
INTRODUCTION
mon•tage män-’täzh,n.

1 the production of a rapid succession of
images in a motion picture to illustrate an
association of ideas

2a a literary, musical, or artistic composite
of juxtaposed more or less heterogeneous
elements

2b a composite picture made by combining
several separate pictures

3 a heterogeneous mixture

Webster’s Ninth New Collegiate Dictionary
Copyright 1989

In the past decade, the proliferation of fast, inexpen-
sive, networked computer workstations has produced
an explosion in the use of electronic mail. Electronic
mail systems have traditionally been limited to the
transmission of pure textual information only.

As computer workstations increase in power, and as
the use of windowing interfaces becomes more
widespread and standardized, it becomes apparent
that capabilities now exist for the transmission and
reception of complex multimedia documents consist-
ing of voice, images, video, and other media types in
addition to plain text.

The chief advantage of such a system is the increased
communication bandwidth between the users of the
system. A multimedia mail system should allow
people to communicate as freely and without restric-
tion as conventional ‘‘paper’’ mail systems do. In
current paper mail systems, users can seal most

ABSTRACT
Electronic mail systems capable of transmitting
compositions consisting of various unconventional
media (such as voice, video, and images) have
attracted a substantial amount of interest in recent
years. It is important that mailers capable of deliver-
ing such documents present them in an organized
fashion. We present the Montage multimedia
electronic mail system, along with its model for
multimedia documents. Montage makes use of a
simpler format than more generalized hypermedia
systems. It is our belief that the Montage model is
more effective than general hypertext for the task of
creating user-to-user messages. Furthermore, Mon-
tage is designed to be runtime extensible to new
media types by its users. Thus the system does not
have to know ahead of time all the possible media
users may want to send. The system is built on top of
existing mail transport protocols for flexibility and
portability. We discuss the design of the mailer along
with experiences gained from its implementation.
The user interface to the system is also presented.

KEYWORDS
Multimedia mail, electronic mail, compound docu-
ments.

The Design and Implementation of the MONTAGE
Multimedia Mail System

W. Keith Edwards

Georgia Institute of Technology
Software Engineering Research Center

Multimedia Computing Group
Atlanta, GA 30332-0280

keith@cc.gatech.edu



the convenience and speed of existing computer
systems with the flexibility of paper mail systems.
Furthermore, it should be possible to use the dynamic
aspects of computing technology to open up mail
systems to media which have previously gone unused
in a store and forward environment, such as audio
and video.

DESIGN
Our design for the Montage system was influenced
by several desired goals. Foremost, we wanted to
create a mail system which implements our model of
multimedia messages. Secondly, to be widely used,
the system had to be built on top of existing proto-
cols and standards where ever possible. Finally, to
meet unforeseen needs, the system had to be exten-
sible by end users.

Requirements
Our design was constrained by several factors.
First, we wanted to distinguish between multimedia
messages and more complex general multimedia
‘‘documents.’’ Montage is not a hypermedia
system. Section 4,A Model for Multimedia Mes-
sages, ellaborates on this.

With this design decision, we were able to greatly
simplify implementation. Montage messages
proceed along one basic stream of control, unlike
hypermedia messages which have a potentially large
number of paths through the information.

Another design constraint was that the system should
function cleanly over existing low-level transport
mechanisms. We do not require that Montage must
deliver its messages over TCP/IP connections. Since
mail messages may be transferred between several
intervening machines which may or may not run
Montage, the messages should look for all intents
like ordinary Simple Mail Transport Protocol
(SMTP) [Crocker 82][Stallings 87] messages.
Montage does not rely on any protocols higher than
SMTP for transport.

Finally, we deemed that the system must be as
extensible as possible. Since we cannot anticipate the
needs of all users, we must provide a mechanism to
dynamically add support for new media types,
without the need to alter and recompile Montage.

Platform
We chose our platform based on availability and
portability. While the Montage mail format may be
implemented on a variety of platforms, including
PCs and Macintoshes, our prototype implementation
is for Unix workstations running the X Window

anything within an envelope and expect prompt
delivery. Electronic multimedia mail systems should
allow similar flexibility.

Furthermore, to be useful for the widest range of
people, attention should be paid to current standards
for electronic mail transport. It should be possible to
build multimedia mail systems on top of existing
lower-level mail transport protocols and thereby use
existing mail routing software for transport. Further-
more, the system should allow users to send plain
‘‘flat text’’ mail messages to users who do not have
multimedia capabilities.

We present an experimental multimedia electronic
mail system, calledMontage, which has been
developed at the Georgia Institute of Technology’s
Software Engineering Research Center. We believe
that this system provides a flexible and convenient
means to send and receive complex multimedia
documents. This system is built strictly on top of
existing lower-level mail routing protocols and thus
should work on most systems which support the Unix
operating system, X Windows, and Simple Mail
Transport Protocol (SMTP) mail transfer systems.

WHY MULTIMEDIA MAIL?
Traditional electronic mail systems have been limited
to sending only textual data. While text-based store
and forward communication systems are useful, the
old adage that ‘‘a picture is worth a thousand words’’
is often true. For example, it is nearly impossible to
concisely describe a complex architectural drawing
by writing a textual description of it. Many ap-
plications involve the use of graphical information
and it is extremely inconvenient to transport this
information using existing electronic mail systems.

Furthermore, the mode of information delivery most
familiar to humans is direct voice communication.
The work of Rohr [Rohr 86] indicates that some
concepts are inherently graphical while others are
inherently verbal. Other research indicates that in
many applications, concepts are understood better
when presented in a ‘‘mixed media’’ mode
[Guastello 89].

While computer-based electronic mail systems enjoy
many benefits over paper mail, they continue to lag
behind in many respects. With paper mail systems,
users can post basically any type of document which
can be printed on paper. This includes images and
formatted text, all possibly with annotations marked
on the document.

With a more flexible electronic mail system it should
be possible to combine the benefits of both systems:



a topic and then browses the document to find
interesting information [Nielsen 90].

Contrast this model to a typical mail message in
which the author is generally trying to convey some
small number of central tenets. Unlike more general
hypermedia documents, mail tends to be less interac-
tive. The author has an idea to present and in some
sense defines the reader’s path through the message
at composition time.

We believe that by limiting the generality of our
message format we can achieve greater levels of
usability, simplicity (for both the users and the
implementors), and understandability of messages.

Still, however, since various media will be combined
within a single message there must be some way to
navigate through the packaged information. We have
taken a simple approach to this task without having
to resort to the less-constrained approach of a full-
blown hypermedia system.

In Montage, all media are one of two classes: static
or dynamic. The defining characteristic of a
dynamic medium is that the information presented
changes with time. Static media do not have this
temporal component. Examples of dynamic media
include video and audio clips. Examples of static
media include simple text, formatted (rich) text, and
still images.

Obviously it is of great interest to be able to combine
various media freely within a single message. The
differing characteristics of our two media classes
make this packaging difficult. It is natural to think of
a message window containing text and image data
freely interspersed. Similarly it is natural to think of
video and sound data being played at the same time.
This mixing of media is common and is something
users are used to experiencing on a day-by-day basis.

But does it make sense to combine static and
dynamic media? Consider a message containing
only text. When the message is opened a window
appears that contains the text of the message. Now
consider a message containing only voice. When the
message is opened the voice clip is replayed. But
what about a message containing both voice and
text? Does one begin playing the voice as soon as
the text window is opened? What about video and
text? Does one open two windows, one for the text
and one for the video? How does the user know
which window to focus attention on? What if the
moving video is placed within the text window? The
video would become unviewable if the text were
scrolled.

System. This platform ensures a reasonably high
degree of portability for the system.

The interprocess communication abilities of Unix
and the high level of flexibility in X also greatly
simplify the implementation of some parts of
Montage, as we shall see.

Specifically, our implementation of Montage was
done on a Sun SPARCstation-1/GX machine running
SunOS 4.0.3 and X11R4. The interface was built
using Hewlett-Packard’s widget set for X Windows.
Audio support is native on the SPARCstation, video
support is provided by a RasterOps video frame
buffer board.

The hardware dependent parts of the Montage
implementation (audio and video) are localized to
simplify the porting process. It should be possible to
run Montage on any Unix-based platform with X
support. The audio and video functionality can be
ported if necessary, but Montage will function
perfectly well without audio and video support. In
other words, Montage will function as a formatted
text and image mailer if these facilities are not
present.

Extensibility
It is impossible to knowa priori all the things users
may want to mail with a multimedia mail system.
Almost by definition, multimedia mail systems
should be able to send and receive a wide array of
media.

Therefore, it was a primary goal that Montage be
highly extensible by its end users. Montage allows
users to modify the behavior of the program at
runtime, without the need to recompile the system.
Support may be added for new media types and new
message transport techniques.

The facilities available for user extensibility will be
addressed in following sections.

A MODEL FOR MULTIMEDIA MESSAGES
It is our belief that unlike more general purpose
multi- or hypermedia documents, mail messages
typically tend to be short and attempt to convey one
central idea from the author. This belief has driven
our design for the Montage message format.

Hypermedia documents tend to present the user with
a large body of information in various media. The
user then ‘‘navigates’’ through the document along a
path that he or she chooses. Hypermedia systems
generally tend to be quite interactive--the user is
presented with almost all relevant information about



As we shall see, the Montage model allows the use of
any arbitrary media in the form of attachments.

Attachments
To augment the power of the system, Montage also
makes use ofattachments. Attachments may be
placed on any message of a given primary media
class. Attachments themselves are basically
submessages and may be of any media type, regard-
less of primary media class.

Attachments may be considered to be ‘‘margin
notes’’ that are not central to the message but still
convey useful information. Since they are not
presented to the user immediately when the window
is opened they are, in some sense, secondary in
importance to the information contained in the
primary component.

Attachments give us a way to convey additional
information while retaining our easy-to-play back,
easy-to-understand main message thread. Without
attachments, messages would degenerate to a
conglomeration of mixed media within a single
window which would in many cases be unmanage-
able.

In Montage, attachments are presented along side the
primary component window in the form of icons.
The image of the icon represents the type of media in
the attachment. Furthermore, attachment icons are
‘‘connected’’ to a particular location in the primary
component of the message. A use of attachments
may be to provide annotation or supplementary
information to the information contained in the
primary component.

In the case of static primary media, attachments are
connected to a certain physical point in the
message. Thus, a voice attachment may be con-
nected to a particular line number in a text message.
In the case of dynamic media, attachments are con-
nected to a certain time range in the primary
message. Thus, as the dynamic message ‘‘plays
back,’’ the various attachments are presented to the
user during the time they are relevant. These attach-
ments may be selected as they appear to give
additional information provided by the author.

Consider two examples of the use of primary media
and annotations to construct a message. A
geographically distributed group may be col-
laborating on a document. The primary component
may be the document in question. Attached to this at
various points may be audio annotations requesting
changes, image data to be considered for review
(image data may also appear within the document

In both of these circumstances the mode of interac-
tion would become one where the user’s attention is
focused on one media while the other is ignored.
Some means must be provided to let users control the
playback of the dynamic media so that they can
decide when to focus attention on the various media.
In addition, in our example above where video is
presented in one window and text is presented in
another, the user has no idea which contains the
‘‘central’’ part of the message. In other words, the
user does not know which component of the message
to focus on first.

Research supports the idea that users’ interactions
with multimedia systems tend to be largely
‘‘media-modal.’’ That is, they segregate the infor-
mation presented to them based on the medium of
interaction [Laurel 90].

Primary Media Classes
To overcome these difficulties, Montage introduces
the concept of aprimary media class. Each message
in Montage has a primary media class. This class is
either static or dynamic. The primary media class is
the type of the media presenting the ‘‘main thrust’’
of the communication from author to reader. Various
media with the same media class (either static or
dynamic) as the primary media class may be com-
bined freely. For example, if a message’s primary
media class is dynamic, the author may freely
intersperse audio and video in a message.

All of the components of the primary media class
which compose the principal part of the message are
collectively called theprimary component.

The primary component is presented to the user in a
single window. The window contains mechanisms
for controlling the presentation of the primary
component contained therein (in the case of dynamic
media, the controls may be buttons for play, pause,
fast forward, and reverse; in the case of static media
the controls may be scrollbars to view various parts
of the message).

We use the concept of the primary component to
project a single ‘‘path’’ through the message, much
as in existing mail systems. The primary media and
primary component concepts also serves to give the
author a means for expressing the central ideas in a
message.

If Montage were restricted to using only media with
types the same as the primary class, the system
would not be very flexible. There is an obvious need
for the incorporation of any type of media within a
message, regardless of the primary media class.



network speed and capacity will improve, so it is
important to lay a software groundwork for applica-
tions which can make use of these faster networks.

Fortunately, the batch-processing style of mail makes
full utilization of network resources less important.
Whereas a real-time video conferencing system
would require a guaranteed portion of the com-
munication bandwidth to function, mail systems can
be much less picky. As long as the message arrives
in what the user perceives to be a ‘‘reasonable’’
amount of time the system is meeting its goals.

Montage relies on the underlying mail transport
agents for actual mail delivery across the network.
So as newer mail delivery agents that can efficiently
transport large message across a network become
available, Montage will be able to make use of these
systems.

Interchange Format
While Montage mail headers conform to the SMTP
standard, Montage makes use of a custom format for
the bodies of electronic mail messages. This format
was created because we felt that existing standards
were either inflexible in the types of media they
allow, or were too unconstrained to present media in
an understandable format appropriate for mail mes-
sages.

The limitations of existing mail transport agents
require that the contents of Montage mail message
consist entirely of printable ASCII characters.
Although there are some experimental binary mail
transport agents, far and away the largest number of
mailers available on Unix platforms only support
ASCII transfer.

Because of this restriction, we are forced to encode
the bodies of Montage messages into ASCII. Our
reference implementation uses the standard Unix
uuencode program to accomplish this. The ASCII-
encoded file’s size is expanded by 35% after this
encoding process. To compensate for this, the mes-
sage body is first compressed before it is mapped
into ASCII.

But what is actually contained in this message body?
In Montage, the message body actually consists of
several discrete units, calledchapters. When mail is
received by Montage, the body is separated from the
header, it is converted to binary from its ASCII
format, uncompressed, and then broken down into its
components. In our implementation,each of these
chapters is stored as a separate file. There is one
special chapter, called thetable of contents, which
contains information on the layout of the entire mes-

itself), and video message clips to the various
members of the group.

As another example, consider a researcher mailing a
video of a presentation to a colleague. The primary
media class here is dynamic, and the primary
component of the message contains the video and
associated audio of the talk. Attached to this at
appropriate points are textual and audio annotations
(the playback of the presentation may be stopped at
any point to review the annotations), image data of
the slides used in the presentation, text of papers,
program source, and so forth.

Summary of Model
To summarize, the Montage model projects a single
path of message traversal. This primary path is
reflected in the primary component of the message.
The primary component may contain mixed media,
but the media it contains must be either all static or
all dynamic to focus reader attention.

Additional information may be placed in a message
in the form of attachments. An attachment is a piece
of annotational information which is secondary to
the primary flow through the message. Attachments
are not restricted to being of the same class as the
primary component.

IMPLEMENTATION NOTES
We have nearly finished a prototype implementation
of Montage. This section covers the details of our
implementation, including our assumptions and
design decisions, the format Montage uses for mes-
sage interchange, and the user interface to the
system.

Overview
It was our desire that Montage be as flexible as pos-
sible in the types of media it can use. Therefore, we
were determined to provide support even for media
with very high bandwidth requirements, although the
actual use of such media may be awkward on today’s
hardware because of pragmatic constraints.

Montage provides full support for interchange of
text, still images, audio, and video. Local area
networks commonly found today, such as Ethernet,
have bandwidth in the 10 Mbps range. Even with
Ethernet, applications will almost never see the full
theoretical bandwidth available in the system.

The bandwidth provided by such a network is suf-
ficient for text and small image interchange, work-
able for audio and large image interchange, and
unwieldy for video interchange. Nevertheless,



Each chapter is represented in one medium. The
type of this medium must be specified in the table of
contents so that the recipient mailer will know how
to ‘‘play back’’ the chapter.

A chapter is basically a single file containing a single
message component. Chapters may contain either
part of the primary component, an attachment, or the
table of contents.

Note that the principle component of the message
may be composed of many chapters, as long as the
media in those chapters is of the same class as the
primary media class (either static or dynamic).
Thus, it is possible to have text interspersed with
images in the primary component of the message.

Montage treats each chapter as raw data. That is, it
associates no real semantic information with each
chapter. Instead, the chapter data is handed to a
playback module, or handler, which may be internal
or external to Montage. The handler which is
invoked on a particular chapter depends on the media
type of the chapter. These handlers are specified by
the users of the system, and Montage provides a
mechanism for users to specify external programs
which they can use to play back and record message
chapters.

Media types are identified to Montage bytagswhich
are associated with each chapter via the table of
contents. Montage does not predefine any tags and
indeed does not even associate any meaning with
tags. Tags are defined by the users of the system.
When a chapter is encountered the catalog of tags is
searched and the user-specified handler (which may
be an external program) is invoked on the chapter.
The mappings from tags to handlers may be
completely specified by users in a per-user database
(with ‘‘sensible’’ defaults provided in a system-wide
database).

Thus Montage is completely runtime extensible by
the user in the media domain.

This ability provides Montage with a great deal of its
flexibility. Users can choose their favorite tool for
‘‘recording’’ text (i.e., they can use their choice of
editors (or word processors or spreadsheets) to enter
text into the mail system). Similarly, they can use
their choice of tools for viewing received audio and
video chapters. Montage provides some simple
means for playing and recording certain simple
media. But because the system is not limited to those
media which have built-in handlers, users can
automatically add support for new media by specify-
ing external programs to be used for media playback
and recording. Additionally, this mechanism allows

sage. The table of contents references and connects
all other chapters in the message.

Our first implementation uses existing Unix tools in
an effort to rapidly produce an operational version of
Montage. We use thetar Unix archive program to
combine the various chapter files upon message
creation, and to break out the chapters upon message
receipt.

Montage adds one line to the SMTP mail message
header which specifies the version number for the
encoding scheme. Since the above method is only
one of many possible encodings, future Montage
mailers will be able to determine the encoding
method by the version number in the header. Note
that this is the only addition we need to make to the
header to be able to send multimedia messages.

X.400
In 1984, CCITT released a set of standards for
electronic mail systems. These standards do not deal
with the user interfaces of mail systems, but rather
they specify the services available for sending mes-
sages across the network.

The X.400 model defines two agents that make up an
electronic mail system: the User Agent (UA) and the
Message Transfer Agent (MTA). The UA provides
the user interface for the system and may interact
with other UAs. UAs hand messages off to MTAs for
transport. X.400 specifies the interactions between
UAs and MTAs, but does not specify the interactions
between UAs and the users [Cunningham
84][Cunningham 85].

Montage implements a subset of X.400. Montage
provides most of the header fields which are used in
communication between UAs and MTAs, but does
not provide the inter-UA communication facilities.

It should again be noted that Montage is largely
independent of any underlying mail transport agent.
The system can be configured to use an administra-
tor-defined mail agent. On our prototype system this
is the Unixsendmail program. While we have not
tried using a full X.400 mail transport agent with
Montage we believe that it should function properly.

Chapters
As stated before, a message body consists of one or
more message chapters along with a table of
contents. The table of contents specifies the rela-
tions between the various chapters (relative place-
ment within a message, chapter format, etc.)

Each chapter contains a ‘‘section’’ of the message.



Additionally, some media (for example, a proprietary
format for a general purpose multimedia document)
may mix static and dynamic media within a single
window, even though this mixing is something that
‘‘native’’ Montage does not allow. In such a case,
the media in question may reference files which it
expects to contain the various media components it
needs. These external files may be bundled together
with the rest of a Montage message, and are referred
to as ‘‘subchapters’’ since they are not used directly
by Montage itself, but rather by one of the media that
Montage is dealing with. The media which uses
these external files must be responsible for managing
them. Subchapters are not specified in the TOC
since individual applications, rather than Montage
itself, deal with them.

Here is a sample table of contents for a Montage
message. This message consists of a simple text
primary component, with three attachments, aµ-law
sound clip (with tag ‘‘CODEC88’’), another simple
text segment (with tag ‘‘SimpText’’), and an X
Bitmap image (tag ‘‘XBM’’).

Author: Keith Edwards <keith@cc>
CreationDate: 18 Oct 90 10:18:52 PDT
Subject: Notes from the meeting
ID: 2848.AA08665
TOCVersion: 1.0
Class: static
Primary: txt.2848.txt SimpText
Attachment: snd.2848.snd CODEC88 27
Attachment: txt.2848.txt SimpText 30
Attachment: xbm.2848.xbm XBM 49

Interface
We built the interface for our implementation on top
of the X Window System. We perceived two primary
reasons for using X. Most importantly, X is accepted
as a standard throughout the workstation environ-
ment we were targeting as our audience. A primary
reason for this acceptance is the portability of X and
applications developed for X. As a result of this
portability, the interface portions of Montage should
recompile cleanly on any workstation which supports
X Windows.

Secondly, X provides certain general mechanisms for
user customization at runtime. We were able to
make use of these mechanisms to create a highly
configurable mail system--not only is the interface of
Montage configurable, but the actual types of media
the system can handle can be changed at runtime. It
would have been possible to get this degree of
configurability without using X, but we were able to
prototype the system much more rapidly by using the
facilities already available to X applications.

a great deal of user customizability and support for
individual user preferences, by allowing users to use
their choice of mechanisms for playback and record-
ing of media.

Table of Contents
The table of contents (orTOC) is a special chapter
that specifies the relations of the other chapters to
one another. The format of the TOC is relatively
simple, reflecting our simple model of mail usage.

We have chosen a line-oriented ASCII format for the
table of contents. Since most TOCs will be relatively
small, we felt that the space savings accomplished by
encoding the information in a machine readable
format would not be as important as the simplicity
and ease of debugging provided by a human-readable
format.

Each TOC must have at least 3 records. Each record
gives some piece of information and each appears on
a separate line. The required records are:

1. TOCVersion The version identifier
for the TOC format.
2. Class The class of the primary message
component, either static or dynamic.
3. Primary The name and type of the
message chapter containing a part of the
primary component of the message.

In addition to these required records, there are
several optional records:

1. Attachment The name, tag, and posi-
tion of an attachment. Position is given as a
line number in the primary component if the
message is static, or as a time offset in the
primary component if the message is
dynamic.
2. Author The mail address and
(optional) name of the sender.
3. CreationDate The date the TOC
was created.
4. Subject The subject of the message.
5. ID A unique identifier for the message
on the machine it was created.
6. Comment Signifies that the rest of the
line is to be treated as a comment
(ignored). This is primarily used as a
debugging tool.

Since it is possible to combine several chapters
within the primary section of the message (as long as
these media are either all static or all dynamic), there
may be severalPrimary fields in the TOC. These
chapters will be presented sequentially to the user.



individual messages are stored in a subdirectory of
the user’s directory, on a one-message-per-file basis.
The system spool file is then removed to free up
system disk resources.

Users are notified when new mail arrives by the
playback of a sound file. Users may also enable an
automatic mail check-in function via the preferences
panel (seePreferences, below).

Basic Message Control The most commonly used
Control Panel items areMessagesand Compose.
These two items give the interface to message
creation, viewing, deletion, and most other common
functions.

When the user clicks theMessagesbutton to view
the list of current messages, the system scans the
mail cache file to retrieve the header information.
This keeps Montage from having to open, scan, and
parse all the message files individually. A new
window is opened and the user is presented with a
scrollable list of the current messages.

From theMessageswindow (see Figure 1) users have
the option to view messages, save messages to a
file, delete messages, or reply to or forward
messages. All actions on messages are accomplished
by highlighting the desired message or messages, and
then clicking the button to perform some action on
those messages. Since viewing is perhaps the most
common operation, users may view messages by
double clicking on the message.

Figure 1: The Message Window

Saving a message brings up a window which prompts

Our front end is built using a set of user interface
objects (widgetsin the X parlance) provided by the
Hewlett-Packard company. We choose the HP widget
set based on its perceived completeness and orthogo-
nality. A secondary consideration was that the HP
widget set is freely available, unlike some widget
libraries (such as Motif and OpenLook) which are
available only to sites which pay a licensing fee.

Montage makes use of a multiple-window interface.
The first thing a Montage user sees is theControl
Palette. The Control Palette presents the user with a
group of on-screen ‘‘buttons’’ representing the major
options available in the system. The primary options
available from the Control Palette are

• New Mail check in any newly received mail
into the Montage system. New mail must be
‘‘checked in’’ before it can be read.

• Info presents the user with a ‘‘pop-up’’
window, giving information about the program’s
origin.

• Messagespresents the user with a scrollable
list of messages. Users may then view,
forward, save, or delete these messages.

• Composeis an interface to message creation.
Facilities are provided for composition in
several media types. Support for new media
types may be added dynamically.

• Iconify reduces all the Montage windows to a
single small window. This is convenient for
when the user is not working with the system at
the moment.

• Preferencesbrings up a panel which allows
the user to customize his or her default prefer-
ences.

• Quit quits the system.

We will now go into some detail on the mechanics of
the Montage interface.

Checking In New Mail Clicking the New Mail
button causes any mail in the user’s mail to be
‘‘checked in’’ to Montage. Whenever new mail is
checked in, the system reads in all new messages
from the user’s mail spool file. As the messages are
read in, the headers are parsed and a mail cache file
is built in the user’s home directory. The cache file
contains important header information such as the
message sender and subject, and the number and
format of any attachments. The system also calcu-
lates the byte offset of the start of the actual message
body so that the message data can be separated from
the header. After the cache file is updated, the



component they are viewing.

The View window also gives users options to delete,
save, forward, and reply to messages. These func-
tions work the same as those presented in the
Messageswindow.

Composing New Messages Clicking the Com-
posebutton brings up theComposewindow, which
is an interface to message creation (see Figure 3).
Users fill in the necessary components of the mes-
sage header (recipient, subject line, and any carbon
copies) by typing in the appropriate fields.

Figure 3: The Compose Window

The main portion of theComposewindow is taken
up by a region where the primary component is cre-
ated. Users may type into this window directly, or
they may import files of various types via theImport
button.

TheImport button brings up a window which allows
users to insert external files as either attachments or
as parts of the primary component. The user must
specify the type of the inclusion so that Montage
may build the table of contents for the message cor-
rectly.

Because of the ability to type directly into the
Composewindow’s primary component area, the
input of text is simple. However, it is desirable to be
able to record other media as easily as text. It is often
cumbersome to have to use tools external to Montage
to record some message component into a file and
then import the file into a message. Thus theView

for the filename in which to save the message. Cur-
rently, messages are saved in their native, bundled
format. We will be adding support for saving
individual message components.

Replying to a message puts the user into theCom-
pose window (to be discussed shortly). When
replying, the user is not restricted to using the same
primary media class as the original message.

Forwarding simply allows the message to be resent to
a new destination.

Message Viewing When a message is viewed, the
View window (Figure 2) appears on the user’s
display. The message is automatically unpacked and
the primary component of the message is presented
in the main portion of the window. Any attachments
are displayed along the side of the window and are
represented by icons which depict the types of the
attachments. There is a single scrollbar attached to
the primary window and attachment list.

Figure 2: The View Window

What is actually displayed in the primary component
window depends on the media themselves.
Typically, static media will be presented in a scroll-
ing window. The handling of dynamic media is more
complex, however. Users have control over sound
via a control panel much resembling a tapedeck.
Video messages are controlled by via a window with
a set of controls much like a video cassette recorder.
As the dynamic media are played, any attachments
scroll by the user to the side of the control panel. If
desired, users may stop playback and view attach-
ments relevant to the portion of the primary



only sound clips while others may be content to send
simple text most of the time).

Designers of mail systems must be concerned with
two aspects of performance: mail delivery latency
and message size. Mail delivery latency is the actual
time required for transmission of a typical message
across the network. Message size is the amount of
physical storage required to actually store the mail
message.

The delivery latency is dependent on the speed of the
underlying network which is in turn dependent on
the mail delivery agent chosen for message transport.
Since Montage is usable with any
RFC-822-compliant mail transport agent, we are not
directly concerned with network latency and perfor-
mance may be characterized by one metric: message
size. In most cases message size will be proportional
to delivery latency for a given network and transport
agent, so message size is an effective measure of
performance.

Sending a message via Montage will add somewhat
to the ‘‘native’’ size of the information being
transmitted. Essentially the native size of a Montage
message is the sum of the sizes of the attachments,
along with the primary message component and the
message header. When the message is sent, a table
of contents is added. Furthermore, all of the message
body undergoes a packaging process which adds
some to the size of the message.

Our goal is to minimize the increase in size by (1)
optimizing the packaging process for size, and (2)
making the table of contents as small as possible.
We will address each of these issues in turn.

The packaging process basically consists of
‘‘bundling’’ the various message components into
one file. To minimize the size of the resulting file, it
is compressed using adaptive Lempel-Ziv coding
[Welch 84] as implemented by the Unixcompress
program). The amount of compression obtained by
using this algorithm depends on the size of the input
and the distribution of common substrings.
Typically, for English text, the compression will be
in the range of 50% to 60%. Some files, such as
µ-law sound files, are already encoded and cannot be
compressed further.

Since the result of this compression is a binary file, it
must be mapped into ASCII characters for transmis-
sion via RFC-822 mailers. This mapping process
expands the file’s size by 35% (3 bytes become 4,
plus some control information is added). Thus, for
fairly long text messages, Montage can achieve mes-
sage sizes smaller than those for messages containing

window provides a menu forCompose Tools. These
tools allow users to incorporate media into messages
almost as easily as text.

For example, Montage supports a sound recording
tool from the Compose Tools menu. This tool
(resembling a tapedeck, see Figure 4) allows users to
record and edit sound clips. A similar video tool
allows the recording and editing of video messages.
Users may configure Montage to add new items and
actions to the tools menu.

Users click theSendbutton to pass the message on to
the mail transport agent. TheViewwindow contains
buttons to close the window, and save the message to
a file.

Figure 4: A Sound Tool

Hiding Montage Montage uses a multiple-window
interface. Each window in the system may be shrunk
or ‘‘iconified’’ individually.

It may be desirable at times to iconify all the
windows of the application at once to effectively
hide the application. This may be accomplished by
the Iconify button on the Control Palette. This
button reduces all the Montage windows to a single
small window. Any windows which have been
iconified individually are ‘‘joined’’ into the Montage
icon. All windows will be returned to their original
states when the icon is clicked.

User Preferences Montage supports
user-configurable preferences via thePreferences
button. This button brings up a control panel which
allows users to select and modify a variety of system
parameters, including changing the speakers to
which audio output will be routed, setting audio play
and record levels, setting whether or not message
headers will be displayed, and so on.

PERFORMANCE
Overall mail system performance depends on many
variables: the underlying network used for mail
transport, the size of the messages, and even the
habits of the users (some users may want to send



integrated into an actual work environment. Further
work will be done on enhancing the video capabili-
ties of the system and integrating the mailer with
existing tools and media.

Much work still needs to be done on increasing the
usability of the user interface. An online, context-
sensitive help system is also needed.

We feel that Montage represents a flexible, workable
system for the exchange of multimedia documents
while presenting a friendly, intuitive interface to
users.

ACKNOWLEDGEMENTS
The research and development of this system were
supported by a grant from BellSouth Corporation.

REFERENCES
Crocker, David H. [1982] Standard for the Format of
ARPA Internet Text Messages, Internet Request For
Comment (RFC) 822, August 13, 1982.

Cunningham, I. [1984] Electronic Mail Standards to
Get Rubber-Stamped and Go Worldwide.Data
Communications, May 1984.

Cunningham, I., and I. Kerr. [1985] New Electronic
Mail Standards.Telecommunications, July 1985.

Guastello, S., M. Traut, and G. Korienek. [1989]
Verbal Versus Pictorial Representations of Objects in
a Human-Computer Interface. InInternational
Journal of Man-Machine Studies, July 1989, Vol. 31,
No. 1, pp. 99-120.

Laurel, Brenda, Tim Oren, and Abbe Don. [1990]
Issues in Multimedia Interface Design: Media
Integration and Interface Agents. InACM SIGCHI
Proceedings, 1990. (Seattle, Washington April
1-5). pp. 133-139.

Nielsen, Jakob [1990]Hypertext and Hypermedia.
Academic Press Inc., San Diego, CA, 1990.

Rohr, G. [1986] Using Visual Concepts.Visual
Languages, S. Chang, T. Ichikawa, and P.
Ligomenides, eds., Plenum Press, New York, 1986,
pp. 325-348.

Stallings, W. [1987] Handbook of Computer-
Communications Standards, Volume 3: Department
of Defense (DoD) Protocol Standards. New York:
Macmillan, 1987.

Welch, Terry A. [1984] A Technique for High
Performance Data Compression.IEEE Computer,
vol. 17, no. 6 (June 1984), pp. 8-19.

the same, but unencoded text (original message size
× .55 × 1.35 = .74 of the original message size).

Of course added to any encoded message is a table of
contents. This table of contents specifies the
‘‘layout’’ of the message. Our format for the table of
contents is ASCII-based. We deliberately chose this
format for simplicity in implementation and to ease
debugging. Usually the table of contents for a given
message will be very small.

The minimum size for a table of contents is
variable. Since the table of contents contains entries
for things such as sender name and subject there is
no fixed minimum size. But in general, a simple
table of contents will be on the order of 300 bytes.
Each attachment will add something on the order of
60 bytes for information regarding attachment type
and placement. So we see that the contribution of
the table of contents to the size of the total message
is negligible.

STATUS
The design and a first-pass implementation of
Montage have been completed. Currently the system
allows static primary media, and attachments of
either text, audio, or several image formats. Facili-
ties have been completed to allow easy composition
of messages by typing or importing text, importing
images, and recording sound via a simple sound
editor mechanism.

Work is progressing on the addition of full dynamic
primary media capabilities. We hope to soon have
store-and-forward video transmission along with
synchronized sound output.

Montage is currently running as a complete
functional mail system which can serve as a replace-
ment for existing Unix mail systems. That is,
Montage may already be used to replace users’ text
mail composition and reading programs; the remain-
ing work lies in the area of support for additional
media.

CONCLUSIONS, CAVEATS, FUTURE DIRECTIONS
Our work on Montage was based on a set of as-
sumptions which we believe greatly enhanced the
usability of the system, as well as simplified the
implementation. The initial response within the local
research community at the Software Engineering
Research Center and outside sponsors has been
favorable.

In the near future, we plan to polish the implementa-
tion of the system to the point where we have a
robust, workable mail system which may then be




