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rl he crisis was imminent. Gaphical user intefaces were quick4 adopted by the sighted ml 
community as a more intuitive inteface. Ironically, these intefaces were deemed more 

I 
accessible 6y the sightedpopuhtion because they seemed approachable for novice com- 
puter users. The danger was tangible in the forms of Lostjobs, barriers to education, 
and the simple fitiation of being lej behind as the computer industry charged abead 
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Much has changed since that article was pub- 
lished. Commercial screen reader interfsces now 
exist for two of the three main graphical envi- 
ronments. Some feel that the crisis has been 
adverted, that the danger is now diminished. But 
what about the opportunity? Have graphical user 
interfaces improved the lives of blind computer 
users? The simple answer is not very much. 

This opportunity has not been realized 
because current screen reader technology pro- 
vides access to graphical screens, not graphical 
inte&es. In this paper, we discuss the histori- 
cal reasons for this mismatch as well as analyze 
the contents of graphical user interfaces. Next, 
we describe one possible way for a blind user to 
interact with a graphical user interface, inde- 
pendent of its presentation on the screen. We 
conclude by describing the components of a 
software architecture which can capture and 
model a graphical user inrerface for presenta- 
tion to a blind computer user. 

Accessing Interfaces 

The design of screen readers for graphical inter- 
faces is centered around one goal: allowing a 
blind user to work with a graphical application 
in an efficient and intuitive manner. There are a 
number of practical constraints which must be 
addressed in the design. First, collaboration 
between blind and sighted users must be sup- 
ported. Blind users do not work in isolation and 
therefore their interaction with the computer 
must closely model the interaction which sight- 
ed users experience. A second, and sometime 
competing, goal is that the blind user’s interac- 
tion be intuitive and efficient. Both social and 
pragmatic pressures require that blind users not 
be viewed as second class citizens based on their 
effectiveness with computers. 

The careful balance between these two goals 
is often violated by screen readers which pro- 
vide a blind user with a representation of the 
computer interface which is too visually-based. 

interacrions . 

Essentially these systems provide access to the 
screen contents, not the application inter&cc. 
The distinction between these two terms will be 
discussed at length later in this section. Suffice 
to say that the application interface is a collcc- 
tion of objects which are related to each other 
in different ways, and which allow a variety of 
operations to be performed by the user. The 
screen contents are merely a snapshot of the 
presentation of that interface which has been 
optimized for a visual, two dimensional display. 
Providing access to a graphical inn&cc in 
terms of its screen contents forces the blind user 
to first understand how the interface has been 
visually displayed, and then translate that 
understanding into a mental model of the actu- 
al interface. 

In this section, we will briefly describe 
graphical user interfaces, focusing on their 
potential benefits for sighted and nonsighted 
users. Next we will examine three historical rca- 
sons why screen reader technology has not 
adapted sufficiently to the challenge of provid- 
ing access to graphical user interfaces. We will 
complete our argument by exploring the levels 
of abstraction which make up a graphical user 
interface. 

The Power of GUIs 
For much of their history, computers have been 
capable of presenting only textual and numeric 
data to users. Users reciprocated by specifj4ng 
commands and data to computers in the form 
of text and numbers, which were usually typed 
into a keyboard. This method of interaction 
with computers was only adequate at best. 

More recently, advances in computer power 
and display screen technology have brought 
about a revolution in methods of human-com- 
puter interaction for a large portion of the user 
population. The advent of so-called Graphical 
User Interfaces (or GUIs) has been usually wcll- 
received. In this section we examine some of the 
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defining characteristics of GUIs, and explore 
some of the traits that make them useful to the 
sighted population. This examination will 
motivate our design of a powerful interface for 
users with visual impairments. 

As implemented today, most GUIs have sev- 
eral characteristics in common: 

. The screen is divided into (possibly overlap- 
ping) regions called windows. These win- 
dows group related information together. 

9 An on-screen cursor is used to select and 
manipulate items on the display. This 
on-screen cursor is controlled by a physi- 
cal pointing device, usually a mouse. 

l Small pictographs, called icons, represent 
objects in the user’s environment which 
may be manipulated by the user. A snap- 
shot of a typical graphical user interface is 
shown in Figure 1. 

GUIs are quite powerful for sighted users for 
a number of reasons. Perhaps, most important- 
ly, there is a direct correlation between the 
objects and actions which the GUI supports 
and the user’s mental model of what is actually 
taking place in the computer system. Such a 

system is often called a direct manipulation 
interface, since to effect changes in the comput- 
er’s state, the user manipulates the on-screen 
objects to achieve the desired result. Contrast 
this design to textual interfaces in which there 
are often arbitrary mappings between com- 
mands, command syntax, and actual results. 
Direct manipulation interfaces are usually intu- 
itive and easy to learn because they provide 
abstractions which are easy for users to under- 
stand. For example, in a direct manipulation 
system, users may copy a file by dragging an 
icon which “looks” like a file to it’s destination 
“folder.” Contrast this approach to a textual 
interface in which one may accomplish the 
same task via a command line such as “cp 
mydoc.tex +keith/tex/docs.” Of course, the syn- 
tax for the command line interface may vary 
widely from system to system. 

In addition to direct manipulation, GUIs 
provide several other important benefits: 

l They allow the user to see and work with 
different pieces of information at one 
time. Since windows group related infor- 
mation, it is easy for users to lay out their 
workspaces in a way that provides good 

Figure 1 

A typical 

graphical user 

interface 
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access to all needed information. 
l An interface to multitasking is easily sup- 

ported on most GUI-based systems. Each 
window provides a separate input/output 
point of control for each process which is 
running in the system. Processes continue 
running and users attend to the windows 
they choose. 

l The graphical images used in GUIs lend 
themselves to the easy implementation of 
interface metaphors. The graphics support 
the metaphor by providing a natural 
mapping between metaphor and on- 
screen representation of the metaphor. 

, 
It is important to note that the power of 

graphical user interfaces lies not in their visual 
presentation, but in their ability to provide 
symbolic representations of objects which the 
user can manipulate in interesting ways. 

Historical Reasons for Screen-Based Access 
There are three major trends which help explain 
screen-based designs for accessing graphical 
interfaces. First, at one point in time, the screen 
contents closely equaled the application inter- 
face. The precursor to graphical interfaces were 
ASCII-based command-line interfaces. These 
interfaces presented output to the user one row 
at a time. Input to the interface was transmitted 
solely through the keyboard, again in a line-by- 
line manner. Screen reader systems for com- 
mand line interfaces simply presented the 
contents of the screen in the same line by line 
manner, displaying the output via speech or 
braille. Input to the interface was the same for 
sighted and nonsighted users. In this scheme, 
both sighted and nonsighted users worked with 
the same interface - only the presentation of the 
interface varied. These strategies were sufftcient 
as long as visual interfaces were constrained to 
80 columns and 24 rows. However, the advent 
of the graphical user interfsce has made these 
strategies obsolete. 

/ 

Second, reliance on translating the screen 
contents is caused, in part, by distrust of screen 
reader interfaces and concern about blind users 
not being able to use the same tools as sighted 
users. The general sentiment is that “I want to 
know what is on the screen because that is what 
my sighted colleague is working with.” As con- 
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cepts in graphical user interfaces became indus- 
try buzzwords, it was not uncommon to hear 
that blind users required screen readers that 
allowed them to use the mouse, drag and drop 
icons, and shuffle through overlapping win- 
dows. Although a popular notion in human- 
computer interface design is that the user is 
always right, it is interesting to compare these 
requirements with the requirements of sighted 
users who want auditory access to their comput- 

I 

er. Current work in telephone-based interaction 
with computers allows a user to work with their 
desktop applications over the phone [lo]. These 
interfaces perform many of the same functions 
that screen readers do - they allow the user to 
work with an auditory presentation of a graphi- 
cal inter&e. Yet these system do not translate 
the contents of a graphical screen. Instead they 
provide an auditory interface to the same con- 
cepts conveyed in the graphical interfaces. 

Third, limitations in software technology 
have driven the use of screen-based access sys- 
tems. The typical scenario to providing access 
to a graphical application is that while the 
unmodified graphical application is running, 
an external program (or screen reader) collects 
information about the graphical interface by 
monitoring drawing requests sent to the screen. 
Typically these drawing requests contain only 
low-level information about the contents of the 
graphical interface. This information is general- 
ly limited to the visual presentation of the intcr- 
face and does not represent the objects which 
are responsible for creating the interface and 
initiating the drawing requests. 

Modeling Application Interfaces 
At one level, an application interface can be 
thought of as a collection of lines, dots, and text 
on a computer screen. This level is the lexical 
interpretation of an interface: the underlying 
primitive tokens from which more meaningful 
constructs are assembled. 

At a higher level, we can group these primi- 
tives into constructs such as buttons, text entry 
fields, scrollbars, and so forth. This level is the 
syntactic level of the interface. Lexical con- 
structs (lines, text, dots) are combined into 
symbols which carry with them some meaning. 
While a line in itself may convey no informa- 
tion, a group of lines combined to form a push 
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button conveys the information, “I am push- 
able. If you push me some action will occur.” 

There is a still higher level though. At the 
highest level, we can describe an interface in 
terms of the operations it allows us to perform 
in an application. We might describe an inter- 
face in terms of the affordances [3] of the on- 
screen objects. For example, buttons simply 
provide a means to execute some command in 
the application; menus provide a list of possible 
commands, grouped together along some orga- 
nizing construct; radio buttons provide a means 
to select from a group of settings which control 
some aspect of the application’s behavior. It is 

application allows us to perform. 
By divorcing ourselves from the low-level 

graphical presentation of the interface, we no 
longer constrain ourselves to presenting the 
individual graphical elements of the interface. 
By separating ourselves from the notion of 
graphical buttons and graphical scrollbars, we 
do away with interface objects which are mere- 
ly artifacts of the graphical medium. 

Does it make sense to translate application 
inter&es at the semantic level? Lines and dots on 
a screen, and even buttons and scrollbars on a 
screen, are simply one manifestation of the appli- 
cation’s abstract interface. By translating the inter- 

. . . the most importdnt chdrdcteristics of dn 

dpplicdtion’s intefdce dye the set of d&ions the interfdce 

dews us to tdke, H ’ m bow those dctions 

me dctmby presented to the user on screen. 

the operators which the on-screen objects allow 
us to perform, not the objects themselves, 
which are important. This level is the semantic 
interpretation of the interface. At this level, we 
are dealing with what the syntactic constructs 
actually represent in a given context: these 
objects imply that the application will allow the 
user to take some action. 

Seen from this standpoint, the most impor- 
tant characteristics of an application’s interface 
are the set of actions the interface allows us to 
take, rather than how those actions are actually 
presented to the user on screen. Certainly we 
can imagine a number of different ways to cap- 
ture the notion of “execute a command” rather 
than a simple push button metaphor represent- 
ed graphically on a screen. In linguistic terms, 
the same semantic construct can be represented 
in a number of different syntactic ways. 

This concept is the central notion behind 
providing access to graphical interfaces: rather 
than working with an application interface at 
the level of dots and lines, or even at the higher 
level of buttons and scrollbars, our goal is to 
work with the abstract operations which the 

lice at the semantic level, we are free to choose 
presentations of application semantics which 
make the most sense in a nonvisual presentation. 

Certainly we could build a system which con- 
veyed every single low-level lexical detail: “There 
is a line on the screen with endpoints and .” The 
utility of such an approach is questionable, 
although some commercial screen readers do 
construct inter&es in a similar manner. 

Alternatively, we could apply some heuristics 
to search out the syntactic constructs on the 
screen: “There is a push button on the screen at 
location .n Certainly this method is better 
approach than conveying lexical information, 
although it is not ideal. Screen readers which 
use this method are taking the syntactic con- 
structs of a graphical interface (themselves pro- 
duced from the internal, abstract semantics of 
the actions the application affords), and map- 
ping them directly into a nonvisual modality. 
Along with useful information comes much 
baggage that may not even make sense in a non- 
visual presentation (occluded windows, scroll- 
bars, and so forth, which are artifacts of the 
visual presentation). Certainly interacting with 
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such an interface is not as efficient as interact- 
ing directly with a presentation explicitly 
designed for the nonvisual medium. 

We believe that transforming the application 
interface at the semantic level is the best 
approach for creating usable and eff%zient non- 
visual interfaces. We can take the operations 
allowed by the application and present them 
directly in a non-visual form. 

The question at this point is: are sighted and 
blind users working (and thinking) in terms of 
the same constructs? It is clear that they are if 
we translate the interface at the syntactic level. 

Xt lntrinsics 

Xlib 

X Protocol 

We argue that by con- 
straining our semantic 
translation so that we 
produce “similar” 
objects in our non-visu- 
al presentation that the 
native application pro- 
duces in its default 
graphical presentation, 
we maintain the user’s 
model of the applica- 
tion interface. By giving 

Figure 2 things the same names (buttons, menus, win- 
Layers in a typical dows), sighted and non-sighted users will have 
X Window system the same lexicon of terminology for referring to 

application interface constructs. 

Nonvisual Interaction With Graphical Interfaces 

This section presents a set of implications for 
designers of nonvisual interfaces driven by our 
philosophy of translation at the semantic level. 
This discussion is presented in the context of 
the design of a particular nonvisual interface to 
provide access to graphical applications. 

Auditory and Tactile Output of Symbolic 
Information 
The first step in transforming a semantic model 
of a graphical inte&ce into a nonvisual inter- 
face is to convey information about the individ- 
ual objects which make up the interface. It is 
necessary to convey the type of the object (e.g. 
menu, push button), its attributes (e.g. high- 
lighted, greyed out, size), and the operations it 
supports. Since the presentation of the objects 
is independent of its behavior, auditory and tac- 
tile output can be used as separate or comple- 
mentary avenues for conveying information to 

the users. Our design focuses exclusively on the 
use of auditory output as a common denomi- 
nator for North American users. Braille users 
will require additional, redundant braille our- 
put for textual information in the interface. 

The objects in an application inte&ce can be 
conveyed through the use of speech and non- 
speech audio. Nonspeech audio, in the form of 
auditory icons [3] and filters [4], convey the type 
of an object and its attributes. For example, a 
text-entry field is represented by the sound of an 
old-fashioned typewriter, while a text field which 
is not editable (such as a error message bar) is rep- 
resented by the sound of a printer. Likewise a tog- 
gle button is represented by the sound of a 
chain-pull light switch while a low p”ss (muf- 
fling) filter applied to that auditory icon can con- 
vey that the button is unavailable; that is, grayed 
out in the graphical interface. The auditory icons 
can also be modified to convey aspects of the 
interface which are presented spatially in the 
graphical interface such as the size of a menu or 
list. For example, all menus can be presented as a 
set of buttons which are evenly distributed along 
a set pitch range (such as 5 octaves on a piano). 
As the user moves from one menu button to 
another, the change in pitch will convey the rela- 
tive size and current location in the menu. Finally, 
the labels on buttons, and any other textual infor- 
mation, can be read by the speech synthesizer. 

In most screen reading systems, the screen 
reader will not have adequate access to the 
semantics of the application. To offset this 
problem, the screen reader must incorporate 
sematic information in the way that is models, 
and eventually presents, the graphical interface. 
The important concept is that symbolic infor- 
mation in the interface should be conveyed 
through symbolic representations which are 
intuitive for the user. By layering information 
in auditory cues, blind users interact with inter- 
face objects in the same way that sighted users 
interact with graphical objects. 

SpatiaI versus Hierarchical Modeling of 
Object Relationships 
The next step is to model the relationships 
between the objects which make up the nppli- 
cation interface. Two principal types of rela- 
tionships need to be conveyed to the users, 
First, parent-child relationships are common in 
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X Application 

Mercator components 

-+7 Network communications 

-> Inter-object communication 

graphical interfaces. An object is a child of 
another object if that object is contained by the 
parent object, such as menu buttons which 
make up a menu, or a collection of objects 
which form the contents of a dialog box. In 
graphical interfaces these relationships are often 
conveyed by the spatial presentation of the 
graphical objects. Second, cause-effect relation- 
ships represent the dynamic portions of the 
graphical interface. For example, pushing a but- 
ton makes a dialog box appear. 

These relationships form the basis for navigat- 
ing the application interface. Both of these rela- 
tionships can be modeled with hierarchical 
structures. Parent-child relationships form the 
basis for the hierarchy and cause and effect rela- 
tionships are modeled by how they modify the 
parent-child object structure. Navigation is sim- 
ply the act of moving from one object to another 
where the act of navigating the interface rein- 
forces the mental model of the interface structure. 

In short, information about the graphical 
interface is modeled in a tree-structure which 
represents the graphical objects in the interface 
(push buttons, menus, large text areas etc.) and 
the hierarchical relationships between those 
objects. The blind user’s interaction is based on 
this hierarchical model. Therefore blind and 
sighted users share the same mental model of 
the application interface (interfaces are made 
up of objects which can be manipulated to per- 
form actions) without contaminating the 
model with artifacts of the visual presentation 
such as occluded or iconitied windows and 

interactions . 

other space saving techniques used by graphical 
interfaces. In general, the blind user is allowed 
to interact with the graphical interface indepen- 
dent of its spatial presentation. 

At the simplest level, users navigate the 
interface by changing their position in the 
interface tree structure via keyboard input. 
Each movement (right, left, up or down arrow 
keys) positions the user at the corresponding 
object in the tree structure or informs the user, 
through an auditory cue, that there are no 
objects in the requested location. Additional 
keyboard commands allow the user to jump to 
different points in the tree structure. Likewise 
keyboard shortcuts native to the application as 
well as user-defined macros can be used to 
speed movement through the interface. 

The hierarchical navigation model is extend- 
ed to work in a multi-application environment. 
Essentially the user’s desktop is a collection of 
tree structures. Users can quickly jump between 
applications while the system stores the focus 
for each application context. The user’s current 
focus can also be used to control the presenta- 
tion of changes to the application state. For 
example, a message window in an application 
interface may (minimally) use the following 
modes of operation: 

l Always present new information via an 
auditory cue and synthesized speech. 

l Signal new information via an auditory cue. 
l Do not signal the presentation of new 

information. 
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These modes of operation can be combined 
in various ways depending on whether the 
application is the current focus. For example, 
an object can use one mode (always present via 
speech and/or nonspeech) when the application 
is the current focus and use another mode (sig- 
nal via an auditory cue) when the application is 
not the current focus. Cues from applications 
which are not the current focus are preceded by 
a cue (speech or nonspeech) which identifies 
the sending applications. 

Input Semantics and Syntax 
We must also make a distinction, not only 
between the syntax and semantics of applica- 
tion output, but also between the syntax and 
semantics of application input. In a graphical 

Window System [S]. The system is currently in 
its third major revision [5]. 

X is the de facto standard windowing system 
for Unix workstations. It is an open system con- 
trolled by the X Consortium, a vendor-neutral 
standards body. Figure 2 shows the layers of 
toolkits and libraries on which Xt-based appli- 
cations are built. X is based on a client-server 
architecture, where X applications communi- 
cate with a display server via a nenvork proto- 
col. This protocol is the lowest layer of the X 
hierarchy. Xlib and the Xt Intrinsics provide 
two programming interfaces to the X protocol. 
Xlib provides th e concept of events and pro- 
vides support for drawing graphics and text. 
The Xt Intrinsics provide the concept of wid- 
gets (programmable interface objects) and pro- 

At one extreme of t..e spectrum, it is possible to 

construct d system wbicb is completely 

both the application and the window system. 

i 
1 
4 

interface, the semantic notion of “selection’ (for 
example, activating a push button) may be 
accomplished by the syntactic input of double 
clicking the mouse on the on-screen push but- 
ton. In the nonvisual medium we wish to pre- 
serve the input semantics (such as the notion of 
selection) while providing new input syntax 
which maps onto the semantics. 

Our interfaces provide currently two input 
modalities: keyboard input and speech recogni- 
tion. In the keyboard domain, the selection 
semantic is mapped to a keypress (currently the 
Enter key on the numeric keypad). Users who 
wish to perform selection via voice commands 
simply utter a keyword (“Select”) which invokes 
the seIect action. The underlying mechanisms in 
the screen reader system take the input actions 
in the new modality and produce the syntactic 
input required to control the application. 

An Architecture For X Window Access 

We now present a system which implements the 
interface described above. This system, called 
Mercator, is designed to provide access to the X 

vide a basic set of widgets. Most X applications 
are developed using libraries of widgets layered 
on top of the Intrinsics. Motif and Athena are 
nvo common widget sets. 

The nonvisual interfaces produced by 
Mercator require high-level semantic informa- 
tion about the graphical interfaces of running 
applications. The system must be able to capture 
information from running (and unmodified) 
applications, maintain this information in a 
model of the application interface, and then 
transform the interface model to the new modal- 
ity. Further, the system must be able to accept 
user input in new modalities and transform this 
input into the visually-oriented input expected 
by applications (mouse clicks, for example). 

We now present a design space of potential 
solutions for information capture from running 
applications. Next, we discuss a set of moditica- 
tions to the Xlib and Xt libraries which we have 
made and which have been accepted as a stan- 
dard by the X Consortium. We describe how 
we store information about the application 
interface. Finally we describe how our system 
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implements input and output and maps from 

I the graphical world into the nonvisual one. 
I 
! 
1 A Spectrum of Solutions for Information 

Capture 
How do we gather semantic information from 

I running applications? How do we attain our 
goal of translating application interfaces at the 
semantic, rather than syntactic or lexical, level? 

When we began our work we found that 
there is a spectrum of possible design choices 
for information capture. There are trade-offs 
between application transparency and the 
semantic level of the information available to us 
in this design space. 

External Approaches. 

At one extreme of the spectrum, it is possible to 
construct a system which is completely external 
to both the application and the window system. 
This point in the design space is essentially the 
approach taken by the initial version of 
Mercator: an external agent interposed itself 
between the client applications and the X 
Window System server. This approach has the 
advantage that it is completely transparent to 
both the application and to the window system. 
In the case of Mercator, the external agent 
appeared to the client to be an X server; to the 
“real” X server, Mercator appeared to be just 
another client application. There was no way for 
either to determine that they were being run in 
anything other than an “ordinary” environment. 

This approach, while providing complete 
transparency, has a serious drawback however. 
Since we are interposing ourselves between the 
application and the window system, we can 
only access the information that would normal- 
ly pass benveen these two entities. In the case of 
our target platform, the XWindow System, this 
information is contained in the X Protocol 
which is exchanged between applications and 
the window server. While the X Protocol can 

describe any on-screen object (such as a button 
or a text area), it uses extremely low-level prim- 
itives to do so. Thus, while our system might 
detect that a sequence of lines was drawn to the 
screen, it was difftcult to determine that these 
lines represented a button or some other on- 
screen object. 

While the level of information captured by a 
system taking this approach depends on the 
particular platform, in general this method will 
provide only lexical information. 

Our initial system did make use of another 
protocol called Editres [7] that allowed us to 
obtain some higher-level information about the 
actual structure of application interfaces. Thus, 
we could gain some information about interface 
syntax with which to interpret the lexical infor- 
mation available to us via the X Protocol. From 
our experiences, however, we determined that 
the level of information present in the X 
Protocol and Editres was insufficient to build a 
reliable and robust screen reader system. 

Internal Approaches. 
At the other extreme on the information cap- 
ture spectrum, we can modify the internals of 
individual applications to produce non-visual 
interfaces. In this approach, the highest possible 
level of semantic information is available since 
in essence the application writer is building two 
complete interfaces (visual and non-visual) into 
his or her application. Of course the downside 
of this approach is that it is completely non- 
transparent: each application must be rewritten 
to produce a non-visual interface. 

Obviously this approach is interesting as a 
reference point only. It is not practical for a 
“real world” solution. 

Hybrid Approaches. 
There is a third possible solution to the infor- 
mation capture problem which lies near the 
midpoint of the two alternatives discussed 

At the other extreme on the information capture 

spectrum, we can modz$ the of individual 
tipplications to prodztce non-visual interfdces. 
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above however. In this solution, the underlying 
interface libraries and toolkits with which 
applications are written are modified to com- 
municate information to an external agent 
which can implement the non-visual interface. 
This approach can potentially provide much 
more semantic information than the purely 
external approach: application programmers 
describe the semantics of the application inter- 
face in terms of the constructs provided by 
their interface toolkit. The interface toolkit 
then produces the actual on-screen syntax of 
these constructs. 

The benefit of this strategy is that we do gain 
access to fairly high-level information. This 
approach cannot provide the level of semantic 
knowledge present in the purely internal strate- 
gy however, since the semantic level of informa- 
tion captured depends on the semantics 
provided by the toolkit library (and toolkits 
vary greatly in the semantic level of the con- 
structs they provide). Still, for most platforms, 
toolkit modifications will provide access to 
enough useful information to accomplish a 
semantic translation of the interface. 

The drawback of this approach is that, while 
it is transparent to the application programmer 
(that programmer just uses the interface toolkit 
as usual, unaware of the fact that the toolkit is 
providing information about the interface to 
some external agent), there must be a way to 
ensure that applications actually use the new 
library. Requiring all applications to be relinked 
against the new library is not feasible. Many 
systems support dynamic libraries, but this is 
not a practical solution for all platforms. 

Rationale for Our Information Capture 
Strategy 
During our use of the first version of Mercator 
it became clear that the protocol-level infor- 
mation we were intercepting was not sufficient 
to build a robust high-level model of applica- 
tion interfaces. Up until this point we had not 
seriously considered the hybrid approach of 
modifying the underlying X toolkits because 
of our stringent requirement for application 
transparency. 

From our experiences with the initial proto- 
type, we began to study a set of modifications 
to the Xt Intrinsic-s toolkit and the low-level 

Xlib library. These modifications could be used 
to pass interface information off to a variety of 
external agents, including not just agents to 
produce non-visual interfaces, but also testers, 
profilers, and dynamic application configura- 
tion tools. 

Originally our intention was to build a mod- 
ified Xt library which could be relinked into 
applications to provide access (either on a pcr- 
application basis, or on a system-wide basis for 
those platforms which support run-time link- 
ing). Through an exchange with the X 
Consortium, however, it became clear that the 
modifications we were proposing could be 
widely used by a number of applications. As a 
result, a somewhat modified version of our 
“hooks” into Xt and Xlib have become a part of 
the standard XI 1R6 release of the X YVindow 
System. A protocol, called RAP (Remote Access 
Protocol) uses these hooks to communicate 
changes in application state to the external 
agent. Figure 3 shows the architecture of the 
current system. 

As a result of the adoption of our hooks by 
the X Consortium, our concerns with the trans- 
parency of this approach have been resolved. 
Essentially our hybrid approach has become an 
external approach: it is now possible to write 
non-visual interface agents which exist entirely 
externally to both the application and the win- 
dow server, and only use the mechanisms pro- 
vided by the platform. 

Interface Modeling 

Once Mercator has captured information 
about an application’s interface, this informa- 
tion must be stored so that it is available for 
transformation to the nonvisual modality. 
Application interfaces are modeled in a data 
structure which maintains a tree for each client 
application. The nodes in this tree represent 
the individual widgets in the application, 
Widgets nodes store the attributes (or 
resources) associated with the widget (for 
example, foreground color, text in a label, cur- 
rently selected item from a list). 

There are three storage classes in Mercator: 
the Model Manager (whcih stores the state of 
the user’s desktop in its entirety), Client (which 
stores the context associated with a single appli- 
cation), and XtObject (which stores the attrib- 
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utes of an individual Xt widget). Each of these 
storage classes is stored in a hashed-access, in- 
core database for quick access. Each storage 
class has methods defined on it to dispatch 
events which arrive while the user’s context is in 
that object. Thus it is possible to define bind- 
ings for events on a global, per-client, or per- 
object basis. 

Other components of Mercator can access 
this data store at any time. A facility is provid- 
ed to allow ‘conservative retrievals” from the 
data store. A data value marked as conservative 
indicates that an attempt to retrieve the value 
should result in the generation of a RAP mes- 
sage to the application to retrieve the most 
recent value as it is known to the application. 
This facility provides a “fail safe” in case certain 
widgets do not use the approved X Window 
System AI% to change their state. 

Implementing Interfaces 

The preceding sections of this paper described 
our strategies for information capture and stor- 
age from running X applications. Capturing 
and storing interface information is only a por- 
tion of the solution, however. A framework for 
coordinating input and output, and for pre- 
senting a consistent, usable, and compelling 
non-visual interface for applications is also 
required. 

This section describes how our system cre- 
ates effective non-visual interfaces based on the 
interface information captured using the tech- 
niques described above. 

Rules for Translating Interfaces 
We have designed our system to be as flexible as 
possible so that we can easily experiment with 
new non-visual interface paradigms. To this 
end, Mercator contains an embedded inter- 
preter which dynamically constructs the non- 
visual interface as the graphical application 
runs. The auditory presentation of an applica- 
tion’s graphical interface is generated on-the-fly 
by applying a set of transformation rules to the 
stored model of the application interface as the 
user interacts with the application. 

These rules are expressed in an interpreted 
language and are solely responsible for creating 
the non-visual user interface. No interface 
code is located in the core of Mercator itself. 

article 

This separation between the data capture and 
I/O mechanisms of the system from the inter- 
face rules makes it possible for us to easily tai- 
lor the system interface in response to user 
testing. The presence of rules in an easily- 
modifiable, human-readable form also makes 
customization of the system easy for users and 
administrators. 

Our interpreted rules language is based on 
TCL (the Tool Command Language [6]), with 
extensions specific to Mercator. TCL is a light- 
weight language complete with data types such 
as lists and arrays, subroutines, and a variety of 
control flow primitives; Mercator rules have 
available to them all of the power of a general- 
purpose programming language. 

When Mercator is first started, a base set of 
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rules is loaded which provides some simple key- 
bindings, and the basic navigation paradigm. 
Each time a new application is started, 
Mercator detects the presence of the applica- 
tion, retrieves its name, and loads an applica- 
tions-specific rule file if it exists. This allows an 
administrator or user to configure an interface 
according to their desires. 
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Event/Action Model 2; ; 
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After start-up time, rules are fired in response 
to Mercator events. Mercator events repre- 
sent either user input or a change in state of 
the application (as represented by a change in 
the interface model). Thus, we use a tradi- 
tional event-processing structure, but extend 
the notion of the event to represent not just 
user-generated events, but also application- 
generated events. Events are bound to 
actions, which are interpreted procedures 
which are fired automatically whenever a par- 
titular event type occurs. Action lists are 
maintained at all levels of the storage hierar- 
thy, so it is possible to change event-action 
bindings globally, on a per-client basis, or a 
per-widget basis. 

As stated before, actions are fired due to 
either user input or a change in the state of the 
application. In the second case, we fire actions 
at the point the data model is changed, which 
ensures that the applications-generated actions 
are uniformly fired whenever Mercator is aware 
of the change. The call-out to actions occurs 
automatically whenever the data store is updat- 
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ed. This technique is reminiscent of access-ori- 
ented programming systems, in which change- 
ing a system variable automatically triggers the 
execution of some code. [9]. 

System Output 
All output to the user is generated through the 
interface f&s. The “hard-coded” portions of 
Mercator do not implement any interface. This 
reliance on interpreted code to implement the 
interface makes it easy to experiment with new 
interface paradigms. 

Interface rules generate output by invoking 
methods on the varous output objects in the 
system. Currently we support both speech and 
non-speech auditory output, and we are begin- 
ning to experiment with tactile output. The 
Speech object provides a “front-end” to a 
speech server which can be run on any machine 
on the network. This server is capable of con- 
verting text to speech using a number of user- 
definable voices. The Audio object provides a 
similar front-end to a non-speech audio server. 
The non-speech audio server is capable of mix- 
ing, filtering, and spatializing sound, in addi- 
tion to a number of other effects. [L?] 

Both the Speech and the Audio objects are 
interruptible, which is a requirement in a high- 
ly interactive environment. 

Simulating Input 
Mercator provides new input modalities for 
users, just as it provides new output modalities. 
The mouse, the most commonly used input 
device for graphical applications, is inherently 
bound to the graphical display since it is a rela- 
tive, rather than absolute positioning device 
(positioning requires spatial feedback, usually 
in the form on an on- screen cursor that tracks 
the mouse). Other devices may be more appro- 
priate for users without the visual feedback 
channel. Our current interfaces favor keyboard 
and voice input over the mouse. We are also 
exploring other mechanisms for tactile input. 

But while we provide new input devices to 
control applications, already existing applica- 
tions expect to be controlled via mouse input. 
That is, applications are written to solicit events 
from the mouse device, and act accordingly 
whenever mouse input is received. To be able to 
drive existing applications we must map our 

new input modalities into the forms of input 
applications expect to receive. 

User input handling can be conceptually 
divided into three stages. At the first stage, actu- 
al user input events are received by Mercator. 
These events may be X protocol events (in the 
case of key or button presses) or events from an 
external device or process (such as a braille key- 
board or a speech recognition engine). 

At the second stage, the low-level input 
events are passed up into the rules engine where 
they may cause action procedures to fire. The 
rules fired by the input may cause a variety of 
actions. Some of the rules may cause output to 
an external device or software process (for 
example, braille output or synthesized speech 
output), or a change in the internal state of 
Mercator itself (such as navigation). Some rules, 
however, will generate controlling input to the 
application. This input is passed through to the 
third stage. 

At the third stage, Mercator synthesizes X 
protocol events to the application to control it. 
These events must be in an expected format for 
the given application. For example, to operate 
a menu widget, Mercator must generate a 
mouse button down event, mouse motion to 
the selected item, and a mouse button release 
when the cursor is over the desired item. Note 
that the actual event sequence which causes 
some action to take place in the application 
interface may be determined by user, applica- 
tion, and widget set defaults and preferences, 
Thus Mercator must be able to retrieve the 
event sequence each interface component 
expects to receive for a given action. This infor- 
mation is stored as a resource (called the trans- 
lation table) in each widget and can be 
retrieved via the RAP protocol. 

We currently use the XTEST X server exten- 
sion to generate events to the application. This 
approach is robust and should work for all X 
applications. 

Status 

The hooks into the Xt and Xlib libraries have 
been implemented and are present in the 
XllRG release from the X Consortium, The 
RAP protocol is currently not shipped with 
X1 1RG pending a draft review process; we hope 
that in the near future RAP will ship with the 
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standard distribution of the X Window System. 

The various components of Mercator are 
L 
t written in C++; the current core system is 

approximately 16,000 lines of code, not includ- 
ing I/O servers and device specific modules. Our 

! implementation runs on Sun SPARCstations 

\ running either SunOS 4.1.3 or SunOS 5.3 
, (Solaris 2.3). Network-aware servers for both 

speech and non-speech audio have been imple- 
mented using Transport Independent Remote 
Procedure Calls (TI-RPC), with C++ wrappers 
around their interfaces. 

The speech server supports the DECtalk 
hardware and the Centrigram TruVoice soft- 
ware-based text-to-speech system and provides 
multiple user-defined voices. The non-speech 
audio server controls access to the built-in 
workstation audio hardware and provides prior- 
itized access, on-the-fly mixing, spatialization 
of multiple sound sources, room acoustics, and 
several filters and effects. The non-speech audio 
server will run on any SPARCstation, although 
a SPARCstation 10 or better is required for spa- 
tialization effects. 

Speech input is based on the IN3 Voice 
Control System, from Command Corp, which 
is a software-only speech recognition system for 
Sun SPARCstations. The recognition server 
runs in conjunction with a tokenizer which 
generates inpur to the Mercator rules system 
based on recognized utterances. 

Future Directions 

There are several new directions we wish to pur- 
sue. These directions deal not only with the 
Mercator interface and implementation, but also 
with standards and commercialization issues. 

From the interface standpoint, we will be 
performing more user studies to evaluate the 
non-visual interfaces produced by Mercator. 
Further testing is required to fully ensure that 
the interfaces produced by the system are 
usable, effective, and easy to learn. 

Our implementation directions lie in the 
area of building a more efficient architecture 
for producing Mercator interfaces. Our cur- 
rent implementation is singly-threaded; we 
plan to investigate a multi-threaded architec- 
ture. We are also experimenting with a more 
refined I/O system in which input and output 
modalities can be more easily substituted for 

one another. 
We are working with the X Consortium and 

the Disability Access Committee on X to ensure 
that the RAP protocol is adopted as a standard 
within the X community. It is our desire that 
any number of commercial screen reader prod- 
ucts could be built on top of RAP 

We are exploring the possibilities of under- 
taking a commercialization effort of our own to 
bring our research prototype to market. @ 
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