

I---- - .- - ~--

rl he crisis was imminent. Gaphical user intefaces were quick4 adopted by the sighted ml
community as a more intuitive inteface. Ironically, these intefaces were deemed more

I
accessible 6y the sightedpopuhtion because they seemed approachable for novice com-
puter users. The danger was tangible in the forms of Lostjobs, barriers to education,
and the simple fitiation of being lej behind as the computer industry charged abead

About the Authors:

KEITHEDWARDS
is a research assistant

and Ph.D. candihe in

the Graphics,

V&ua&ation, and

Usability Center at

Georgia Tech.

ELIZABETH MYNAIT
is a Research Scientist in

the Graphics,

?%ua&ation and

Usabilig Center at

Georgia Tech. She

directs the M&imedia

Computing Group,

which focuses on research

in auditory and colkzbo-

rative interfaces.

JXATHRYNSTOCKTON
graduated in 1334jom

Georgia Tech with a

Master? in Computer

Science and is currently

working in Portland,

Oregon for Metberrs

Corporation.

Much has changed since that article was pub-
lished. Commercial screen reader interfsces now
exist for two of the three main graphical envi-
ronments. Some feel that the crisis has been
adverted, that the danger is now diminished. But
what about the opportunity? Have graphical user
interfaces improved the lives of blind computer
users? The simple answer is not very much.

This opportunity has not been realized
because current screen reader technology pro-
vides access to graphical screens, not graphical
inte&es. In this paper, we discuss the histori-
cal reasons for this mismatch as well as analyze
the contents of graphical user interfaces. Next,
we describe one possible way for a blind user to
interact with a graphical user interface, inde-
pendent of its presentation on the screen. We
conclude by describing the components of a
software architecture which can capture and
model a graphical user inrerface for presenta-
tion to a blind computer user.

Accessing Interfaces

The design of screen readers for graphical inter-
faces is centered around one goal: allowing a
blind user to work with a graphical application
in an efficient and intuitive manner. There are a
number of practical constraints which must be
addressed in the design. First, collaboration
between blind and sighted users must be sup-
ported. Blind users do not work in isolation and
therefore their interaction with the computer
must closely model the interaction which sight-
ed users experience. A second, and sometime
competing, goal is that the blind user’s interac-
tion be intuitive and efficient. Both social and
pragmatic pressures require that blind users not
be viewed as second class citizens based on their
effectiveness with computers.

The careful balance between these two goals
is often violated by screen readers which pro-
vide a blind user with a representation of the
computer interface which is too visually-based.

interacrions .

Essentially these systems provide access to the
screen contents, not the application inter&cc.
The distinction between these two terms will be
discussed at length later in this section. Suffice
to say that the application interface is a collcc-
tion of objects which are related to each other
in different ways, and which allow a variety of
operations to be performed by the user. The
screen contents are merely a snapshot of the
presentation of that interface which has been
optimized for a visual, two dimensional display.
Providing access to a graphical inn&cc in
terms of its screen contents forces the blind user
to first understand how the interface has been
visually displayed, and then translate that
understanding into a mental model of the actu-
al interface.

In this section, we will briefly describe
graphical user interfaces, focusing on their
potential benefits for sighted and nonsighted
users. Next we will examine three historical rca-
sons why screen reader technology has not
adapted sufficiently to the challenge of provid-
ing access to graphical user interfaces. We will
complete our argument by exploring the levels
of abstraction which make up a graphical user
interface.

The Power of GUIs
For much of their history, computers have been
capable of presenting only textual and numeric
data to users. Users reciprocated by specifj4ng
commands and data to computers in the form
of text and numbers, which were usually typed
into a keyboard. This method of interaction
with computers was only adequate at best.

More recently, advances in computer power
and display screen technology have brought
about a revolution in methods of human-com-
puter interaction for a large portion of the user
population. The advent of so-called Graphical
User Interfaces (or GUIs) has been usually wcll-
received. In this section we examine some of the

. january 1995

._ :,
. --- --

,

defining characteristics of GUIs, and explore
some of the traits that make them useful to the
sighted population. This examination will
motivate our design of a powerful interface for
users with visual impairments.

As implemented today, most GUIs have sev-
eral characteristics in common:

. The screen is divided into (possibly overlap-
ping) regions called windows. These win-
dows group related information together.

9 An on-screen cursor is used to select and
manipulate items on the display. This
on-screen cursor is controlled by a physi-
cal pointing device, usually a mouse.

l Small pictographs, called icons, represent
objects in the user’s environment which
may be manipulated by the user. A snap-
shot of a typical graphical user interface is
shown in Figure 1.

GUIs are quite powerful for sighted users for
a number of reasons. Perhaps, most important-
ly, there is a direct correlation between the
objects and actions which the GUI supports
and the user’s mental model of what is actually
taking place in the computer system. Such a

system is often called a direct manipulation
interface, since to effect changes in the comput-
er’s state, the user manipulates the on-screen
objects to achieve the desired result. Contrast
this design to textual interfaces in which there
are often arbitrary mappings between com-
mands, command syntax, and actual results.
Direct manipulation interfaces are usually intu-
itive and easy to learn because they provide
abstractions which are easy for users to under-
stand. For example, in a direct manipulation
system, users may copy a file by dragging an
icon which “looks” like a file to it’s destination
“folder.” Contrast this approach to a textual
interface in which one may accomplish the
same task via a command line such as “cp
mydoc.tex +keith/tex/docs.” Of course, the syn-
tax for the command line interface may vary
widely from system to system.

In addition to direct manipulation, GUIs
provide several other important benefits:

l They allow the user to see and work with
different pieces of information at one
time. Since windows group related infor-
mation, it is easy for users to lay out their
workspaces in a way that provides good

Figure 1

A typical

graphical user

interface

interactions . . . january 1995

article l

access to all needed information.
l An interface to multitasking is easily sup-

ported on most GUI-based systems. Each
window provides a separate input/output
point of control for each process which is
running in the system. Processes continue
running and users attend to the windows
they choose.

l The graphical images used in GUIs lend
themselves to the easy implementation of
interface metaphors. The graphics support
the metaphor by providing a natural
mapping between metaphor and on-
screen representation of the metaphor.

,
It is important to note that the power of

graphical user interfaces lies not in their visual
presentation, but in their ability to provide
symbolic representations of objects which the
user can manipulate in interesting ways.

Historical Reasons for Screen-Based Access
There are three major trends which help explain
screen-based designs for accessing graphical
interfaces. First, at one point in time, the screen
contents closely equaled the application inter-
face. The precursor to graphical interfaces were
ASCII-based command-line interfaces. These
interfaces presented output to the user one row
at a time. Input to the interface was transmitted
solely through the keyboard, again in a line-by-
line manner. Screen reader systems for com-
mand line interfaces simply presented the
contents of the screen in the same line by line
manner, displaying the output via speech or
braille. Input to the interface was the same for
sighted and nonsighted users. In this scheme,
both sighted and nonsighted users worked with
the same interface - only the presentation of the
interface varied. These strategies were sufftcient
as long as visual interfaces were constrained to
80 columns and 24 rows. However, the advent
of the graphical user interfsce has made these
strategies obsolete.

/

Second, reliance on translating the screen
contents is caused, in part, by distrust of screen
reader interfaces and concern about blind users
not being able to use the same tools as sighted
users. The general sentiment is that “I want to
know what is on the screen because that is what
my sighted colleague is working with.” As con-

i q interactions. .

,i
- ------.-;

cepts in graphical user interfaces became indus-
try buzzwords, it was not uncommon to hear
that blind users required screen readers that
allowed them to use the mouse, drag and drop
icons, and shuffle through overlapping win-
dows. Although a popular notion in human-
computer interface design is that the user is
always right, it is interesting to compare these
requirements with the requirements of sighted
users who want auditory access to their comput-

I

er. Current work in telephone-based interaction
with computers allows a user to work with their
desktop applications over the phone [lo]. These
interfaces perform many of the same functions
that screen readers do - they allow the user to
work with an auditory presentation of a graphi-
cal inter&e. Yet these system do not translate
the contents of a graphical screen. Instead they
provide an auditory interface to the same con-
cepts conveyed in the graphical interfaces.

Third, limitations in software technology
have driven the use of screen-based access sys-
tems. The typical scenario to providing access
to a graphical application is that while the
unmodified graphical application is running,
an external program (or screen reader) collects
information about the graphical interface by
monitoring drawing requests sent to the screen.
Typically these drawing requests contain only
low-level information about the contents of the
graphical interface. This information is general-
ly limited to the visual presentation of the intcr-
face and does not represent the objects which
are responsible for creating the interface and
initiating the drawing requests.

Modeling Application Interfaces
At one level, an application interface can be
thought of as a collection of lines, dots, and text
on a computer screen. This level is the lexical
interpretation of an interface: the underlying
primitive tokens from which more meaningful
constructs are assembled.

At a higher level, we can group these primi-
tives into constructs such as buttons, text entry
fields, scrollbars, and so forth. This level is the
syntactic level of the interface. Lexical con-
structs (lines, text, dots) are combined into
symbols which carry with them some meaning.
While a line in itself may convey no informa-
tion, a group of lines combined to form a push

. january 1995

-- ____l_--.

button conveys the information, “I am push-
able. If you push me some action will occur.”

There is a still higher level though. At the
highest level, we can describe an interface in
terms of the operations it allows us to perform
in an application. We might describe an inter-
face in terms of the affordances [3] of the on-
screen objects. For example, buttons simply
provide a means to execute some command in
the application; menus provide a list of possible
commands, grouped together along some orga-
nizing construct; radio buttons provide a means
to select from a group of settings which control
some aspect of the application’s behavior. It is

application allows us to perform.
By divorcing ourselves from the low-level

graphical presentation of the interface, we no
longer constrain ourselves to presenting the
individual graphical elements of the interface.
By separating ourselves from the notion of
graphical buttons and graphical scrollbars, we
do away with interface objects which are mere-
ly artifacts of the graphical medium.

Does it make sense to translate application
inter&es at the semantic level? Lines and dots on
a screen, and even buttons and scrollbars on a
screen, are simply one manifestation of the appli-
cation’s abstract interface. By translating the inter-

. . . the most importdnt chdrdcteristics of dn

dpplicdtion’s intefdce dye the set of d&ions the interfdce

dews us to tdke, H ’ m bow those dctions

me dctmby presented to the user on screen.

the operators which the on-screen objects allow
us to perform, not the objects themselves,
which are important. This level is the semantic
interpretation of the interface. At this level, we
are dealing with what the syntactic constructs
actually represent in a given context: these
objects imply that the application will allow the
user to take some action.

Seen from this standpoint, the most impor-
tant characteristics of an application’s interface
are the set of actions the interface allows us to
take, rather than how those actions are actually
presented to the user on screen. Certainly we
can imagine a number of different ways to cap-
ture the notion of “execute a command” rather
than a simple push button metaphor represent-
ed graphically on a screen. In linguistic terms,
the same semantic construct can be represented
in a number of different syntactic ways.

This concept is the central notion behind
providing access to graphical interfaces: rather
than working with an application interface at
the level of dots and lines, or even at the higher
level of buttons and scrollbars, our goal is to
work with the abstract operations which the

lice at the semantic level, we are free to choose
presentations of application semantics which
make the most sense in a nonvisual presentation.

Certainly we could build a system which con-
veyed every single low-level lexical detail: “There
is a line on the screen with endpoints and .” The
utility of such an approach is questionable,
although some commercial screen readers do
construct inter&es in a similar manner.

Alternatively, we could apply some heuristics
to search out the syntactic constructs on the
screen: “There is a push button on the screen at
location .n Certainly this method is better
approach than conveying lexical information,
although it is not ideal. Screen readers which
use this method are taking the syntactic con-
structs of a graphical interface (themselves pro-
duced from the internal, abstract semantics of
the actions the application affords), and map-
ping them directly into a nonvisual modality.
Along with useful information comes much
baggage that may not even make sense in a non-
visual presentation (occluded windows, scroll-
bars, and so forth, which are artifacts of the
visual presentation). Certainly interacting with

interactions . , . january 1995

such an interface is not as efficient as interact-
ing directly with a presentation explicitly
designed for the nonvisual medium.

We believe that transforming the application
interface at the semantic level is the best
approach for creating usable and eff%zient non-
visual interfaces. We can take the operations
allowed by the application and present them
directly in a non-visual form.

The question at this point is: are sighted and
blind users working (and thinking) in terms of
the same constructs? It is clear that they are if
we translate the interface at the syntactic level.

Xt lntrinsics

Xlib

X Protocol

We argue that by con-
straining our semantic
translation so that we
produce “similar”
objects in our non-visu-
al presentation that the
native application pro-
duces in its default
graphical presentation,
we maintain the user’s
model of the applica-
tion interface. By giving

Figure 2 things the same names (buttons, menus, win-
Layers in a typical dows), sighted and non-sighted users will have
X Window system the same lexicon of terminology for referring to

application interface constructs.

Nonvisual Interaction With Graphical Interfaces

This section presents a set of implications for
designers of nonvisual interfaces driven by our
philosophy of translation at the semantic level.
This discussion is presented in the context of
the design of a particular nonvisual interface to
provide access to graphical applications.

Auditory and Tactile Output of Symbolic
Information
The first step in transforming a semantic model
of a graphical inte&ce into a nonvisual inter-
face is to convey information about the individ-
ual objects which make up the interface. It is
necessary to convey the type of the object (e.g.
menu, push button), its attributes (e.g. high-
lighted, greyed out, size), and the operations it
supports. Since the presentation of the objects
is independent of its behavior, auditory and tac-
tile output can be used as separate or comple-
mentary avenues for conveying information to

the users. Our design focuses exclusively on the
use of auditory output as a common denomi-
nator for North American users. Braille users
will require additional, redundant braille our-
put for textual information in the interface.

The objects in an application inte&ce can be
conveyed through the use of speech and non-
speech audio. Nonspeech audio, in the form of
auditory icons [3] and filters [4], convey the type
of an object and its attributes. For example, a
text-entry field is represented by the sound of an
old-fashioned typewriter, while a text field which
is not editable (such as a error message bar) is rep-
resented by the sound of a printer. Likewise a tog-
gle button is represented by the sound of a
chain-pull light switch while a low p”ss (muf-
fling) filter applied to that auditory icon can con-
vey that the button is unavailable; that is, grayed
out in the graphical interface. The auditory icons
can also be modified to convey aspects of the
interface which are presented spatially in the
graphical interface such as the size of a menu or
list. For example, all menus can be presented as a
set of buttons which are evenly distributed along
a set pitch range (such as 5 octaves on a piano).
As the user moves from one menu button to
another, the change in pitch will convey the rela-
tive size and current location in the menu. Finally,
the labels on buttons, and any other textual infor-
mation, can be read by the speech synthesizer.

In most screen reading systems, the screen
reader will not have adequate access to the
semantics of the application. To offset this
problem, the screen reader must incorporate
sematic information in the way that is models,
and eventually presents, the graphical interface.
The important concept is that symbolic infor-
mation in the interface should be conveyed
through symbolic representations which are
intuitive for the user. By layering information
in auditory cues, blind users interact with inter-
face objects in the same way that sighted users
interact with graphical objects.

SpatiaI versus Hierarchical Modeling of
Object Relationships
The next step is to model the relationships
between the objects which make up the nppli-
cation interface. Two principal types of rela-
tionships need to be conveyed to the users,
First, parent-child relationships are common in

q interactions. . . january 1995

----.- _ __ ._. .._.- _ _
7. -‘..

_, ‘. _.-- %

X Application

Mercator components

-+7 Network communications

-> Inter-object communication

graphical interfaces. An object is a child of
another object if that object is contained by the
parent object, such as menu buttons which
make up a menu, or a collection of objects
which form the contents of a dialog box. In
graphical interfaces these relationships are often
conveyed by the spatial presentation of the
graphical objects. Second, cause-effect relation-
ships represent the dynamic portions of the
graphical interface. For example, pushing a but-
ton makes a dialog box appear.

These relationships form the basis for navigat-
ing the application interface. Both of these rela-
tionships can be modeled with hierarchical
structures. Parent-child relationships form the
basis for the hierarchy and cause and effect rela-
tionships are modeled by how they modify the
parent-child object structure. Navigation is sim-
ply the act of moving from one object to another
where the act of navigating the interface rein-
forces the mental model of the interface structure.

In short, information about the graphical
interface is modeled in a tree-structure which
represents the graphical objects in the interface
(push buttons, menus, large text areas etc.) and
the hierarchical relationships between those
objects. The blind user’s interaction is based on
this hierarchical model. Therefore blind and
sighted users share the same mental model of
the application interface (interfaces are made
up of objects which can be manipulated to per-
form actions) without contaminating the
model with artifacts of the visual presentation
such as occluded or iconitied windows and

interactions .

other space saving techniques used by graphical
interfaces. In general, the blind user is allowed
to interact with the graphical interface indepen-
dent of its spatial presentation.

At the simplest level, users navigate the
interface by changing their position in the
interface tree structure via keyboard input.
Each movement (right, left, up or down arrow
keys) positions the user at the corresponding
object in the tree structure or informs the user,
through an auditory cue, that there are no
objects in the requested location. Additional
keyboard commands allow the user to jump to
different points in the tree structure. Likewise
keyboard shortcuts native to the application as
well as user-defined macros can be used to
speed movement through the interface.

The hierarchical navigation model is extend-
ed to work in a multi-application environment.
Essentially the user’s desktop is a collection of
tree structures. Users can quickly jump between
applications while the system stores the focus
for each application context. The user’s current
focus can also be used to control the presenta-
tion of changes to the application state. For
example, a message window in an application
interface may (minimally) use the following
modes of operation:

l Always present new information via an
auditory cue and synthesized speech.

l Signal new information via an auditory cue.
l Do not signal the presentation of new

information.

, january 1995

Figure 3

The architecture

of Mercator

,

These modes of operation can be combined
in various ways depending on whether the
application is the current focus. For example,
an object can use one mode (always present via
speech and/or nonspeech) when the application
is the current focus and use another mode (sig-
nal via an auditory cue) when the application is
not the current focus. Cues from applications
which are not the current focus are preceded by
a cue (speech or nonspeech) which identifies
the sending applications.

Input Semantics and Syntax
We must also make a distinction, not only
between the syntax and semantics of applica-
tion output, but also between the syntax and
semantics of application input. In a graphical

Window System [S]. The system is currently in
its third major revision [5].

X is the de facto standard windowing system
for Unix workstations. It is an open system con-
trolled by the X Consortium, a vendor-neutral
standards body. Figure 2 shows the layers of
toolkits and libraries on which Xt-based appli-
cations are built. X is based on a client-server
architecture, where X applications communi-
cate with a display server via a nenvork proto-
col. This protocol is the lowest layer of the X
hierarchy. Xlib and the Xt Intrinsics provide
two programming interfaces to the X protocol.
Xlib provides th e concept of events and pro-
vides support for drawing graphics and text.
The Xt Intrinsics provide the concept of wid-
gets (programmable interface objects) and pro-

At one extreme of t..e spectrum, it is possible to

construct d system wbicb is completely

both the application and the window system.

i
1
4

interface, the semantic notion of “selection’ (for
example, activating a push button) may be
accomplished by the syntactic input of double
clicking the mouse on the on-screen push but-
ton. In the nonvisual medium we wish to pre-
serve the input semantics (such as the notion of
selection) while providing new input syntax
which maps onto the semantics.

Our interfaces provide currently two input
modalities: keyboard input and speech recogni-
tion. In the keyboard domain, the selection
semantic is mapped to a keypress (currently the
Enter key on the numeric keypad). Users who
wish to perform selection via voice commands
simply utter a keyword (“Select”) which invokes
the seIect action. The underlying mechanisms in
the screen reader system take the input actions
in the new modality and produce the syntactic
input required to control the application.

An Architecture For X Window Access

We now present a system which implements the
interface described above. This system, called
Mercator, is designed to provide access to the X

vide a basic set of widgets. Most X applications
are developed using libraries of widgets layered
on top of the Intrinsics. Motif and Athena are
nvo common widget sets.

The nonvisual interfaces produced by
Mercator require high-level semantic informa-
tion about the graphical interfaces of running
applications. The system must be able to capture
information from running (and unmodified)
applications, maintain this information in a
model of the application interface, and then
transform the interface model to the new modal-
ity. Further, the system must be able to accept
user input in new modalities and transform this
input into the visually-oriented input expected
by applications (mouse clicks, for example).

We now present a design space of potential
solutions for information capture from running
applications. Next, we discuss a set of moditica-
tions to the Xlib and Xt libraries which we have
made and which have been accepted as a stan-
dard by the X Consortium. We describe how
we store information about the application
interface. Finally we describe how our system

/ i q interactions . . . ja nua r y 1995

-7 7-,-- . . _(/ ; ,. _----. -,-- -; - .--.
11

- -- .- ;
.“..

: -: ” .-.

I

implements input and output and maps from

I the graphical world into the nonvisual one.
I
!
1 A Spectrum of Solutions for Information

Capture
How do we gather semantic information from

I running applications? How do we attain our
goal of translating application interfaces at the
semantic, rather than syntactic or lexical, level?

When we began our work we found that
there is a spectrum of possible design choices
for information capture. There are trade-offs
between application transparency and the
semantic level of the information available to us
in this design space.

External Approaches.

At one extreme of the spectrum, it is possible to
construct a system which is completely external
to both the application and the window system.
This point in the design space is essentially the
approach taken by the initial version of
Mercator: an external agent interposed itself
between the client applications and the X
Window System server. This approach has the
advantage that it is completely transparent to
both the application and to the window system.
In the case of Mercator, the external agent
appeared to the client to be an X server; to the
“real” X server, Mercator appeared to be just
another client application. There was no way for
either to determine that they were being run in
anything other than an “ordinary” environment.

This approach, while providing complete
transparency, has a serious drawback however.
Since we are interposing ourselves between the
application and the window system, we can
only access the information that would normal-
ly pass benveen these two entities. In the case of
our target platform, the XWindow System, this
information is contained in the X Protocol
which is exchanged between applications and
the window server. While the X Protocol can

describe any on-screen object (such as a button
or a text area), it uses extremely low-level prim-
itives to do so. Thus, while our system might
detect that a sequence of lines was drawn to the
screen, it was difftcult to determine that these
lines represented a button or some other on-
screen object.

While the level of information captured by a
system taking this approach depends on the
particular platform, in general this method will
provide only lexical information.

Our initial system did make use of another
protocol called Editres [7] that allowed us to
obtain some higher-level information about the
actual structure of application interfaces. Thus,
we could gain some information about interface
syntax with which to interpret the lexical infor-
mation available to us via the X Protocol. From
our experiences, however, we determined that
the level of information present in the X
Protocol and Editres was insufficient to build a
reliable and robust screen reader system.

Internal Approaches.
At the other extreme on the information cap-
ture spectrum, we can modify the internals of
individual applications to produce non-visual
interfaces. In this approach, the highest possible
level of semantic information is available since
in essence the application writer is building two
complete interfaces (visual and non-visual) into
his or her application. Of course the downside
of this approach is that it is completely non-
transparent: each application must be rewritten
to produce a non-visual interface.

Obviously this approach is interesting as a
reference point only. It is not practical for a
“real world” solution.

Hybrid Approaches.
There is a third possible solution to the infor-
mation capture problem which lies near the
midpoint of the two alternatives discussed

At the other extreme on the information capture

spectrum, we can modz$ the of individual
tipplications to prodztce non-visual interfdces.

interacrions . . . january 1995

.._ --

AcknowIedgements

This work has been

spomored by Sun

Microytems Laboratories

and the NASA Mar&all

Space Flight Cetttex We

are indebted to them for

their qpport.

Graphics, Visualization,

and Usability Center

College of Computing

Georgia Institute of

Technology Atlanta,

GA 30332-0280

keithOcc.gatech.edu,

beth@cc.gatech.edu,

kathrynBmetheus.com

above however. In this solution, the underlying
interface libraries and toolkits with which
applications are written are modified to com-
municate information to an external agent
which can implement the non-visual interface.
This approach can potentially provide much
more semantic information than the purely
external approach: application programmers
describe the semantics of the application inter-
face in terms of the constructs provided by
their interface toolkit. The interface toolkit
then produces the actual on-screen syntax of
these constructs.

The benefit of this strategy is that we do gain
access to fairly high-level information. This
approach cannot provide the level of semantic
knowledge present in the purely internal strate-
gy however, since the semantic level of informa-
tion captured depends on the semantics
provided by the toolkit library (and toolkits
vary greatly in the semantic level of the con-
structs they provide). Still, for most platforms,
toolkit modifications will provide access to
enough useful information to accomplish a
semantic translation of the interface.

The drawback of this approach is that, while
it is transparent to the application programmer
(that programmer just uses the interface toolkit
as usual, unaware of the fact that the toolkit is
providing information about the interface to
some external agent), there must be a way to
ensure that applications actually use the new
library. Requiring all applications to be relinked
against the new library is not feasible. Many
systems support dynamic libraries, but this is
not a practical solution for all platforms.

Rationale for Our Information Capture
Strategy
During our use of the first version of Mercator
it became clear that the protocol-level infor-
mation we were intercepting was not sufficient
to build a robust high-level model of applica-
tion interfaces. Up until this point we had not
seriously considered the hybrid approach of
modifying the underlying X toolkits because
of our stringent requirement for application
transparency.

From our experiences with the initial proto-
type, we began to study a set of modifications
to the Xt Intrinsic-s toolkit and the low-level

Xlib library. These modifications could be used
to pass interface information off to a variety of
external agents, including not just agents to
produce non-visual interfaces, but also testers,
profilers, and dynamic application configura-
tion tools.

Originally our intention was to build a mod-
ified Xt library which could be relinked into
applications to provide access (either on a pcr-
application basis, or on a system-wide basis for
those platforms which support run-time link-
ing). Through an exchange with the X
Consortium, however, it became clear that the
modifications we were proposing could be
widely used by a number of applications. As a
result, a somewhat modified version of our
“hooks” into Xt and Xlib have become a part of
the standard XI 1R6 release of the X YVindow
System. A protocol, called RAP (Remote Access
Protocol) uses these hooks to communicate
changes in application state to the external
agent. Figure 3 shows the architecture of the
current system.

As a result of the adoption of our hooks by
the X Consortium, our concerns with the trans-
parency of this approach have been resolved.
Essentially our hybrid approach has become an
external approach: it is now possible to write
non-visual interface agents which exist entirely
externally to both the application and the win-
dow server, and only use the mechanisms pro-
vided by the platform.

Interface Modeling

Once Mercator has captured information
about an application’s interface, this informa-
tion must be stored so that it is available for
transformation to the nonvisual modality.
Application interfaces are modeled in a data
structure which maintains a tree for each client
application. The nodes in this tree represent
the individual widgets in the application,
Widgets nodes store the attributes (or
resources) associated with the widget (for
example, foreground color, text in a label, cur-
rently selected item from a list).

There are three storage classes in Mercator:
the Model Manager (whcih stores the state of
the user’s desktop in its entirety), Client (which
stores the context associated with a single appli-
cation), and XtObject (which stores the attrib-

interactions. . . january 1795

-- ------ -. _ _ _.._ _ - --.-

utes of an individual Xt widget). Each of these
storage classes is stored in a hashed-access, in-
core database for quick access. Each storage
class has methods defined on it to dispatch
events which arrive while the user’s context is in
that object. Thus it is possible to define bind-
ings for events on a global, per-client, or per-
object basis.

Other components of Mercator can access
this data store at any time. A facility is provid-
ed to allow ‘conservative retrievals” from the
data store. A data value marked as conservative
indicates that an attempt to retrieve the value
should result in the generation of a RAP mes-
sage to the application to retrieve the most
recent value as it is known to the application.
This facility provides a “fail safe” in case certain
widgets do not use the approved X Window
System AI% to change their state.

Implementing Interfaces

The preceding sections of this paper described
our strategies for information capture and stor-
age from running X applications. Capturing
and storing interface information is only a por-
tion of the solution, however. A framework for
coordinating input and output, and for pre-
senting a consistent, usable, and compelling
non-visual interface for applications is also
required.

This section describes how our system cre-
ates effective non-visual interfaces based on the
interface information captured using the tech-
niques described above.

Rules for Translating Interfaces
We have designed our system to be as flexible as
possible so that we can easily experiment with
new non-visual interface paradigms. To this
end, Mercator contains an embedded inter-
preter which dynamically constructs the non-
visual interface as the graphical application
runs. The auditory presentation of an applica-
tion’s graphical interface is generated on-the-fly
by applying a set of transformation rules to the
stored model of the application interface as the
user interacts with the application.

These rules are expressed in an interpreted
language and are solely responsible for creating
the non-visual user interface. No interface
code is located in the core of Mercator itself.

article

This separation between the data capture and
I/O mechanisms of the system from the inter-
face rules makes it possible for us to easily tai-
lor the system interface in response to user
testing. The presence of rules in an easily-
modifiable, human-readable form also makes
customization of the system easy for users and
administrators.

Our interpreted rules language is based on
TCL (the Tool Command Language [6]), with
extensions specific to Mercator. TCL is a light-
weight language complete with data types such
as lists and arrays, subroutines, and a variety of
control flow primitives; Mercator rules have
available to them all of the power of a general-
purpose programming language.

When Mercator is first started, a base set of

-: ‘:.- 5 ,.-, :- ., ,
. . . ,’

)‘,’ ..‘, ._
*_,. .I

rules is loaded which provides some simple key-
bindings, and the basic navigation paradigm.
Each time a new application is started,
Mercator detects the presence of the applica-
tion, retrieves its name, and loads an applica-
tions-specific rule file if it exists. This allows an
administrator or user to configure an interface
according to their desires.

,:;
t,- L I

,’
‘. ,. :.

. ‘; r’

Event/Action Model 2; ;
_-

After start-up time, rules are fired in response
to Mercator events. Mercator events repre-
sent either user input or a change in state of
the application (as represented by a change in
the interface model). Thus, we use a tradi-
tional event-processing structure, but extend
the notion of the event to represent not just
user-generated events, but also application-
generated events. Events are bound to
actions, which are interpreted procedures
which are fired automatically whenever a par-
titular event type occurs. Action lists are
maintained at all levels of the storage hierar-
thy, so it is possible to change event-action
bindings globally, on a per-client basis, or a
per-widget basis.

As stated before, actions are fired due to
either user input or a change in the state of the
application. In the second case, we fire actions
at the point the data model is changed, which
ensures that the applications-generated actions
are uniformly fired whenever Mercator is aware
of the change. The call-out to actions occurs
automatically whenever the data store is updat-

,.‘ ~-
, .

.,
i-‘-

interactions . . . january 1995

ed. This technique is reminiscent of access-ori-
ented programming systems, in which change-
ing a system variable automatically triggers the
execution of some code. [9].

System Output
All output to the user is generated through the
interface f&s. The “hard-coded” portions of
Mercator do not implement any interface. This
reliance on interpreted code to implement the
interface makes it easy to experiment with new
interface paradigms.

Interface rules generate output by invoking
methods on the varous output objects in the
system. Currently we support both speech and
non-speech auditory output, and we are begin-
ning to experiment with tactile output. The
Speech object provides a “front-end” to a
speech server which can be run on any machine
on the network. This server is capable of con-
verting text to speech using a number of user-
definable voices. The Audio object provides a
similar front-end to a non-speech audio server.
The non-speech audio server is capable of mix-
ing, filtering, and spatializing sound, in addi-
tion to a number of other effects. [L?]

Both the Speech and the Audio objects are
interruptible, which is a requirement in a high-
ly interactive environment.

Simulating Input
Mercator provides new input modalities for
users, just as it provides new output modalities.
The mouse, the most commonly used input
device for graphical applications, is inherently
bound to the graphical display since it is a rela-
tive, rather than absolute positioning device
(positioning requires spatial feedback, usually
in the form on an on- screen cursor that tracks
the mouse). Other devices may be more appro-
priate for users without the visual feedback
channel. Our current interfaces favor keyboard
and voice input over the mouse. We are also
exploring other mechanisms for tactile input.

But while we provide new input devices to
control applications, already existing applica-
tions expect to be controlled via mouse input.
That is, applications are written to solicit events
from the mouse device, and act accordingly
whenever mouse input is received. To be able to
drive existing applications we must map our

new input modalities into the forms of input
applications expect to receive.

User input handling can be conceptually
divided into three stages. At the first stage, actu-
al user input events are received by Mercator.
These events may be X protocol events (in the
case of key or button presses) or events from an
external device or process (such as a braille key-
board or a speech recognition engine).

At the second stage, the low-level input
events are passed up into the rules engine where
they may cause action procedures to fire. The
rules fired by the input may cause a variety of
actions. Some of the rules may cause output to
an external device or software process (for
example, braille output or synthesized speech
output), or a change in the internal state of
Mercator itself (such as navigation). Some rules,
however, will generate controlling input to the
application. This input is passed through to the
third stage.

At the third stage, Mercator synthesizes X
protocol events to the application to control it.
These events must be in an expected format for
the given application. For example, to operate
a menu widget, Mercator must generate a
mouse button down event, mouse motion to
the selected item, and a mouse button release
when the cursor is over the desired item. Note
that the actual event sequence which causes
some action to take place in the application
interface may be determined by user, applica-
tion, and widget set defaults and preferences,
Thus Mercator must be able to retrieve the
event sequence each interface component
expects to receive for a given action. This infor-
mation is stored as a resource (called the trans-
lation table) in each widget and can be
retrieved via the RAP protocol.

We currently use the XTEST X server exten-
sion to generate events to the application. This
approach is robust and should work for all X
applications.

Status

The hooks into the Xt and Xlib libraries have
been implemented and are present in the
XllRG release from the X Consortium, The
RAP protocol is currently not shipped with
X1 1RG pending a draft review process; we hope
that in the near future RAP will ship with the

interactions . . . january 1995

i
standard distribution of the X Window System.

The various components of Mercator are
L
t written in C++; the current core system is

approximately 16,000 lines of code, not includ-
ing I/O servers and device specific modules. Our

! implementation runs on Sun SPARCstations

\ running either SunOS 4.1.3 or SunOS 5.3
, (Solaris 2.3). Network-aware servers for both

speech and non-speech audio have been imple-
mented using Transport Independent Remote
Procedure Calls (TI-RPC), with C++ wrappers
around their interfaces.

The speech server supports the DECtalk
hardware and the Centrigram TruVoice soft-
ware-based text-to-speech system and provides
multiple user-defined voices. The non-speech
audio server controls access to the built-in
workstation audio hardware and provides prior-
itized access, on-the-fly mixing, spatialization
of multiple sound sources, room acoustics, and
several filters and effects. The non-speech audio
server will run on any SPARCstation, although
a SPARCstation 10 or better is required for spa-
tialization effects.

Speech input is based on the IN3 Voice
Control System, from Command Corp, which
is a software-only speech recognition system for
Sun SPARCstations. The recognition server
runs in conjunction with a tokenizer which
generates inpur to the Mercator rules system
based on recognized utterances.

Future Directions

There are several new directions we wish to pur-
sue. These directions deal not only with the
Mercator interface and implementation, but also
with standards and commercialization issues.

From the interface standpoint, we will be
performing more user studies to evaluate the
non-visual interfaces produced by Mercator.
Further testing is required to fully ensure that
the interfaces produced by the system are
usable, effective, and easy to learn.

Our implementation directions lie in the
area of building a more efficient architecture
for producing Mercator interfaces. Our cur-
rent implementation is singly-threaded; we
plan to investigate a multi-threaded architec-
ture. We are also experimenting with a more
refined I/O system in which input and output
modalities can be more easily substituted for

one another.
We are working with the X Consortium and

the Disability Access Committee on X to ensure
that the RAP protocol is adopted as a standard
within the X community. It is our desire that
any number of commercial screen reader prod-
ucts could be built on top of RAP

We are exploring the possibilities of under-
taking a commercialization effort of our own to
bring our research prototype to market. @

References

q Boyd L.H., Boyd W.L., and Vanderheiden G.C. The

Graphical Gser Intdace: Crisis, Danger and

Opportuni@ Journal of VisuaL Impairment and

Blindness (December 1990) pages 496-502.

q Burgess, D. Low Cost Sound Spatiakution. In

Proceedings of the 1992 ACM Symposium on User

Intdace So&are and Technohgy (November 1992).

ACM, New York.

q Gaver, W.W. The Sonicfinder: An Interface That Uses

Auditory Icons. Human Computer Interaction (1989),

4:67-94.

rm . Ludwig, L.F., and Cohen, M. Multidimensional

Audio window Management. International Journal of

Man-Machine Studies (March 199 1) 34:3, pages

319-336.

q Mynatt, E.D. and Edwards, W.K. Mapping GUIs to

Auditory Interfaces. In Proceedings of the 1992 ACM

Symposium on User Intetlpace Sofrware and Technology

(November 1992). ACM, New York.

tm Ousterhour, J.K. TCL: An Embe&ble Command

Language. In the Proceedings of the I990 Writer

USENE Conference, pp. 133-146.

q Peterson, C.D. Editres-A Graphical Resource Editor

fir X Toolkit Applications. In Conf~ence Proceedings,

Fj% Ann&X Technical Conference (Januq lYYl),

Boston, Massachusetts.

rm : Scheifler, RW. X Window System Protocol

Specification, Vhion 11. Massachusetts Institute of

Technology, Cambridge, Massachusetts, and Digital

Equipment Corporation, Maynard, Massachusetts

(1987).

q Stefik, M.J., Bobrow, D.G., and Kahn, KM.

Integrating Access-Oriented Programming into a

Multiparadigm Environment. IEEE Sofiare, 3, 1,

(January 1986), IEEE Press, pages 10-18.

q l Yankelovich, N. SpeechActs & The Des@ of Speech

Intdaces. In the Adjrrnct Proceeding of the 1934

ACM Confmence on Human Facton and Computing

Systems, Boston, MA (1994). ACM, New York.

interactions. . . january 1995

