Beyond the Black Box: Open Implementation.IEEE Software, pp. 6–11,
January.

McGuffin, L. and G. Olson (1992):ShrEdit: A Shared Electronic Workspace. CSMIL Technical
Report, Cognitive Science and Machine Intelligence Laboratory, University of Michigan.

MacLean, A., K. Carter, T. Moran and L. Lovstrand (1990): User-Tailorable Systems: Pressing the
Issues with Buttons. InProceedings of the ACM Conference on Human Factors in Computing
Systems CHI ’90, Seattle, Washington. New York: ACM.

Malone, T., K.-Y. Lai and C. Fry (1995): Experiments with Oval: A Radically Tailorable Tool for
Cooperative Work.ACM Transactions on Computer-Human Interaction, vol. 13, no. 2, pp. 175–
205.

Nardi, B. and J. Miller (1991): Twinkling Lights and Nested Loops: Distributed Problem Solving
and Spreadsheet Development. In Greenberg (ed.):Computer-Supported Cooperative Work and
Groupware. Academic Press.

Neuwirth, C.M., D.S. Kaufer, R. Chandhok and J. Morris (1990): Issues in the Design of
Computer Support for Co-authoring and Commenting. InProceedings of the ACM Conference
on Computer-Supported Cooperative Work CSCW ’90. New York: ACM, pp. 183–195.

Roseman, M. and S. Greenberg (1996): Building Real-Time Groupware with GroupKit, a Groupware
Toolkit. ACM Transactions on Computer-Human Interaction, vol. 3, no. 1.

Trevor, J., T. Rodden and J. Mariani (1994): The Use of Adapters to Support Cooperative Sharing.
In Proceedings of the ACM Conference on Computer-Supported Cooperative Work CSCW ’94,
Chapel Hill, North Carolina. New York: ACM.

Trevor, J., T. Rodden and G. Blair (1995): COLA: A Lightweight Platform for CSCW.Computer
Supported Cooperative Work, vol. 3, pp. 197–224.

Trigg, R., T. Moran and F. Halasz (1987): Adaptability and Tailorability in Notecards. In Bullinger
and Shackel (eds.):INTERACT ’87. North Holland.

Trigg, R. and S. Bodker (1994): From Implementation to Design: Tailoring and the Emergence
of Systematization in CSCW. InProceedings of the ACM Conference on Computer-Supported
Cooperative Work CSCW ’94, Chapel Hill, North Carolina. New York: ACM, pp. 45–54.

Van Rossum, G. (1995):Python Reference Manual Release 1.3. October 13 (available as http://
www.python.org/doc/ref/ref.html).




