
Putting Computing in Context:
An Infrastructure to Support Extensible
Context-Enhanced Collaborative Applications

W. KEITH EDWARDS

Georgia Institute of Technology

Context-aware computing exposes a unique tension in how information about human context is

modeled and used. On the one hand, approaches that use loosely structured information have been

shown to be useful in situations where humans are the final consumers of contextual information;

these approaches have found favor in many CSCW applications. On the other hand, more rigidly

structured information supports machine interpretation and exchange; these approaches have been

explored in the ubiquitous computing community. The system presented here, dubbed Intermezzo,

represents an exploration of a space between these two extremes. Intermezzo combines a loose

data structuring with a number of unique features designed to allow applications to embed special-

ized semantic interpretations of data into the infrastructure, allowing them to be reused by other

applications. This approach can enable the construction of applications that can take advantage of

rich, layered interpretations of context without requiring that they understand all aspects of that

context. This approach is explored through the creation of two higher-level services that provide

context-enhanced session management and context-enhanced access control.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures—

Domain-specific architectures; H.5.3 [Information Interfaces and Presentation]: Group and

Organization Interfaces—Collaborative computing; H.3.4 [Information Storage and Retrieval]:
Systems and Software—Distributed systems, current awareness systems

General Terms: Design, Human Factors

Additional Key Words and Phrases: Collaboration, context-aware computing, data representations,

coordination

1. INTRODUCTION

All work—like everything else in our lives—occurs in some setting. And al-
though we typically think of the setting of work as the place where that
work occurs, setting is far broader than just physical location. Setting includes
the people around us or collaborating with us; the work of other people with
whom we may interact; the reasons, demands, and often unspoken constraints

Author’s address: College of Computing, Georgia Institute of Technology, GVU Center, 85 Fifth

Street NW, Atlanta, GA 30332-0760; email: keith@cc.gatech.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1073-0616/05/1200-0446 $5.00

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005, Pages 446–474.

Infrastructure to Support Extensible Context-Enhanced Applications • 447

surrounding the tasks at hand. In our increasingly computer-mediated lives,
it also involves the virtual aspects of work such as the applications we use,
our online coworkers, files, and so on. In short, the setting of work is more ap-
propriately defined as the entire context in which the work occurs—the web of
people, events, places, and activities that are both explicit and implicit in the
work itself.

Because context is such an essential part of how we interact, there is great
potential, and hence interest, in so-called context-aware computing: computa-
tional support for the sharing and use of human contextual information.

And yet, despite the recent focus on it (particularly in the area of ubiquitous
computing), context-aware computing is not a new research area. In particular,
the computer-supported cooperative work (CSCW) literature has a long history
of focus on tools that represent, transmit, and store information about people
and their situations and how this information can be used to help users coordi-
nate with each other. While many of these tools are purely media-oriented (e.g.,
Cruiser [Root 1988] and Mediaspace [Bly et al. 1993]), using video and audio
to allow users to maintain general awareness of the context of colleagues, oth-
ers support the sharing of context through domain-specific tools (e.g., ShrEdit
[McGuffin and Olsen 1992], PREP [Neuwirth et al. 1990]) and techniques such
as Radar Views [Gutwin et al. 1996], all of which convey a user’s context within
a particular application. In these systems, even though applications mediate
the presentation of context, it is ultimately intended for consumption by hu-
mans. In these applications, the contextual information that is shared is about
people and intended for use by people.

This focus on people as the consumers of contextual information is in contrast
to the focus of much of the work in the ubiquitous computing community. In
that work, systems rather than people are often assumed to be the ultimate
consumers of contextual information about users. For example, tools such as
CyberGuide [Abowd et al. 1997] and the Conference Assistant [Dey et al. 1999]
and others use location data that is parsed and understood by the application
in order to adapt its behavior to its situation of use.

These two contrasting uses for information about people lead to different
infrastructure mechanisms to support its representation, sharing, and use. In
CSCW systems, contextual information tends to be produced and consumed by
multiple instances of a single application. In such circumstances, an application
developer can decide on the format for representing context without consider-
ation for how it might be used by other applications. In ubiquitous computing
systems, on the other hand, context is typically generated through some “cap-
ture infrastructure” such as the Context Toolkit [Salber et al. 1999] and then
made available to other applications. In such a situation, the format of the in-
formation must be agreed upon by the capture infrastructure that produces it
as well as by the applications that must understand the syntax and semantics
of it in order to act appropriately.

There are representational differences in addition to usage differences. In
many CSCW systems, the format of context information is only loosely struc-
tured since it will often be consumed by humans. For example, the Elvin tick-
ertape application [Fitzpatrick et al. 1998] exchanges unstructured strings.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

448 • W. K. Edwards

Because the application relies on humans to parse and understand the trans-
ferred data, there is no need for more formal structuring. This is especially true
since the data is often shared only within multiple instances of a single appli-
cation, and thus can be easily extended or augmented without fear of breaking
other applications.

These different approaches lead, in turn, to a fundamental trade-off that
constrains how applications make use of context. Obviously, unstructured and
even loosely structured data can be difficult for systems to parse. But on the
other hand, the very formal structure that lends itself to machine parsing can
lead to inflexibility and brittleness. For example, any given representation will
define a syntax that encodes a set of context features that may implicitly pre-
sume an intended use (by representing certain features of a person’s context
and not others, by encoding attributes like location to a certain precision, etc.).
New applications which may bring new requirements can be difficult to retrofit
on top of the representation, leading to the need to evolve its format. These
problems are compounded when the information is meant to be shared across
applications. Because these applications depend on agreement about the syn-
tax and semantics of the context, the representations often cannot easily evolve
to accommodate new semantics without breaking compatibility.

While this trade-off between structured and unstructured representations
exists for many types of information, it is especially problematic in the case
of context. First, context represents information about people that is very of-
ten ambiguous by nature, subtle in its interpretation, and can be applied to
many uses. Second, there is a great range of information about humans that is
potentially useful (ranging from general information about users’ locations or
actions, to domain-dependent information such as a user’s context in a specific
application). Third, different sorts of context are important to different appli-
cations. For example, physical copresence may be salient for a single display
groupware application [Stewart et al. 1999], while the fact that multiple users
are editing the same document may be salient for a shared editing tool.

Put simply, while highly-structured data representations are amenable to
use by applications (they can be easily machine parsed, processed, and stored),
they are problematic in situations where the needs of applications are evolving,
where the range of information that must be represented is very great, and
when agreement among multiple applications is required, in other words, the
very situations posed by context-aware computing.

The traits of context—the richness and range of it, and the breadth of needs
of applications that will use it—make it difficult to define a formal, overar-
ching ontological structure that defines all of the relevant aspects of context.
Paradoxically however, without such an ontology, we may lack the ability for
systems to process the information and especially the ability to share it between
applications.

This work takes the approach that, because the use and meaning of context is
evolving, fluid, and ambiguous, it is impractical for infrastructure designers to
try to predict all of the aspects of context that will be meaningful to applications
or to people. In other words, we cannot yet define an ontology of context that
will serve all applications for all uses and without such an ontology, we must

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 449

be prepared to deal with multiple interpretations, extensible representations,
ambiguity, and evolution. The approach taken by the infrastructure described
in this article, dubbed Intermezzo, is to provide representations that support
these needs by allowing applications to impose their own semantic constraints
on the data store in such a way that these constraints can not only evolve, but
also support at least some degree of reuse by other applications. The primary
contribution of this work is in its exploration of this data model for exploiting
context in collaborative systems.

The rest of this article is structured as follows. The next section explores pre-
vious work in the area of infrastructures to support context aware applications
both from the CSCW and ubiquitous computing fields. This section also explores
in more detail the representational tensions that arise when dealing with con-
text as a way of more fully motivating the approach taken by Intermezzo. After
this, the next section explores the data model used by Intermezzo to repre-
sent context. This model combines features of simple object databases with a
notification service and adds some features particularly intended to support
the extensible modeling and sharing of context. Then the article discusses how
the Intermezzo data model can be used to support the creation of higher-level
building blocks that can be used to facilitate context-enhanced collaborative
applications. Two of these building blocks are explored, a context-enhanced
session management service and a facility for context-enhanced access con-
trol. Both of these use the underlying Intermezzo platform to support cross-
application coordination through sharing extensible representations of the con-
text of their users. The article discusses Intermezzo from the perspective of
application writers, and concludes with a summary and an exploration of the
lessons learned from leveraging powerful representations as a tool to support
coordination.

2. MOTIVATION AND RELATED WORK

As noted earlier, a number of systems have addressed the goal of supporting
applications that are responsive to the states and changes of the context of their
users. In the CSCW community, many of these tools have focused on providing
coordination support to collaborative applications and share certain require-
ments in common (including, as Ramduny et al. [1998] note, the ability to ac-
cess and update shared data and to be notified when that application data has
updated). These requirements have been fulfilled by various systems, including
notification services. Notification services are publish-subscribe infrastructures
that allow applications to publish data items to zero or more subscribers which
are applications that have registered to receive such notifications. These sys-
tems typically allow coordination among loosely coupled parties in which a
publisher may neither know nor care whether any subscribers are listening for
updates.

There have been a number of these notification services constructed, some
with CSCW applications specifically in mind and some not. For example, the
Elvin system [Fitzpatrick et al. 1999] is a well-known notification service that
has been applied successfully to a number of collaborative applications. Elvin

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

450 • W. K. Edwards

is, in the terms established by Ramduny et al. [1998] a pure notification service,
that is, it performs notifications only (it is not also a shared data store), and
propagates those updates asynchronously to clients that have solicited interest
in them. The Lotus PlaceHolder system [Day et al. 1997] is another notification
service. PlaceHolder, however, also incorporates a persistent data store that
can be used by applications to manage shared data; changes to this data by
any client result in notifications that are generated to other interested clients.
Thus, in the terms of Ramduny et al., PlaceHolder implements the gatekeeper
pattern in which the notification service is tightly bound with an integrated
data store.

For the most part, all of these notification services have very simple data
models. PlaceHolder, for instance, stores things which are simply named byte
arrays that applications are meant to interpret according to their particular
semantics (in other words, for applications to share data through PlaceHolder,
they must agree not only on the naming conventions for things, but also on the
format of the values stored in them, and the semantics of that data). Although
it does not persistently store data, Elvin has a similar data model that it uses to
describe the content of events and event subscriptions, named attributes com-
prising a variety of simple data types. These systems are typical of the loosely
structured representations that have been adopted by the CSCW community.

A number of data repositories have models very similar to these notification
services. For example, tuplespace systems such as Gelernter’s Linda [1985],
the Stanford EventHeap [Johanson et al. 2002], and JavaSpaces [Arnold et al.
2999], allow applications to store untyped tuples (collections of named data
elements) in the model. Likewise, Placeless Documents [Dourish et al. 2000]
presents a loosely-structured data model, named properties that contain un-
structured data, similar to that of both Elvin and PlaceHolder.

Such arrangements yield great power. They allow the infrastructure to be
very simple because the data model is highly generic—the infrastructure need
not know the semantics or structure of the data it stores—and can also be
applied to a wide range of applications. They are also highly adaptable in that
new applications can use existing data in the model, and add their own without
breaking the infrastructure. The expressiveness of these approaches facilitates
such easy adaptability.

There is, however, a downside to this semantic-free representation. Because
the sharing infrastructure is generic—meaning that it imposes little structure
and virtually no meaning on the data it stores—applications are left to their
own devices to create higher level structure and impose semantics on the data
they share. Since these structures often emerge on an ad hoc, application-by-
application basis (and since the infrastructure doesn’t understand and enforce
their syntax and semantics), they exacerbate the problems of agreement among
clients on how shared data will be represented and intepreted. This limits the
cross-application synergy and reuse that is crucial to coordination: if we expect
applications to be able to share a data model, they must agree on the terms in
which that data will be represented, the semantics of it, and so on.

In situations where the data is very simple (as in the case of the Elvin tick-
ertape [Fitzpatrick et al. 1998]), where it is designed for human consumption

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 451

(as in the case of Gutwin et al.’s awareness widgets [1996]), or when only one or
a small handful of clients will access it (for example, a set of bespoke tools ex-
plicitly designed to work together, or multiple instances of a single application),
these problems are mitigated.

On the other hand, these problems are accentuated when the data that is
shared is intended for machine (as opposed to human) interpretation or if it’s
very complex, especially if we expect multiple clients to use it. These are the
very sorts of conditions that are important for cross-application coordination.

A common approach that sacrifices ad hoc evolution in favor of rigid cross-
application agreement is to create ontologies that specify the name and value
spaces of the data. Such ontologies represent an attempt to standardize the
names, formats, and semantics of data at a fine-grained level; effectively, they
preordain all aspects of the format and meaning of the data. A well-known
example from outside the collaborative domain is the Semantic Web [Berners-
Lee et al. 2001] which is defines a broad range of representations for information
useful to Web services. Of course, new needs require changing the ontology
which necessitates updating the applications themselves.

Many systems from the ubiquitous computing community have used context
modeling techniques that are ontologically oriented. Many of these ontologies
are expressed through the same building blocks as those used by the Semantic
Web community, including the OWL Web ontology language [Hori et al. 2003].
Such approaches are natural, given the need for cross-application sharing and
synergy. For example, systems such as CONON [Wang et al. 2004] define a fixed
hierarchy for location (OutdoorSpaces and IndoorSpaces are specific types of lo-
cations; IndoorSpaces further decompose into Buildings, Rooms, Corridors, and
Entries). As these authors note, however, due to the evolving nature of context-
aware computing, completely formalizing all context information is likely to be
an insurmountable task. These problems are inherent in using a predefined
structure to try to capture a fluid and evolving notion such as context. And
while some ontologically-based systems allow the embedding of application-
specific data—essentially, a back door to support data outside the scope of the
ontology—any such application-specific data is once again generally usable only
by instances of that one application. The additional semantics encoded into it
are unavailable to other tools.

Intermezzo represents a design exploration between these two alternatives of
emergent structure (which limits cross-application sharing and synergy) and
completely preordained structure (which limits evolvability). A key thesis of
Intermezzo is that clients’ agreement on a few basic structural properties of the
data, coupled with a sufficiently rich data model, provide a degree of synergy
and cross-application leverage missing in more loosely-structured data models,
while supporting the ability to evolve to unforeseen application needs that is
missing from ontological approaches. This article explores how these facilities
can be used to support novel forms of contextually-enhanced coordination in
collaborative applications.

At a high level, Intermezzo is an infrastructure that provides both a data
store and an integrated notification service. Thus like PlaceHolder, it follows
the gatekeeper pattern defined by Ramduny et al. [1998] However, unlike

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

452 • W. K. Edwards

PlaceHolder and Elvin, and also unlike other non-notification service systems
such as Placeless Documents, the Event Heap, Linda, and so forth, Intermezzo
provides a data model that is more structured than these free-form models.

As noted earlier, however, simply imposing structure is not sufficient. Struc-
ture on its own may enable machine processing and use of information, but
potentially at the expense of adaptability, appropriability, and evolvability that
are the forte of loosely-structured systems. In short, we need to balance the
need for structure with the need for expressiveness in the data model. Thus,
Intermezzo couples the basic data structures it imposes with a number of fa-
cilities described later in this article for allowing rich representations of data
that can be extended by applications in ways that do not break compatibility.
Structure provides the basis for cross-application agreement, while expressive-
ness provides the basis for adaptability that is often missing from rigorously
structured approaches. By using this approach, Intermezzo attempts to sup-
port applications’ interpretations and allow these interpretations to be shared
rather than putting the interpretation up front in the definition of an ontology.

3. CONTEXT IN INTERMEZZO

At the core of Intermezzo is a shared object model with shared data objects
called resources that store information. For the most part, this object model is
similar to a simple classless distributed object system. Any resource can have
any number of named slots that can contain simple data types or references to
other resources. Resources are published into a shared dataspace by applica-
tions. Each Intermezzo dataspace represents an administrative boundary much
as a place in the PlaceHolder system. The resources within a dataspace are vis-
ible (modulo access controls) to the set of clients that can access the server
hosting that dataspace.

All Intermezzo resources maintain a notion of their ownership as well as
access control rights. Intermezzo resources can also be replicated with variable
consistency guarantees. While not discussed here in great detail (see [Edwards
1995] for more information), these facilities allow resources to be associated
with users and to be securely copied and shared.

The system also supports the ability of applications to extend the runtime in-
frastructure through downloadable code, expressed in the Python [Van Rossom
1995] language. This feature is used by applications to impose certain semantic
constraints on the data store as will be described later.

Intermezzo supports a number of operations to retrieve information from a
dataspace. The most basic operation is the ability to issue queries to select a
subset of the resources in the space based on some search criteria (including
boolean combinations of comparison primitives against slots such as equals,
less than, and refers to). The ability to search based on the contents of a re-
source is essentially identical to the content-based matching facilities in Elvin
as well as in many tuplespace systems. These operations are designed to allow
applications to be able to easily select, for example, all resources with slots that
match a certain value, all resources belonging to a given user, all resources that
have slots that refer to a certain resource, and so on.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 453

Similar to the polling-based query operations, applications can submit so-
licitations requesting that they be asynchronously notified when some change
occurs in the dataspace. These solicitations use the same content-based spec-
ification as do queries and allow applications to be notified of additions or re-
movals of resources matching certain patterns in the data space or changes in
the slots of particular resources.

So far, the features presented here are similar to those in a simple object
database or tuplespace system and also similar to the data models provided
by notification services. Intermezzo goes beyond this basic data model in two
ways, however. First, it imposes a top-level structure on resources to facilitate
the organization of contextual information. Second, it adds a set of features to
allow richer representations of the data within that structure. The next two
sections describe these features.

3.1 Structuring Context Through Activity

Information about users’ context is stored as resources in an Intermezzo shared
dataspace. Rather than allowing applications to store context information in a
completely free-form ad hoc way, however, the infrastructure imposes a coarse-
grained organizational structure on the context it stores.

This organizational structure is centered around the activities of the users
of the system. Activities are represented as resources each containing refer-
ences to three other resources representing, respectively, the user in the activity
(called the subject), any task or application he or she is using (called the verb),
and the data being operated on by this activity (called the object) [Edwards
1997]. Each of these resources may have slots containing information relevant
to that aspect of the activity. For example, subjects may have slots indicating
the user’s identity, location, contact information, and so on. Figure 1 shows an
activity resource with references to subject, verb, and object resources, each
of which may, in turn, have references to other resources or simple data types
such as strings.

Any given user may be involved in any number of concurrent activities, and
it is the responsibility of all Intermezzo-aware applications to maintain the
representations of their users’ activities. Thus, applications update resources
in the shared dataspace to represent changes in a user’s situation—a new ac-
tivity starting, a change in the user’s location, and so forth. Each application is
responsible for maintaining the small piece of the global activity space that it
represents or knows about.

In this model, each application may have the domain knowledge appropri-
ate for creating a particular piece of the overall picture of a given user’s set of
activity resources—a file editing application may know that the user is work-
ing with a set of files, while a voice chat application may know that the user
is currently speaking to another party. Applications with particular domain
knowledge can contribute to portions of the larger picture, but no single appli-
cation need understand the entirety of the contextual information. Applications
with similar semantics (file editors, e.g.) may overlap in the information that
they use, update, and understand (information about files, perhaps). Other

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

454 • W. K. Edwards

Fig. 1. A simple activity resource and its components. Arrows indicate slots containing references

to resources. Other slots contain simple values.

applications may coexist with these, updating other portions of the activ-
ity space without having to understand any particular semantics of files or
editing.

Of course, not all context is situated in a particular application. Some as-
pects of context may span a number of applications or may be external to any
application at all. For example, the physical location of a user is often a very
salient aspect of context, but it is outside the purview of any traditional appli-
cation. So, in the Intermezzo model, a class of applications called monitors are
used to monitor both the physical and the virtual worlds. They can also publish
information or update existing information on behalf of applications not writ-
ten to the Intermezzo APIs. This technique can be used to integrate sensing
infrastructures such as those provided by Active Badges [Want et al. 1992] or
the Context Toolkit [Salber et al. 1999] into the Intermezzo data model.

While activity is not the only way in which a data model for context might
be organized, this simple model affords applications with enough structure to
be able to share information about certain aspects of users’ situations that are
sufficient for a number of interesting collaborative features. The next sections
of the article outline a number of mechanisms for how this simple structure can
be extended by applications to accommodate their evolving needs.

3.2 Richer Representations of Context

So far, the data model as described is fairly straightforward. At the most basic
level, it resembles an object database with notifications. On top of this is layered
a simple structure (activity resources and their components) designed to provide
a basic layout of the data in the system. This simple structure in itself is not
sufficient for the flexibility and synergy needed for extensible coordination,
however. There are a number of additional requirements that must be met to

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 455

support these abilities, while allowing the sorts of cross-application leverage
and reuse discussed earlier. This section describes Intermezzo’s support for
richer notions of contextual ambiguity, identity, evolution, and equality.

First, contextual information is often inherently ambiguous and varied in its
intended meaning. For example, a person’s location may be ambiguous because
of the discrimination ability of a given sensor or potential error in sensor read-
ings. Likewise, even the intended meaning of location may be ambiguous. Do I
expect the location slot on a user’s resource to indicate a building room number?
Latitude and longitude coordinates? To accommodate such richness, the infras-
tructure must be able to support multiple notions of location simultaneously,
perhaps provided by different sensors, with different formats and semantics,
while allowing applications to select those that they have the programming to
understand.

Second, since context often represents real world entities such as people,
places, and things, we must support complex notions of identity. For example, a
free-form data store such as PlaceHolder would have no intrinsic notion of what
a person is. Applications could, of course, use some collection of key-value pairs
to represent details about a particular person. But because these semantics are
situated in individual applications rather than in the infrastructure, multiple
applications may each create their own private representations of a particu-
lar person not easily available to or reusable by others. Without the ability
to control how representations are created and referenced (one representation
for one person, one representation for one machine, etc.) across applications
we limit their ability to work together without complex upfront agreements on
how every resource will be represented.

Third, we must be able to easily support evolution without breaking compat-
ibility. For example, new location-sensing technologies will undoubtedly appear
in the future with their own semantics and data formats. We need to ensure
that existing applications perhaps written to use the results of some earlier
location-sensing system, can still function even as new, higher-resolution infor-
mation is added to the data store. In practice, this means that the data model
must be extensible (meaning that no fixed schemas are in place) and that ap-
plications must be able to deal with the presence of information that may be
unexpected. In terms of Intermezzo, we must be able to add new data items to
resources freely; applications can then use the data items that they are writ-
ten to understand, while ignoring others presumably added by other (perhaps
newer) applications.

Fourth and finally, we must support more complex notions of equality of
data than are typically found in most collaborative data stores and notification
services. Contextual information will often represent real world entities, and
such entities have complicated notions of equality. The data store must allow
applications to impose semantics on the data store that reflect these notions of
equality rather than relying on some simple matching of key-value pairs.

For example, if I am in an office and I ask if a coworker is here, do I mean
whether the coworker is the in same office? The same building? The same city?
The correct answer depends entirely on the application and the situation. For
a single display groupware application, the fact that my coworker is in the

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

456 • W. K. Edwards

same room is probably the correct interpretation, whereas for an automated
away board, whether the person is still in the building is salient. The point is
that equality is a complex notion, and thus the data model must support the
ability of applications to create such complex, multilayered notions of equality
without requiring that the infrastructure itself understand them (e.g., without
understanding that offices are in buildings which are in turn in cities).

Intermezzo provides a number of special features intended to support these
requirements, and enhance coordination through context.

—Evolution. Extensible slot model

—Identity. Canonicalization of resources based on real world referents

—Ambiguity. Multivalued slots

—Equality. Scoped slots

The sections that follow discuss these features of the data model and how
they support representations of context. Then paper presents two examples of
building on these data model features to provide direct coordination support to
applications.

3.2.1 Support for Evolution: Extensible Slot Model. As mentioned earlier,
Intermezzo-aware applications fill in the slots of published resources, repre-
senting users and their activities, with information that may be useful to them,
to other applications, or to users. For example, applications may update the
subject resource with contact information such as email address and telephone
number or information about the user’s location.

Future applications, however, may need to associate different sorts of data
with users or other entities in the shared dataspace. These applications may
need to store data in slots that other applications do not recognize or under-
stand. For this reason, the Intermezzo object model is schemaless, that is, there
is no type system such as class-based typing or database schemas that controls
the slots on a resource. This model has similarities with prototype-based ob-
ject systems such as Self [Ungar and Smith 1987] which also do away with the
notion of classes in favor of schemaless instances. In such models, instances
comprise named collections of slots; new instances can be created by cloning
existing instances, and then modifying, adding, or even removing slots. Data
elements (those things referred to by slots) are strongly typed at runtime but
have no compile-time type checking.

As an example, a new application that stores Instant Messaging handles
with users can just store this information in a new slot on the subject resource.
Existing applications can detect the presence of the new information, but the
presence of it does not change the type of the resource since it can still provide
values for the slots the existing applications were written to use.

Since resources need not adhere to a strict schema, applications can flex-
ibly add slots to resources for their own purposes and without interfering
with data placed there by other applications. This allows multiple applica-
tions to associate information with subjects without colliding with each other
or having to force-fit their information into a fixed schema decided upon a

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 457

priori by the infrastructure designer. Obviously, while applications may not
be able to interpret new slots they weren’t specifically written to understand,
they can still interpret the slots they were written to use. As long as the
slots expected by an application are present, additional slots can be added
without breaking compatibility with that application. The benefits of such
arrangements have also been shown in tuplespaces as well as in systems
such as Placeless Documents in which multiple applications can use the same
data and coexist, sharing commonly understood data elements while ignoring
others.

3.2.2 Support for Rich Forms of Identity: Canonicalization of Referents. A
problem that arises in free-form data stores is the lack of semantics that govern
object identity. For example, data models such as PlaceHolder have no intrinsic
notion of what a person is and thus provide no special support for ensuring that
there is one (and only one) representation of any given person in the system;
applications are free to create key-value pairs representing such information on
a virtually ad hoc basis. Because these infrastructures do not make any special
concessions to the semantics of the data they store, multiple applications may
each create their own private representation of a particular person (or other
entity) that would not be available to other applications.

As mentioned before, in Intermezzo every activity in the system is repre-
sented by a separate activity resource with a reference to the subject involved
in that activity. If every application were to create its own representation of
the subject, then multiple subject resources would exist in the dataspace for
any given person. This produces a situation in which there may be multiple,
separate representations of the same real world person that may or may not be
shared among applications.

An ontological solution to this problem would be to preordain a unique iden-
tity key for users and require that all applications test whether a given user’s
subject resource exists before creating a new one. This approach, however, has
the usual limitations of ontological approaches, that is, it requires that the
knowledge of what constitutes sameness be hardwired into all applications up
front, that it not change, and that all applications follow the rules explicitly.
Also, even if we can agree on the conditions of sameness for data objects rep-
resenting users, this does nothing for other sorts of data objects with complex
identity semantics that may come along in the future.

Intermezzo’s approach is to allow applications to impose custom semantic
constraints on the creation of resources to support complex identity semantics.
Applications can extend the Intermezzo data store to allow it to canonicalize
references to resources that represent (or proxy for) external entities such as
users or files or processes. Support for a handful of such external entities are
built into the system, and applications with novel semantics can extend the
runtime system to add new canonicalization rules for resources that act as
proxies for such entities such as locations, files, physical objects, and so on.
The core infrastructure is able to support rich identity semantics through this
feature without requiring that it be hardwired to know what users or locations
or files are.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

458 • W. K. Edwards

Fig. 2. Three activity resources share a canonical subject.

The canonicalization feature allows notions of identity in the virtual world
to be closely aligned with notions of identity in the real world. For example, it
is used to dictate that every human user of the system should have one subject
resource that is the canonical representation of that person. Of course, this
one subject resource may be referenced by any number of activity resources
if that person is involved in multiple simultaneous activities. But the system
must ensure that if these activities refer to the same individual, then they
refer to the same subject resource. Likewise, the same notions of equality need
to be preserved for other resources that are meant to act as representations
for external entities whether in the physical or virtual worlds. Figure 2 shows
three activity resources sharing a canonical representation of a user.

Canonicalization is supported through downloadable rules, expressed in
Python, that govern the creation of new resources. Each rule specifies a predi-
cate that encodes the semantics for identity, along with a list of slots that will be
used in the determination process. These rules essentially allows applications
to change the infrastructure’s notion of what constitutes sameness for a par-
ticular type of object. Canonicalization rules are stored by the infrastructure
where they are organized based on the slots they examine to determine iden-
tity. When an application attempts to create a new resource, the infrastructure
first creates a temporary version of it, along with any initial values for its slots.
This temporary resource is then passed to the relevant canonicalization rules
which may examine its slots to determine if a slot that ascribes identity is in

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 459

use and, if so, whether a canonical version of that resource already exists. If
a predicate is satisfied—meaning that an application is attempting to create a
new instance of a resource for which a canonical version already exists—then
the predicate returns the canonical version, and the temporary resource is dis-
carded. If no identity predicate is satisfied, then the temporary copy is allowed
to stand. Applications can extend the canonicalization rules beyond the handful
of ones built into the system, although this is rare. Because canonicalization
rules are determined by application semantics, they can be extended over time
as new constraints and conditions arise. Further, all applications that access
the shared dataspace are able to reuse the effects of canonicalization without
having to understand the specific rules for a particular type of object.

Note that canonicalization is not simply the ability of slots to hold references
to resources. Even with references, we would need to have a systematic way to
control the creation and use of these proxy resources. Instead, canonicalization
controls resource creation and reference to ensure behavior according to an
extensible set of rules established by applications to govern the mapping of
virtual resources to physical resources. Perhaps more importantly, once the
canonicalization rules for a given resource are in place, it is transparent to
applications; they acquire the appropriate canonicalization behavior for free.

3.2.3 Support for Contextual Ambiguity: Multivalued Data. Intermezzo al-
lows a single slot to contain multivalued data. This means that slots can refer to
a collection of zero or more data elements or resource references. The collection
of objects referred to by a multivariate slot is unordered and possibly empty.

This feature is used as a way to explicitly represent ambiguity in the sys-
tem. For example, different location-sensing technologies may have different
accuracies, latencies, and so on. The notion of a user’s location may not be a
single, reliable value but rather a collection of values from different sources,
and perhaps with different confidences associated with each source. Ambiguous
interpretations are supported explicitly without requiring the infrastructure to
decide on a single correct one, and hence having to know about the meaning of
the information, the characteristics of various sensing technologies, and so on.
Such multiple interpretations can then be presented to applications or users.

The semantics of the query operators is extended for multivalued data. There
is a weak equals operator which essentially means contains, and a strong equals
operator which means that every item of the two operands must match. (For
univalued data, weak and strong equals are the same operation.) Intermezzo
provides two assignment operations to support both the single and multivalued
slots. A replacement assignment operation overwrites a single-valued slot with
a new value and causes an error when applied to a multivalued slot; an additive
assignment operator adds a new value converting a single-valued slot to a multi-
valued one if necessary.

While a multivalued data model may be useful for representing ambiguity,
the inherent lack of structure provided by such models make them problematic
for representing data that may not be ambiguous but is simply multifaceted
by nature. Intermezzo’s scoped data model, described in the following, can be a
more effective way of representing such data.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

460 • W. K. Edwards

3.2.4 Support for Layered Interpretations of Equality: Scoped Data. Fin-
ally, Intermezzo introduces a unique type of data model used to represent in-
formation that can naturally be viewed at multiple granularities or scopes. The
metaphor here is one of magnification—certain applications may care about
fine-grained details of the information, while others may care about more global
details. Applications can choose the granularity at which they view and inter-
pret contextual data, and multiple granularities of interpretation can coexist
simultaneously.

To motivate scoped data, consider how one would represent the object of a
certain action such as editing a file. Clearly the file itself is the object, in a
sense. But many more aspects of this file may be salient in different situations.
A system management tool may care about the fileserver on which the file
resides, a source code control system may care about the directory in which the
file resides, and a collaborative editing tool may care about the user’s individual
position within the file.

All of these aspects of the object may be salient in different situations, and
there may be other potentially useful aspects that are unknown at the time
these applications were written. Because of this, we cannot simply make an a
priori decision to hard code certain aspects of files in an attempt to capture all
salient features of them. Such a strategy would certainly not be flexible enough
to adapt to new sorts of applications that come along in the future. And such
a strategy would also require us to do the same sort of semantic analysis of
the features of other types of objects that might potentially be useful in the
future. Instead, what we need is a means of representing multiple aspects of
an object, while allowing the dynamic addition of aspects representing new
interpretations.

This is the intended use of Intermezzo scoped data: to provide dynamic multi-
granularity interpretations of data. Essentially, it is a variation on simple mul-
tivalued data where each value of the collection has a named scope associated
with it that denotes its granularity in the collection. For example, in the file
example, the scoped data might contain an identifier for the file in the file scope,
an identifier for the directory (or directories) containing the file in the directory
scope, the name of the host containing the file in the fileserver scope, and so on.
Each scope represents a particular aspect of the object.

This model captures the notion that, when working with a file, an editor
application is not just working with that file alone. It is also implicitly making
use of the directory containing that file, the fileserver that the file resides upon,
and so on. Even though these other interpretation of the object of the editing
application may not be important to it, they may be important to other tools
operating in that contextual fabric.

There are two important aspects of this arrangement. First, the set of scopes
for a data element is not fixed ahead of time and so new scopes, or interpre-
tations of existing data, can be added after the fact. And second, the scoping
mechanisms allow domain-dependent and domain-independent interpretations
to coexist in the same data object.

So, for example, a user may be using a project management tool that
publishes activity data referring to a given file, perhaps adding interpretations

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 461

Fig. 3. A scoping stack for a file object.

within the file, directory, and fileserver scopes. These are all domain-
independent interpretations that any application that understands files might
be able to add or use. If the user is concurrently using a collaborative editing
tool to work with that same file, this tool would publish a new activity record
referring to the same file object (using the canonicalization mechanisms
already discussed). This tool, since it understands the internal structure of
the file, would then add a new scope to that object—in effect, saying that not
only is it working with this given file, but that the user is currently working
in a particular portion of that file. In this case, the information added by the
editor is domain-dependent, that is, it would only be meaningful to similar
applications equipped with the domain knowledge to interpret information
about the selection. The approach is similar to that of Patel and Kalter [1993]
but is generalized to support new data types.

Figure 3 shows what such a scope stack looks like for a file. Here you see
a number of domain-independent interpretations of the object (fileserver, di-
rectories, the file itself), as well as a domain-dependent interpretation of the
selected region inside the file.

This is an example of a set of applications colluding to produce a richer
picture of the object in use than simply file. These applications share the same

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

462 • W. K. Edwards

data objects but interact with those portions that are meaningful to them and
for which they are equipped with the semantics to use. In this example, both
the project management tool and the collaborative editing tool would know that
users happen to be interacting with the same file since both are semantically
equipped to understand and look for the file scope. Information particular to
the collaborative editor’s notion of selection would be ignored by the project
management tool since it doesn’t understand (or presumably care about) such
aspects of the files it manages.

The underlying data model supports these multiple, layered interpretations
of the data without having to embody any semantic knowledge of what a file
is, or the fact that it lives on a filesystem or in directories, or that some of
them might contain elements that can be individually manipulated. Domain-
independent layers of interpretation can coexist with domain-dependent layers
added by applications with specialized domain knowledge (like the editing tool
mentioned earlier). All of this is done without requiring any understanding
on the part of the data model and without all applications having to agree in
advance on a set of common aspects of files (or other objects) that they might
find useful.

Scoping could be achieved by having applications use a coordinated name
mangling approach to naming slots (for example, by having applications
use slots named “file directory,” “file host”, “file selection”) rather than using
the file scoping mechanism described. Such an approach relies on applications
to agree on the name mangling procedure and implement it and comparisons of
scoped data correctly in all cases. Intermezzo instead embeds this functionality
directly into the runtime, making it a first-class data type and supporting it
with a number of operations designed to take multigranular views of data into
account. An intersection operation, for example, can be used to indicate what
aspects two objects have in common. An intersection of object resources repre-
senting two different files might indicate that, for example, the files reside on
the same filesystem and in the same directories.

Simple equality comparison simply determines whether the aspects in one
object are a proper subset of the aspects in another. The semantics here are
meant to indicate, for all the aspects of this object that I care about, is it the
same as this other object. Two objects are equal if and only if, for all of the scopes
in the first object, the values for those scopes are the same in the second object.

A different selective equality operator requires three operands, namely, the
two scoped objects to compare, and a primary scope which is to be considered
the most salient for purposes of comparison. The system extracts the values
of the primary scope from both objects and then compares them to determine
selective equality. While all of these operations could be implemented in each
application, placing them in the runtime allows a consistent view of scoped data
across applications.

3.3 Summary

The activity-oriented structure imposed by Intermezzo provides applications
with the basic means for talking about actors and activities in the system.
It allows them to ask questions about what tasks a set of users are engaged

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 463

in, what artifacts they are working with, whether users are working with the
same artifacts, and so on. Beyond this basic structure, however, a number of
features in the data model support its adaptation and evolution by applications.
Applications can embed new semantics into the data model that change the way
the answers to questions like the ones just described are answered. As the set
of applications in use changes, new information is added to the system, and
new interpretations appear.

In other words, the structural convention of activity resources provide the
shared agreements that guarantee that applications share some common lan-
guage about context. The four features outlined in the previous sections—
extensible slots, canonicalization, multivalued data, and scoped data—facilitate
the expression and sharing of complex application-driven semantic structure
to represent context. Together, these aspects of the infrastructure distinguish
it from a more conventional data storage system and also distinguish it from
ontology-based approaches that require that all such conventions and struc-
tures be embedded in the applications ahead of time.

The primary benefit of this middle-of-the-road approach is that applications
written only to understand the coarse-grained structure can benefit from the
work of other applications in expanding the semantics of the data stored in the
infrastructure. For example, applications can be written very easily to detect
whether two users are engaged in activities that involve the same objects (files,
or machines, e.g.) simply by testing whether the object resources are equal and
without having to understand the intricacies of all of these various data types
nor what equality means for them. Other applications which do have these
understandings can embed the necessary semantics into the infrastructure,
allowing it to be leveraged by other applications. (The next section shows ex-
amples of how this works and how it can be useful for coordination.) The layered
interpretations in the infrastructure can thus grow over time as new applica-
tions appear that are equipped with the programming necessary to augment
the infrastructure for all other applications.

While this combination of coarse-grained structure and rich representation
does not, of course, solve all problems with agreement, it does allow the creation
of applications that need only understand the basic structure and yet reap
benefits from work done by other applications.

The extensible slot model allows new aspects of data to be hung on the basic
activity structure; applications can augment the slots that comprise any of the
resources in the system over time without requiring change in the infrastruc-
ture. Much like tuplespace systems, this extensibility allows applications to
share parts of the contextual state that they are equipped to use while ignoring
other unknown parts.

Ambiguity is exposed in the data model through the use of multivalued
data types. Such representations do not force a preferred interpretation at
the expense of other possible interpretations. Multiple interpretations of a
data element, perhaps placed there by different applications, can coexist
simultaneously.

Resource canonicalization is essential in a system that’s meant to provide a
virtual mirror onto aspects of the physical world. In the physical world, we have

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

464 • W. K. Edwards

strong notions of identity which can easily be lost in the virtual world. Canoni-
calization ensures that virtual objects that are meant to have the semantics of
being proxies for real world objects maintain consistent notions of identity. The
infrastructure itself need have no particular knowledge of the physical meaning
of subjects or files or locations as applications can extend the canonicalization
behavior of the system by adding new canonicalization rules for each type of
resource.

And finally, scoped data are a way for applications to provide multiple lay-
ers of interpretation of a given object. Different aspects of a given object may
be salient to different applications, and we cannot determine in advance what
aspects are important for all types of objects. Scoped data provides a way for
multiple interpretations to coexist; applications share the interpretations that
they’re equipped to understand and ignore those that they are not. The infras-
tructure, again, need not understand any of these interpretations or even for
that matter know that they exist since applications are free to dynamically add
new interpretations as needed.

The next section of this article explores how these features are used
in practice through two examples of context use in Intermezzo: a context-
enhanced session management facility and a context-enhanced access control
system. These services represent higher-level building blocks that are lay-
ered on the lower-level contextual data representation facilities and use the
contextual information available there. These services can by used by collab-
orative applications to make them more responsive to the situations of their
users.

4. APPLYING THE INTERMEZZO DATA MODEL

This section shows how the flexible data model used by Intermezzo, coupled
with the structure afforded by the activity representations, can be used to build
higher-level coordination features that can provide context-enhanced services
across applications. This section describes two such services, context-enhanced
session management and context-enhanced access control. These are services
that can be used to make collaborative applications responsive to context in
particular ways. As these have both been previously presented in the literature,
this section provides only brief descriptions of how these features have been
constructed using the basic facilities offered by Intermezzo and how they can
assist in cross-application coordination.

4.1 Context-Enhanced Session Management

This section describes one of the higher-level building blocks that has been
implemented on top of Intermezzo: a context-enhanced session management
service for initiating interactions among users (this work was first described by
the author in Edwards [1994]). Unlike most traditional session management
services, the one provided by Intermezzo has been extended to take advantage
of context to provide more lightweight and fluid forms of interaction than have
traditionally been found in collaborative systems. Applications can use this
service to enhance their own interactions with users.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 465

Most collaborative applications take one of two heavyweight approaches to
session management. In initiator-based systems, one user invites others to an
interaction through a series of dialogs (see, for example, MMConf [Crowley et al.
1990] and RTCAL [Greif and Sarin 1987]). In joiner-based systems, an initiat-
ing user creates a new session and users find the session either by browsing, or
knowing a priori that the session is taking place, along with some name or han-
dle for it. Examples of systems that follow this model include IRC [Oikarinen
and Reed 1993] and instant messaging [Grinter and Palen 2002]. Participants
typically use some other out-of-band means to notify each other that a collabo-
ration is in progress (often a telephone call).

In contrast to these explicit models of session management that require ac-
tion orthogonal to the task at hand to join a session, context enhancement
provides the opportunity for a more lightweight, ad hoc approach to session
management. This lightweight approach might be called implicit session man-
agement because the acts of rendezvous and interconnection are inherent in
the very act of interaction. For example, when two people are working with the
same object or artifact, there may be a potential for collaboration. By virtue
of the actions in which they are engaging, we know that both, at least for the
moment, share an interest in some aspect of the artifact they are interacting
with. In implicit session management, the opportunity for interaction exists
purely because of the work that you happen to be doing anyway not because of
any explicit external actions taken.

The facilities provided by Intermezzo can provide a basis for a rich and ex-
tensible context-enhanced session management service. Further, these facilities
allow the creation of such services that can detect confluences of activity and
other aspects of user context without requiring that these services understand
the semantics of such context.

A separate session management service built using Intermezzo monitors the
contextual model to look for overlaps or confluences in the context data pub-
lished by the applications on the network. When two activity tuples exist that
contain objects that are equal, then Intermezzo’s session management service
can notify the applications represented in those activity tuples (or another, third
application) to allow the users to enter into a collaboration.

For example, if two users edit the same file, the session management service
can notify the involved applications of this fact which may then allow them
to enter into a spur of the moment collaboration. The mechanics of joining a
collaborative endeavor thus closely match the human dynamics of collaboration
where, if two coworkers wish to work on a budget together, they simply meet
up to work on the budget at roughly the same time; no formal invitations are
issued, and no name must be given to the activity. Unlike explicit forms of
session management, where the burden of rendezvous is on the users, implicit
context-enhanced session management allows the system to assume the burden
of detecting and notifying potential collaborators.

Both the structural conventions and the rich representational facilities in
Intermezzo are necessary to fully support this style of session management
in a flexible and extensible way. Applications that wish to be informed of con-
fluences in activity simply register to receive notifications when two activities

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

466 • W. K. Edwards

exist that refer to different subject resources but the same object resources. The
ability to express this event subscription relies only on the structural conven-
tions of activity resources. And yet the representational features leverage the
varied interpretations layered into the data model by applications, and allow
the notion of sameness of objects to mirror the semantics of real world objects
and to evolve in rich ways. As new types of artifacts are modeled by applica-
tions in the system (new scoping rules are provided by applications, new details
are added via new slots, etc.), the session management service can take advan-
tage of these richer semantics without having to have explicit knowledge or
understanding of what any particular types of objects mean.

As an example of how the structural and representational features together
support cross-application coordination, consider a shared document editor and
a source code awareness tool. The shared document editor may only care about
users editing the same file. But the source code awareness tool, which notifies
users based on edits on all files in a folder, can still coordinate with the shared
document editor—the scoped representation for file objects ensures that the
two applications can be notified about confluences in user context even though
one is interested in files, while the other is interested in the directories in which
those files exist.

While the currently implemented session management service only deter-
mines potential interactions based on the sharing of artifacts, other sorts of
potential interaction triggers could exist as well. For example, other interac-
tion criteria such as colocation can also benefit from these multivalued, ex-
tensible representations. Applications that care about colocation of users can
simply solicit events when two activities exist for which the user’s (potentially
multivalued) location attributes are the same. Additional sensors can add new
interpretations to the location, perhaps representing longitude and latitude co-
ordinates from a GPS system, room number from an indoor tracking system,
and so forth. Applications can be extensible to such new location sensors and
new data formats for storing the information by simply soliciting to be notified
about confluences in location and without needing to know the details of the
various sensors.

The role of the infrastructure in this approach to session management is
merely to detect confluences in contextual information and then notify ap-
plications. The infrastructure itself does not make any judgement as to the
appropriateness of any particular confluence in signaling the desire for inter-
action. It does not, for example, automatically decide that the users wish to
collaborate just because they happen to be sharing some artifact. Instead, that
decision is left to applications to make based on their semantics. Even though
an application receives a message from Intermezzo indicating that a potential
collaboration exists, the application is not required to act on it; it may prompt
the user or ignore the message entirely.

4.2 Context-Enhanced Access Control

Clearly, there are issues involved in providing mechanisms for capturing
and disseminating potentially sensitive information such as a user’s context.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 467

Security systems protect information by using schemes such as access control
lists and capabilities to determine who is allowed access to certain information.
But these systems are often heavyweight from the user’s perspective especially
in the context of collaborative applications. For example, as Neuwirth et al.
[1990] note regarding the domain of collaborative writing,

There is a potential problem in systems which support the definition of so-
cial roles: “premature” definitions of these roles can lead to undesirable con-
sequences. For example, it is not always clear at the outset of a project who is
going to make a “significant contribution” and therefore who should get [the]
authorship [role]. But if authorship is defined at the outset, then it may reduce
the motivation of someone who has been defined as a “non-author” and the
person may not contribute as much.

Others, such as Dewan et al. [1994] and Dourish and Bellotti [1992], have
registered similar concerns that role-based access control systems, because they
tend to be relatively static and often involve explicit heavyweight operations to
switch among roles, may limit fluidity in collaborative settings.

Again, this is a situation in which a more contextually sensitive form of
coordination may be useful. Thus, the features in Intermezzo have been applied
to create a context-enhanced access control service (described more fully in an
earlier paper [Edwards 1996]). This service uses the data store as well as the
underlying access control facilities described in Section 3 to allow access control
decisions to be based in the context of the users of the system and their activities.

This access control system adapts certain terminology and features from
traditional Role-Based Access Control (RBAC) [Sandhu 1998] models in which
roles represent sets of users and policies specify the set of rights for accessing re-
sources. In many traditional collaborative systems, the binding of users to roles
is fairly static. The problems related to such premature role membership have
been identified in the literature [Beck and Bellotti 1993; Neuwirth et al. 1990]
and include the fact that membership in a given role is typically predefined and
fixed for certain access rights. Users must anticipate role membership and take
responsibility for updating it as appropriate, and roles can only be defined in
terms of user names (or other representations of identity) not other attributes
of users or the environment.

Unlike these static systems, however, the context-enhanced access control
service allows the determination of membership in a role to be based on the
context of a user, or any other context stored in the system, rather than in
some predetermined membership list. Further, the system can evaluate a user’s
access rights dynamically (as requests for access are made) to allow applications
to create access control policies that regulate the use of context and that are
themselves responsive to the contextual states of users.

This runtime assignment of rights is managed through the notion of dynamic
roles which indicate a set of users not though an explicit membership list but
rather through a description of the contextual attributes of those users. Ap-
plications can create new dynamic roles that reflect their particular semantics
and can express the criteria for membership in these roles through rules about
how context should be used to control access to the information they publish.
These rules take the form of predicate functions which can use the contextual

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

468 • W. K. Edwards

information stored in the dataspace to make decisions about whether to grant
or deny access to resources in the space. Access rights to slots on resources
are granted to users in certain roles; whenever a given user agent attempts to
access a slot, Intermezzo evaluates the predicate that determines whether that
user should be considered a member of the role, at runtime. The system also
supports traditional statically-defined roles.

The use of dynamic roles is reminiscent of work by others in the security
and database communities [Blaze et al. 1996; Wong et al. 1997; Woo and Lam
1998]. In the CSCW literature, the approach is somewhat similar to the abstract
roles of Kanawati and Riveill [1995], although their abstract roles are less
expressive than Intermezzo’s dynamic roles. (Kanawati and Riveill’s abstract
roles are based in formal a priori construction of a graph of organizational access
rights and seem designed primarily to modularize access control specification by
segregating the rights afforded to groups. They do not allow runtime evaluation
of arbitrary predicate code nor do they support the use of contextual data in
evaluating access rights.)

The use of potentially arbitrary predicates to determine membership lends
expressive power to dynamic roles. Predicates are expressed in the Python lan-
guage and are uploaded by applications to the Intermezzo server infrastructure
where they are evaluated and execute with the permissions of the user request-
ing access. The predicate is free to query the state of the dataspace to determine
whether to grant access. Predicates can examine conditions such as time of day,
location, physical colocation, shared resources, and so on, using the same opera-
tors as available to normal application code. (They therefore can take advantage
of expanded notions of equality for scoped data, canonicalized resources, etc.)
In order for access to be granted to a given resource, all of the access predicate
functions that apply to that resource must be satisfied (in other words, applica-
tions cannot grant themselves access to a resource simply by using a role that
would give themselves access to a given resource if such access would not be
granted otherwise). Access rights can be assigned to resources at the time of
their creation.

By moving the determination of membership from session startup time to
evaluation time and by using predicates rather than membership lists, dynamic
roles acquire several interesting properties.

—Dynamic roles allow membership to be based on any contextual attribute of
a user not just the user’s identity.

—Potential membership can vary from moment to moment during the lifetime
of a session.

—Access can be granted based on the instantaneous state of the user’s world.

—By describing role membership rather than specifying it, users can be re-
lieved of some of the burden of tracking, updating, and anticipating role
membership explicitly.

As an example, dynamic roles allow the specification not only of “people who
work in my lab,” but “people who are in my lab right now” as a category of users.
These rules are provided by applications which presumably are equipped with

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 469

the domain knowledge necessary to establish informed guidelines about access
control.

Similar forms of access control based in contextual attributes have been
explored by others such as McDaniel’s Antigone Condition Framework [2003].
McDaniel’s work acknowledges the importance of the ability to use arbitrary
programming code to determine whether an access control policy is satisfied
and implements dynamically loadable code to allow the creation of predicates
analogous to the use of application-supplied Python code in Intermezzo. In other
ways, however, the Antigone system is complementary to the system described
here—Antigone provides an alternative framework for expressing arbitrary
conditional code but does not provide a data representation layer analogous to
Intermezzo’s.

Like session management, these structural and representational features of
the Intermezzo data model support separation between semantic interpreta-
tion (provided by applications) and enforcement of access rights (provided by
the infrastructure). Applications implement predicates that reflect their spe-
cific semantics with regard to access control. It is these predicates that are
responsible for any understanding of particular contextual aspects that may be
required by the application and provide a way for applications to express yet
another aspect of their semantics into the shared dataspace. Essentially, these
predicates provide a way for applications to extend the systems’ low-level access
control primitives with code that reflects their particular interpretations of con-
textual information. This interpretation is provided piecemeal by applications
and the infrastructure need not be aware of it.

As noted earlier, predicate code uses the same operations over the dataspace
as the session management service and other applications. Thus, it can take
advantage of new interpretations and extensions to the context model added by
applications (additional scopes or identity rules or new slots on resources, e.g.)
Conversely, since predicates control access to the contextual dataspace itself,
the mechanism allows new applications or utilities to create access policies that
affect existing applications that use the dataspace.

5. INTERMEZZO FROM THE APPLICATION’S PERSPECTIVE

Access to the Intermezzo runtime is provided through toolkit libraries available
in both C++ and Python. In its most basic use, the library is simply used to
publish activity data from the application. This use helps to maintain the global
repository of context but does not support context-enhanced applications that
can actually respond to changes in the environment.

In this basic publish mode, applications simply link in the library and make
(typically) a single call to publish an activity record in the shared dataspace.
The library automatically fills out the slots of the activity records as much
as possible, including creating scoped representations of common types such
as files and reusing canonical resources to represent entities such as users.
Applications are free to decorate this basic representation with additional in-
formation that may be salient to them or which they are in a unique position
to know. In general, the addition of information to activity records is very easy,

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

470 • W. K. Edwards

applications simply name the slot they wish to write into, and then provide the
value. Slots automatically become multivalued as additional data is written to
them.

A slightly more complicated use of maintaining the contextual world view
involves applications that need to create new object types with their own se-
mantics for scoping and perhaps new canonicalization rules. These applications
will generally define a new namespace to represent the multiple views of the
object. For example, a mail program may create a mail namespace with scopes
for message parts, messages, folders, and servers.

Even if applications do not explicitly flesh out the data they publish, this data
may be augmented by monitor applications running on the network. For exam-
ple, one basic monitor detects the creation of user resources and annotates them
with basic contact information. A location monitor can update user resources
with information about a user’s location. Other applications that make use of
these user resources get this additional information for free in the sense that
applications can reuse the work of others to maintain an enhanced picture of
users’ context.

As mentioned previouly, simply publishing activity records is a minimal be-
havior that applications use to help maintain the global view of context. Appli-
cations that wish to respond to changes in context can also listen for updates
to contextual state or retrieve information from the dataspace based on user
actions. For example, a context-enhanced mail application can select out re-
sources corresponding to the user in the from line of a selected email message,
allowing the application to display information about the current user, includ-
ing contact information, location, and so on. This same program can use the
context-enhanced session management framework to easily detect confluences
in object resources (the mail message being viewed) to show others looking at
the same mail message (such as an email sent to a list). Tools such as collabora-
tive editors can use this same mechanism to receive notifications when others
edit the same files or files in the same directory, or when others are working in
the same portion of a file according to their interest.

Likewise, applications can use the context-enhanced access control mecha-
nisms to modify certain access rights according to situation. For example, a
collaborative editor to support the ability of users working together on a docu-
ment may reveal certain information about themselves (contact information or
current availability) that may not be revealed to others.

6. SUMMARY AND REFLECTIONS

Intermezzo is an infrastructure project designed to support the creation of col-
laborative applications that can fluidly and extensibly leverage the context of
their users. A key principle in Intermezzo’s approach is that it is generally
impossible for an infrastructure which by its nature must be designed for gen-
erality and reuse to be in a position to make meaningful interpretations about
something as rich as human context. Such interpretation, when made by ma-
chines at all, is best made not by the infrastructure, but by applications with
the particular domain knowledge necessary to act on it and with the proximity
to the user to be able to defer to him or her when appropriate.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 471

Based on such a premise, the role of the infrastructure must be to support
the varied needs of these applications without constraining the unforeseen uses
or interpretations they may place on context. Further, in a situation in which
the global contextual view is built piecemeal by the individual applications that
may have responsibility for bits and pieces of it, the infrastructure should as
much as possible ensure that applications can take advantage of the work done
by each other, that multiple isolated, incompatible partitions do not arise in the
dataspace, and so on.

The key contributions of this work are in a set of features intended to al-
low a range of applications each with their own semantics, domain knowledge,
and salient aspects of context to adapt the infrastructure to accommodate their
needs. This is done through a storage model that allows applications to em-
bed certain restricted interpretations into the infrastructure itself. Structural
conventions are essential because they provide the common ground on which
applications are written. Intermezzo assumes that most applications will be
coded only to perform simple queries on the basic activity structure for exam-
ple, tests for sameness of objects.

Beyond this, particular aspects of the data model allow applications coded
against the basic activity structure to inherit richer interpretations of that data
provided by tools that can embed domain semantics into the infrastructure.
Scoping, for instance, allows multiple application-provided interpretations of
an object to coexist in the data model; multivalues accommodate ambiguity; an
extensible canonicalization model allows virtual identity to mirror notions of
identity in the physical world; and so on.

The infrastructure gives applications, which presumably have more domain
knowledge than the generic infrastructure, the responsibility for maintaining,
sharing, perhaps even interpreting the contextual space, while leaving the in-
frastructure itself free from having to understand the semantics of context or
act on interpretations of such semantics. The ability of applications to par-
ticipate in such features as rich, contextually-enhanced session management,
while knowing nothing of the semantics of the objects or applications partic-
ipating in a collaboration, demonstrates the power of extensible, expressive
representations.

As noted in the motivation section, applications already shoulder a burden
of imposing semantics on top of loosely-related data stores, for instance, they
must agree on which keys to use for data, what the format of that data will
be, when to reuse existing data, what sameness of that data means, and so
on. The difference is that Intermezzo provides the ability for applications to
embed these semantics constraints directly into the infrastructure (in the form
of canonicalization rules, access control rules, scoped interpretations, etc). This
embedding provides two important advantages.

(1) The constraints ensure that poorly written applications don’t neglect the
semantic constraints of the data.

(2) The constraints leverage the balance of structure and expressiveness to
allow applications to reuse the benefits of semantic interpretations provided
by other applications.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

472 • W. K. Edwards

A number of problems that already exist in applications that make use of
loosely-structured data stores are still present in Intermezzo. Perhaps most
importantly, for applications to test against individual slot values on resources,
they must agree on the names of those slots (that a user’s location is stored in
a slot called location and not position or loc, for instance). While Intermezzo’s
features are geared largely toward providing a richer value space at least partial
agreement on the key space is also needed. We should note that such name
agreements are needed in any loosely-structured data store, and Intermezzo
doesn’t make the problem in this regard any worse.

ACKNOWLEDGMENTS

Many thanks are due to my mentors at Georgia Tech and elsewhere who influ-
enced this work: John Stasko, Jim Foley, Scott Hudson, Colin Potts, and Prasun
Dewan. Thanks also to Rebecca Grinter for her invaluable comments on this
article.

REFERENCES

ABOWD, G. D., ATKESON, C. G., HONG, J., LONG, S., KOOPER, R., AND PINKERTON, M. 1997. Cyberguide:

A mobile context-aware tour guide. Wireless Networks 3, 5, 421–433.

ARNOLD, K., O’SULLIVAN, B., SCHIEIFLER, R. W., WALDO, J., AND WOLLRATH, A. 1999. The Jini Specifi-
cation. Sun Microsystems Press, Addison-Wesley Publishers, Reading, MA.

BECK, E. E. AND BELLOTTI, V. 1993. Informed opportunism as strategy: Supporting coordination

in distributed collaborative writing. In Proceedings of the European Conference on Computer
Supported Cooperative Work (ECSCW ’93). Milan, Italy (Sept.), G. De Michelis, C. Simone and

K. Schmidt, Eds. Kluwer Academic Publishers, 233–248.

BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. 2001. The Semantic Web. Scientific American.

BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. In Proceedings
of the IEEE Symposium on Security and Privacy. Oakland, CA (May), 164–173.

BLY, S., HARRISON, S., AND IRWIN, S. 1993. Media spaces: Bringing people together in a video, audio,

and computing environment. Commun. ACM 36, 1, 28–47.

CROWLEY, T., MILAZZO, P., BAKER, E., FORSDICK, H., AND TOMLINSON, R. 1990. MMConf: An in-

frastructure for building shared multimedia applications. In Proceedings of the ACM Confer-
ence on Computer-Supported Cooperative Work (CSCW). Los Angeles, CA. ACM Press, 329–

242.

DAY, M., PATTERSON, J. F., AND MITCHELL, D. 1997. The notification service transfer protocol

(NSTP): Infrastructure for synchronous groupware. In Proceedings of the Sixth World Wide Web
Conference.

DEWAN, P., CHOUDHARY, R., AND SHEN, H. 1994. An editing-based characterization of the design

space of collaborative applications J. Organiz. Comput. 4, 3, 219–240.

DEY, A., SALBER, D., ABOWD, G., AND FUTAKAWA, M. 1999. The conference assistant: Combin-

ing context-awareness with wearable computing. IEEE Symposium on Wearable Computing
(ISWC’99).

DOURISH, P. AND BELLOTTI, V. 1992. Awareness and coordination in shared work spaces. In Pro-
ceedings of ACM Conference on Computer-Supported Cooperative Work, Toronto, Canada (Nov).

DOURISH, P., EDWARDS, W. K., LAMARCA, A., LAMPING, J., PETERSEN, K., SALISBURY, M., THORNTON, J., AND

TERRY, D. B. 2000. Extending document management systems with active properties. ACM
Trans. Inform. Syst.

EDWARDS, W. K. 1994. Session management for collaborative applications. In Proceedings of the
ACM Conference on Computer-Supported Cooperative Work. Chapel Hill, NC. (Oct).

EDWARDS, W. K. 1995. Coordination infrastructure in collaborative systems. Ph.D dissertation.

College of Computing, Georgia Institute of Technology, Atlanta, GA.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

Infrastructure to Support Extensible Context-Enhanced Applications • 473

EDWARDS, W. K. 1996. Policies and roles in collaborative applications. In Proceedings of the ACM
Conference on Computer-Supported Cooperative Work. Boston, MA.

EDWARDS, W. K. 1997. Representing activity in collaborative systems. In Proceedings of the 6th
IFIP Conference on Human Computer Interaction. Sydney, Australia (July).

FITZPATRICK, G., PARSOWITH, S., SEGALL, B., AND KAPLAN, S. 1998. Tickertape: Awareness in a single

line. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems
(CHI ’98). Los Angeles, CA (Apr.), 18–23.

FITZPATRICK, G., MANSFIELD, T., KAPLAN, S., ARNOLD, D., PHELPS, T., AND SEGALL, B. 1999. Augment-

ing the everyday world with Elvin. In Proceedings of the European Conference on Computer-
Supported Collaborative Work (ECSCW). Copenhagen, Denmark. Kluwer Academic Publishers,

431–451.

GELERNTER, D. 1985. Generative communication in Linda. ACM Trans. Prog. Lang. Syst. 7, 1,

80–112.

GREIF, I. AND SARIN, S. 1987. Data sharing in group work. ACM Trans. Office Inform. Syst. 5, 2,

187–211.

GRINTER, R. E. AND PALEN, L. 2002. Instant messaging in teenage life. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW 2002). New Orleans, LA (Nov).

16–20.

GUTWIN, C., GREENBERG, S., AND ROSEMAN, M. 1996. Workspace awareness support with radar

views. In Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI’96).

GUTWIN, C., ROSEMAN, M., AND GREENBERG, S. 1996. A usability study of awareness widgets in

a shared workspace groupware system. In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work. ACM Press, 258–267.

HORI, M., EUZENAT, J., AND PATEL-SCHNEIDER, P. 2003. OWL Web Ontology Language XML Presen-

tation Syntax. W3C Note 11-June-2003. http://www.w3.org/TR/owl-xmlsyntax.

JOHANSON, B., FOX, A., AND WINOGRAD, T. 2002. The interactive workspaces project: Experiences

with ubiquitous computing rooms. IEEE Pervasive Comput. 1, 2, 71–78.

KANAWATI, R. AND RIVEILL, M. 1995. Access control model for groupware applications. In Proceed-
ings of Human Computer Interaction. Huddersfield University, UK (Aug.). 66–71.

MCDANIEL, P. 2003. On context in authorization policy. Eighth ACM Symposium on Access Control
Models and Technologies (SACMAT). (June), 80–80.

MCGUFFIN, L. AND OLSEN, G. 1992. ShrEdit: A shared electronic workspace. Cognitive Science and

Machine Intelligence Lab, University of Michigan.

NEUWIRTH, C., KAUFER, D. S., CHANDHOK, R., AND MORRIS, J. 1990. Issues in the design of computer

support for co-authoring and commenting. In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work (CSCW). Los Angeles, CA. 183–195.

OIKARINEN, J. AND REED, D. 1993. Internet relay chat (IRC) protocol. IETF. Internet Request for

Comment RFC1459.

PATEL, D. AND KALTER, S. D. 1993. A unix toolkit for synchronous collaborative applications. Com-
put. Syst. 2, 6 (Spring), 105–134.

RAMDUNY, D., DIX, A., AND RODDEN, T. 1998. Exploring the design space for notification servers.

In Proceedings of the ACM Conference on Computer-Supported Cooperative Work. Seattle, WA,

227–235.

ROOT, R. W. 1988. Design of a multimedia vehicle for social browsing. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW).

SALBER, D., DEY, A. K., AND ABOWD, G. D. 1999. The context toolkit: Aiding the development of

context-enabled applications. In Proceedings of the Conference on Human Factors in Computing
Systems (CHI ’99). Pittsburgh, PA. (May). 434–441.

SANDHU, R. S. 1998. Role-based access control. Advances Computers 4, 6, 237–286.

STEWART, J., BEDERSEN, B. B., AND DRUIN, A. 1999. Single display groupware: A model for co-present

collaboration. In Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI). 286–293.

UNGAR, D. AND SMITH, R. 1987. Self: The power of simplicity. In Proceedings of the Conference on
Object Oriented Programming Systems, Languages, and Applications (OOPSLA). Orlando, FL.

(Oct.). 227–242.

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

474 • W. K. Edwards

VAN ROSSUM, G. 1995. Python Reference Manual. Centrum voor Wiskunde en Informatica (CWI).

WANG, X., ZHANG, D., GU, T., AND PUNG, H. 2004. Ontology based context modeling and reason-

ing using OWL. Workshop on Context Modeling and Reasoning, IEEE Conference on Pervasive
Computing and Communication (PerCom’04). Orlando, FL. (March).

WANT, R., HOPPER, A., FALCAO, V., AND GIBBONS, J. 1992. The active badge location system. ACM
Trans. Inform. Syst. 10, 1, 91–102.

WONG, R. K., CHAU, H. L., AND LOCHOVSKY, F. H. 1997. A data model and semantics of objects with

dynamic roles. In Proceedings of the 13th International Conference on Data Engineering (ICDE).
Birmingham, UK. (Apr.). IEEE Computer Society, 402–411.

WOO, T. AND LAM, S. 1998. Designing a distributed authorization service. In Proceedings of the
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM). San Fran-

cisco, CA. (March).

Received August 2004; revised April 2005; accepted June 2005 by Prasun Dewan

ACM Transactions on Computer-Human Interaction, Vol. 12, No. 4, December 2005.

