
3

Experiences with Recombinant Computing:
Exploring Ad Hoc Interoperability in Evolving
Digital Networks

W. KEITH EDWARDS

Georgia Institute of Technology

MARK W. NEWMAN

University of Michigan

and

JANA Z. SEDIVY and TREVOR F. SMITH

Palo Alto Research Center

This article describes an infrastructure that supports the creation of interoperable systems while

requiring only limited prior agreements about the specific forms of communication between these

systems. Conceptually, our approach uses a set of “meta-interfaces”—agreements on how to ex-

change new behaviors necessary to achieve compatibility at runtime, rather than requiring that

communication specifics be built in at development time—to allow devices on the network to interact

with one another. While this approach to interoperability can remove many of the system-imposed

constraints that prevent fluid, ad hoc use of devices now, it imposes its own limitations on the user

experience of systems that use it. Most importantly, since devices may be expected to work with

peers about which they have no detailed semantic knowledge, it is impossible to achieve the sort

of tight semantic integration that can be obtained using other approaches today, despite the fact

that these other approaches limit interoperability. Instead, under our model, users must be tasked

with performing the sense-making and semantic arbitration necessary to determine how any set

of devices will be used together. This article describes the motivation and details of our infrastruc-

ture, its implications on the user experience, and our experience in creating, deploying, and using

applications built with it over a period of several years.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User

Interfaces—User-centered design; Prototyping; Interaction styles; Theory and methods; Interaction
Styles; H.1.2 [Models and Principles]: User/Machine Systems—Human Factors; D.2.11 [Soft-
ware Engineering]: Software Architectures—Patterns; D.2.12 [Software Engineering]: Inter-

operability—Distributed objects

General Terms: Human Factors, Design, Standardization

Authors’ addresses: W. K. Edwards, School of Interactive Computing & GVU Center, Georgia Insti-

tute of Technology; email: keith@cc.gatech.edu; M. W. Newman, School of Information, University

of Michigan; J. Z. Sedivy and T. F. Smith, Computer Science Lab, Palo Alto Research Center.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1073-0516/2009/04-ART3 $5.00

DOI 10.1145/1502800.1502803 http://doi.acm.org/10.1145/1502800.1502803

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:2 • W. K. Edwards et al.

Additional Key Words and Phrases: Mobile code, discovery, infrastructure, recombinant computing,

Obje, Speakeasy, interoperability, ubiquitous computing, user interfaces

ACM Reference Format:
Edwards, W. K., Newman, M. W., Sedivy, J. Z., and Smith, T. F. 2009. Experiences with recom-

binant computing: Exploring ad hoc interoperability in evolving digital networks. ACM Trans.

Comput.-Hum. Interact., 16, 1, Article 3 (April 2009), 44 pages. DOI = 10.1145/1502800.1502803

http://doi.acm.org/10.1145/1502800.1502803

1. INTRODUCTION

Many scenarios of mobile, pervasive, and ubiquitous computing envision a
world rich in interconnectable devices and services, all working together to
help us in our everyday lives. Indeed, we are already seeing an explosion of new,
networked devices and services being deployed in workplaces, the home, and in
public spaces. And yet, in reality it is difficult to achieve the sorts of seamless
interoperation among them that is envisioned by these scenarios. How much
more difficult will interoperation become when our world is populated not only
with more devices and services, but also with more types of devices and services?

These visions of ubiquitous computing raise serious architectural questions:
how will new devices and services be able to interact with one another? Must we
standardize on a common, universal set of protocols that all parties are required
to agree upon? Will only the devices and services1 that have software explicitly
written to use one another be able to interoperate, while others remain isolated?
How will such networks be able to evolve to accommodate new devices that may
not have even existed at the time current devices were created?

These architectural questions in turn pose pressing issues for the user ex-
perience of ubiquitous computing. Architectures that impose such constraints,
that prevent us from fluidly adapting and using the technology around us for
the purpose at hand, cannot support the sort of “calm technology” envisioned
by Weiser and Brown [1996]. Instead, they are likely to bring the frustrations
of software incompatibility, driver updates, communication problems, and ver-
sion mismatches—in other words, isolated islands of interoperability, with few
bridges among them.

As we explain shortly, these weaknesses are inherent in current architectural
approaches to device-to-device communication; overcoming them requires new
approaches in which devices can interact with new types of peers without having
to know about them ahead of time. Such an approach would allow devices to work
with one another without requiring replacement, upgrade, or patching, allowing
networks to evolve to accommodate entirely new types of devices easily. In
other words, such an approach would remove the system-imposed constraints on
interoperability that prevent us from freely combining and using the technology
around us. If, on the other hand, the software in our devices must be updated to
work with every possible new type of thing they may encounter, then we will be

1While we use the terms device and service here and elsewhere in the article, in practice there is

little distinction between a purely software service executing on some host on the network and a

hardware device on the network. The arguments here apply generally to any system that can be

used by another across a network or other connection.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:3

locked into a world of limited interoperability, and the requirement for lockstep
upgrades of the devices on our networks.

This article describes work aimed at overcoming the user experience burdens
that result from current approaches to device-to-device communication, partic-
ularly when those approaches are “scaled-up” to large numbers of device types.
Among the main contributions of this article are a new approach to interoper-
ability, designed to support ad hoc interoperation among devices on a network,
and an exploration of the human interaction implications of this new approach.
The key benefit of our approach is that it can allow interoperation among de-
vices that are not expressly built to work with one another, thus allowing the
network to evolve to compatibly accommodate entirely new types of devices,
without modification to existing devices on the network. As we shall describe,
this approach overcomes some of the traditional human burdens associated
with device interoperability, albeit at a cost: although our approach can allow
devices to work with previously unknown peers without driver installation or
upgrade, it cannot support the rich, seamless interactions among devices that
are possible when they have been purpose-built to work with each other.

The technical aspects of our work have been embodied in a system called
Obje (previously called Speakeasy) [Edwards et al. 2002a], which is a platform
we have built, refined, and lived with for over five years, and which provides a
set of mechanisms for ad hoc device discovery, extensibility to new application-
layer protocols and data type-handling capabilities, and a security model that
supports decentralized authorization and access control. This article provides
a rationale for our approach to interoperation, the user experience implications
of this approach, a description of the Obje infrastructure, and a discussion of
our experiences using this technology to explore issues of interoperability in
the face of evolution.

In the next section of this article, we explore the foundations of communi-
cations among devices on a network, and how assumptions implicit in these
foundations point to the need for new models of interoperation and user inter-
action. After this, we examine our design rationale, which takes the form of a set
of premises we call recombinant computing, and which we believe can support
the forms of interoperation we argue for in this article. These premises include
the use of generic, fixed interfaces to guarantee compatibility; mobile code to
allow dynamic extensibility; and the necessity that users be involved in dictat-
ing how devices will interact with one another. We then contrast our approach
to others in the research literature, and highlight the interaction trade-offs (as
well as architectural trade-offs) inherent in different approaches to interoper-
ability. Next, we describe the core Obje infrastructure itself. As noted earlier,
Obje has been used and refined over a period of approximately five years, and
the current implementation reflects our experiences and the lessons we have
learned in using the system. We conclude with a detailed description of some
of these experiences and lessons.

2. PARADIGMS OF COMMUNICATION

Fundamentally, communication between any two systems depends on prior
agreement about the interfaces supported by those systems. These take the

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:4 • W. K. Edwards et al.

form of the protocols, operations, data types, and semantics that, ultimately, two
systems must be coded against in order to work with each other. For example,
to interact with a service, a client must be explicitly written to “understand”
the service’s interface—what operations are available, how to invoke them, and
what the semantics of these operations are. In the case of the web, for instance,
there is agreement on the form of communication (HTTP), the format of data
exchanged (HTML, mainly), and the semantics of that data (most clients will
issue a GET request when they encounter an IMG tag, for instance). In the case
of Universal Plug’n’Play (UPnP) [Jeronimo and Weast 2003], these agreements
include not just the generalities of UPnP itself (such as the SOAP protocol,
and the requirement that device descriptions be expressed in XML), but also
the device-type-specific profile used by a particular UPnP device, which defines
the set of allowable operations for that device type. For a client to be able to
interoperate with a UPnP digital music jukebox, for example, the client must
have software that is coded to use the UPnP MediaServer profile, which is
specific to those types of devices that can store and transport media files.

Current approaches to interoperability take what might be termed an onto-
logical approach: a standard2 is created that defines how a device’s function-
ality is exposed to and accessed by peers on the network. Knowledge of this
standard—in the form of software that implements its required protocols, data
formats, and semantics—is then built into peer devices on the network. New
types of devices, which do not sufficiently resemble the existing ontology to the
point that they can be retrofitted into it, necessitate the creation of yet more
interface definitions and the expansion of the ontology of device types.

This same approach is taken by virtually all networked communication sys-
tems today. UPnP defines device interfaces, termed profiles, for a range of de-
vice types, including scanners, printers, media devices, HVAC systems, and
so forth. Bluetooth likewise defines similar profiles for headsets, telephones,
hands-free car systems, and so on. Virtually without exception, new versions
of these standards define new device interfaces (or revise existing device inter-
faces) that will be unknown to existing devices on the network; this means that
existing devices—with only knowledge of the previous set of device types—
cannot interoperate with any new types of devices defined by the expanded
ontology.

Arrangements such as these gain interoperability at the expense of evolution.
Because the agreements necessary for communication must be built in at
development time to all communicating parties, the network cannot easily
take advantage of entirely new types of devices. New types of devices must
either be retrofitted into the existing ontology in order to maintain backwards
compatibility (at the cost of losing access to whatever specialized functionality
the new device type provides), or new interfaces must be created that describe
the new device type (at the cost of having to update all existing devices with

2We use the term “standard” loosely, to mean knowledge that is required for communication and

that is agreed upon by both communicating parties. These agreements can be codified formally by

a de jure standards body, codified informally by de facto open standards, or may even represent

“private” protocols, known only to the two devices that are communicating.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:5

the programming to communicate with the interface used by the new device
type, or, more likely, by simply replacing the existing devices with newer ones).

Such models of communication seem fundamentally at odds with a vision
of ubiquitous computing predicated on technological abundance, in which new
types of devices are easily deployed, integrated into the environment, and ap-
propriated by users.

3. RECOMBINANT COMPUTING: MOVING FROM DEVELOPMENT-TIME TO
RUNTIME AGREEMENTS

If communication requires such up-front agreement, then the central question
posed by our research is as follows: is there a way to reframe the agreements
necessary for communication in a way that can better support evolution to
accommodate arbitrary future device types? Further, can this be done in a
way that allows for a rich and useful user experience, without the hassle and
incompatibility imposed by current approaches?

Our project has been exploring an approach we call recombinant comput-
ing that shifts some of the knowledge necessary for communication from
development-time to run-time. It does so by relying on agreement only on a
minimal set of development-time interfaces that are then used to allow devices
to negotiate further necessary agreements, along with the behavior needed to
implement these, at runtime. The term “recombinant computing” is meant to
evoke a sense that devices and services can be arbitrarily combined with each
other, and used by each other, without any prior planning or coding beyond this
minimal set of development-time agreements.

In order to achieve interoperability in this model, three criteria must be
met for the base-level agreements that are built into devices at development
time. The first is that the interfaces that devices support must be fixed, since
this is what guarantees future compatibility. If the interfaces necessary for
communication are allowed to evolve, then existing devices may be unable to
communicate with devices built using the later versions of the interfaces. Sec-
ond, the interfaces must be minimal. Otherwise they are unlikely to be adopted
and implemented fully by developers, imposing new barriers to interoperability.
Finally, such a fixed and minimal set of interfaces will necessarily be generic,
since any small fixed set of interfaces cannot capture all possible device-specific
notions, for all unforeseen types of devices.

The problem, however, is that relying only on a small set of static, generic in-
terfaces is incredibly limiting, and supports only simplistic interactions among
devices. For example, although one could achieve interoperability by dictating
that all devices on the network, no matter what their function or semantics,
exclusively use plain text over FTP as their communication mechanism, such
an arrangement clearly limits the range of possible applications.

Therefore, our system couples these static development-time interfaces with
the runtime exchange of new capabilities over the network. In essence, the
fixed agreements become meta-interfaces that, rather than dictating how two
devices interact with each other, instead dictate the ways in which the devices
can acquire new behavior that allows them to interact with each other. This

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:6 • W. K. Edwards et al.

new behavior takes the form of mobile code that is provided by devices on the
network to their peers at the time of interaction.

The approach is reminiscent of Kiczales et al.’s metaobject protocols [Kiczales
et al. 1991], in which a set of fixed interfaces can be used to provide runtime ex-
tensibility (in Kiczales et al.’s case, of programming languages). Here, however,
new behaviors are provided over a network connection in the form of mobile
code, rather than simply across a procedure call boundary.

Using this model, devices only build in the most generic agreements (the
interfaces for acquiring and invoking mobile code), and defer other agreements
necessary for interoperation until runtime. When a new device appears on the
network, it provides certain behaviors to existing peers to bring them into com-
patibility with it, essentially “teaching” its peers how to interact with it.

We believe that this approach is qualitatively different than one based on
requiring detailed a priori agreements about all aspects of a device’s syntax and
semantics. Approaches based on extensive and changing ontologies place the
burden of work inappropriately: when a new type of device appears, every other
device on the network must be updated in order to work with it. In an approach
based on runtime agreements, in which functionality needed for interoperation
with a new device is provided by the device itself, the burden of work is borne
only by the new device.

3.1 The Necessity of User-Supplied Semantics

Ad hoc interoperability poses important implications for the user experience.
Under current ontological approaches, if a device can interoperate with a peer
at all, one can reasonably expect that the device “understands” the semantics
of that peer—what it does, when to use it, and so forth. A Bluetooth phone, for
example, “knows” what a Bluetooth headset is capable of and when to use it
(when a phone call happens, connect to the headset and stream audio between
it and the phone) because this understanding of how to seamlessly mesh the
semantics of the two devices has been built into them by their developers,
allowing rich and semantically-informed interactions between them.

If devices can only interact with the peers with which they are expressly
programmed to interact, then new types of devices will be inaccessible to them.
Such is not the case in a world of ad hoc interoperability, however. Instead,
the common case will be that devices will encounter new types of peers about
which they have no special semantic knowledge: they will be able to communi-
cate with such devices, yet without necessarily knowing what the new device
does.

For example, under a model of ad hoc interoperability, a phone may detect
that there’s a device present that it can communicate with, and perhaps send
audio to, but may not be expected to know whether that device is a headset, a
speaker in a public place, a storage device, or a service for transcribing speech
to written text. Nor arguably should the phone have to have such knowledge in
order to communicate with the new device since, if interoperability is our goal,
we do not want to require that devices only be able to interact with things they
already know about.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:7

If devices do not contain the specialized programming necessary to allow
them to work in semantically-informed ways with specific types of peers, then
it is incumbent upon the user to provide the semantic interpretation and ar-
bitration missing in the devices’ programming. In the example above, it must
be the user who is tasked with understanding what a particular device does,
when it makes sense to use it, and so forth; the role of the infrastructure, under
this approach, is simply to allow the interaction to take place, should the user
decide to do it.

This is an example of what Fox and Kindberg have termed “crossing the
semantic Rubicon,” requiring users to take on some of the burden of semantic
interpretation that once was the domain of applications [Kindberg and Fox
2002].

We believe that this implication that users must be “in the loop” in deter-
mining when and how to use newly encountered devices, is inherent in any
model of ad hoc interoperation, and it is central to the design of Obje. Users
have the role of providing the semantic interpretation that may be missing in
the programming of the application. This requirement has ramifications on the
sorts of user experiences that we can create, which in turn has implications for
the design of the infrastructure that must allow users to easily understand and
use the resources around them.

4. RELATED WORK

There are a number of systems that address issues similar to those addressed
by Obje, both in the general goals of interoperability and in the specifics of the
individual approaches.

Many systems, including traditional remote procedure call systems (such as
CORBA [Object Management Group 1995]), as well as the newer Web Services
standards (such as SOAP [Box et al. 2000], provide a substrate for communi-
cation among networked services; essentially, they provide a framework on top
of which new application-layer interfaces can be created, including interface
definition languages, building block protocol formats, standards for parame-
ter marshaling and unmarshaling, and so forth. All of them leave the task
of defining the actual service interfaces up to developers, with little focus on
standardizing the service interfaces themselves. The result is a large num-
ber of service-specific interfaces, each of which must be known to their clients
in order for those clients to be able to use them. These systems fundamen-
tally address a different problem than the one addressed by Obje: they are fo-
cused on creating common formats and toolkits to support the easier creation of
networked services, rather than on ensuring interoperability among arbitrary
services.

Other systems, such as Universal Plug and Play [Jeronimo and Weast 2003],
take interoperability a step higher up the stack by defining not just low-level
protocol formats, but also a standard set of device interfaces. These systems
exemplify the ontological approach to interoperability described earlier: they
achieve compatibility by requiring agreement on an expanding coterie of stan-
dard device interfaces. When a new device type appears, it necessitates the

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:8 • W. K. Edwards et al.

creation of a new standard interface that describes, and allows access to, the
device’s functionality; peers must be written against this new standard inter-
face in order to use the new type of device. In the case of UPnP, devices and
applications are coded against device profiles that specify the standard opera-
tions supported by a given device type (see UPnP Forum [2005]). Even if the
software on a device is written to allow it to interact with UPnP MediaServers,
for example, it would still have to be recoded to work with MediaRenders, Print-
ers, Scanners, and any additional new type of profile that comes along. Further,
the profiles are themselves subject to change, meaning that new versions of the
profiles may introduce new features that are inaccessible to older devices. A
device built to use version 1.0 of the MediaRenderer specification cannot take
advantage of features defined in the 1.1 version, for example.

The approach taken by UPnP and other ontological systems (including Blue-
tooth [Bluetooth Consortium 2001], USB [Universal Serial Bus Implementer’s
Forum 2000], and others) exemplifies the state of practice in interoperability
today. These systems achieve compatibility, but at the expense of evolution: the
creation of a new type of device requires additions or modifications to an exist-
ing family of standards; these standards are often slow to evolve, and device
support lags behind even the standards. Finally, once the standardization pro-
cess has been completed and the necessary new devices built, deploying these
new devices onto the network requires the update of every existing device on
the network in order for them to work with the new device.

Technologies such as Sun’s Jini [Waldo 1999] provide a greater degree of in-
sulation between communicating devices on a network. Whereas systems such
as UPnP require agreement on both device profiles and underlying network
protocols (such as SOAP over HTTP), Jini requires agreement only on the ab-
stract interfaces exposed by devices and services. In Jini, clients are written
against a service’s interface, described as a Java interface type; the service,
then, provides a service-specific implementation of this interface at runtime in
the form of mobile code that is downloaded to the client and executed by it.
The advantage of this approach is that Jini can allow clients to communicate
with services using protocols not previously built into the clients, since services
provide to clients the code necessary to use them. Still however, like UPnP,
Jini requires that clients be written against specific service interfaces. Jini de-
fines standard interfaces for a number of core infrastructure services (such as
the Jini Lookup service), but other domain-specific service interfaces are not
defined by Jini itself.

Jini’s use of mobile code makes it similar to the Obje approach architecturally.
For example, Jini allows service-specific, mobile code-based user interfaces to
be downloaded by clients [Venners 2005]. The capabilities in Jini make it a plat-
form on top of which one could define a set of generic meta-interfaces, similar
to those defined by Obje; Jini itself does not specify such interfaces however.
Also, Jini is also closely tied to the Java language and platform, requiring Java
as a common mobile code execution format; as described later, Obje supports a
range of mobile code formats.

Other systems have explored mobile code-based approaches to distributed
computing, although often not in the context of supporting evolution while

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:9

maintaining interoperability. Bharat and Cardelli’s work [1995] on migratory
applications, for instance, uses mobile code as a way for an agent to move across
the network to resume on a new host. While that work shares a common mech-
anism with Obje—the use of mobile code—it does not share a common goal.
Rather than supporting interoperability, Bharat and Cardelli’s work is largely
focused on enabling applications to move seamlessly through the network, car-
rying data and program state as they move. These differences in aims drive
differences in mechanisms: in Bharat and Cardelli’s model, code moves to a
new host and begins executing in its own thread. In Obje, by contrast, small
fragments of code are copied to a peer, where they are only invoked as neces-
sary through calls into known methods on that code by the receiving applica-
tion. Bharat and Cardelli’s agents cease executing on old hosts as they move
to a new destination. In Obje, transfer of code to one peer does not preclude
transfer of code to other peers; in other words, execution of transferred code
need not cease at one point simply because an Obje device is interacting with
a second peer. In Bharat and Cardelli’s work, agent code is not expected to be
called into from the local computing environment on its new host, except by an
“agent server” that knows how to load and execute arbitrary agents. In Obje,
mobile code is expected to implement interfaces known to the receiving device
so that code on that device can directly invoke and interact with code received
over the network.

HP’s Cooltown project [Kindberg and Barton 2001] is concerned with extend-
ing web presence to devices and services situated in the physical world and is,
in many ways, close to Obje in its philosophy for interoperation. Cooltown lever-
ages web standards—the ubiquity of HTTP, and the ability to use it as a small,
fixed, and generic interface to a range of services and devices—to achieve ubiq-
uitous interoperation. But by relying on web standards, Cooltown is also bound
by the web’s limitations. These include reliance on the data types and protocols
commonly used in the web, the lack of easy dynamic extensibility, and a focus
on browser-server style interactions, rather than interactions between services
initiated by a third party. Olsen’s [2000] XWeb system presents what is essen-
tially a web-oriented architecture, but with extensive modifications to remove
many of the limitations of the web that affect systems like Cooltown: much
like Obje, XWeb aims to move away from “interactionally impoverished” proto-
cols and data types such as HTTP and HTML. XWeb provides a new transport
protocol, called XTP, that provides rich mechanisms for finding, browsing, and
modifying information represented in hierarchical form on a remote service
or device. On top of this base protocol, XWeb provides high-level abstractions
(called interactors and XViews) for modifying server data, either at an atomic
level or in aggregate. The XWeb approach, by moving away from some of the un-
derlying technical limitations of the web, can provide much richer interaction,
including easy adaptability to a range of input devices, easy linking between
back-end data and front-end interfaces (including notifications when back-end
state changes), and so forth. In comparison to Obje, however, XWeb still lacks
the easy dynamic extensibility afforded by mobile-code based approaches, in-
cluding extensibility to new data transport protocols, data types, and discovery
protocols.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:10 • W. K. Edwards et al.

The iRoom [Johanson et al. 2002] and Appliance Data Services [Huang et al.
2001] projects at Stanford provide ad hoc interoperation of loosely coupled ser-
vices by allowing them to share data through tuplespaces (a concept first de-
scribed by Gelernter [1985] in which arbitrary data tuples can be written onto
a blackboard, and detected and consumed by other services). Such systems can
provide far greater flexibility than agreement on fixed protocols, since the set
of tuple types is easily evolvable; new tuple formats can coexist with old ones,
for example. For two tuplespace-based services to work together, however, they
must still have prior agreement on the format of the tuples; the extent of in-
teroperability is dictated by the extent of a common language of tuple syn-
tax and semantics. Of course, Obje also dictates a common set of interfaces
that we expect to be known to all parties, but our intent is for the interface
set to be fixed and not open-ended as in the case of many tuplespace-based
systems.

Still others have focused on the problem not just of interoperation but of pre-
serving interoperation in the face of evolution. For example, Ponnekanti and
Fox [2004] highlight the range of compatibility problems that can result from
the evolution of web services. Their solution to allowing evolution while preserv-
ing interoperability depends on static and dynamic analysis tools to validate
compatibility among services, along with automatically generated middleware
components that can bridge between otherwise incompatible versions of ser-
vices. In comparison to the work of Ponnekanti and Fox, which is largely aimed
at mediating compatibility issues for existing WSDL-based web services, Obje
takes a more “clean slate” approach, abandoning the existing web services-
oriented architecture for one that can potentially support evolution without
the need for custom middleware generators or other support infrastructure on
the network.

Another project that focuses on interoperable evolution is HydroJ, a set of
language extensions to Java intended to allow the easy creation of interopera-
ble web services [Lee et al. 2003]. The creators of this system note the problems
caused by evolution in traditional RPC-based systems, in particular what they
call the “brittle parameter problem”: that any change to the parameters of a
remote interface breaks compatibility. HydroJ takes a position reminiscent of
the iRoom, relying on semistructured data to mitigate some of the brittleness
associated with traditional RPC systems. This approach permits variation in
the contents of messages; much like in tuplespaces, portions of a data struc-
ture that are not understood are simply ignored by recipients. In comparison
with Obje, HydroJ has similar goals but takes a somewhat different approach.
HydroJ does not address the issue of interface evolution, focusing instead on
supporting parameter evolution only; in contrast, Obje’s focus is on rethinking
how interface agreements are made as a whole, and how such agreements can
more flexibly accommodate service evolution.

A number of systems designed to support service composition—the easy
assembly of higher-level functionality by piecing together networked services—
also touch on issues similar to those addressed by Obje. Omojokun and
Dewan’s [2003] framework for service composition provides mechanisms for
interoperability that do not require agreement on service interfaces. Rather,

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:11

their framework allows “composers” to be created that rely on programming
patterns assumed to be used by the services on the network. For example, if
multiple services support operations with the same name, such as powerOn(),
a composer can detect this and provide a unified mechanism for invoking this
operation across multiple services. Other composers can detect and create com-
posite interfaces for other patterns, such as data transfer across services, condi-
tionally triggering service operations, and so forth. In essence, this framework
shifts the burden of agreement from knowledge of the syntax and semantics
of service interfaces, to knowledge of naming conventions for operations and
parameter types. Thus, it can support the composition of services based on
mechanical textual matching, and without requiring knowledge of the seman-
tics of those services. Of course, developers must follow the prescribed naming
conventions for this approach to work.

Ninja’s “automatic path creation” [Gribble et al. 2001; Mao and Katz 2002]
and the closely-related service composition work at Stanford [Kiciman et al.
2001] take a data-flow approach to service composition, and come the closest of
any of the work we have described to our model of recombination. In particular,
Kiciman et al.’s stated goal of “zero code” composition is strikingly similar to
the goal of placing the user in the loop of deciding when and how to carry out
interoperation. However, the data-flow model for service composition seems to
pass significant complexity along to the users, requiring them to understand
and explicitly compose pipelines of data transformations. These systems also
take a different approach to dealing with potential protocol and data type mis-
matches, namely by introducing nodes in the service composition path that
transcode from one protocol/type to another, rather than Obje’s approach of
using mobile code.

A number of systems have explored user interface approaches for dealing
with device-rich environments. The work of Nichols et al. [2002] on the per-
sonal universal controller leverages a declarative abstract UI specification that
can be targeted at runtime to different modalities. As another approach, Jini
provides mechanisms that allow clients to acquire from a service mobile code
that implements a custom UI for that service [Venners 2005]. Under the Jini
model, each service on the network can provide a service-specific UI that can
be used by any client on the network, as long as that client has knowledge of
the programmatic interface implemented by the newly-acquired mobile code.
Under both of these approaches, UIs are typically per-service, in that they are
acquired from a single, specific service and do not provide composite user in-
terfaces for controlling multiple services, or for controlling interactions among
services.

Other approaches have been explored in the context of the iRoom. The
iCrafter system [Ponnekanti et al. 2001] allows generation of multidevice
interfaces based on “patterns” of service interfaces, allowing the system to
create composite interfaces that unify interactions across multiple disparate
services. While iCrafter shares similar goals with the work we describe here,
namely the ability to provide on-demand user interfaces to clients that allow
them to control multiple devices, the approaches are different. iCrafter relies
on UI generators that can detect common patterns and emit usable unified

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:12 • W. K. Edwards et al.

interfaces; our approach is to place more of the burden on the devices and ser-
vices themselves, and rely on simpler composition mechanisms to unify these
interfaces.

Others have explored multidevice interaction in the context of the web. Han
et al.’s WebSplitter system [Han et al. 2000], for example, allows collabora-
tive browsing of web pages across multiple devices. WebSplitter provides an
infrastructure that allows web pages to be split and distributed across multiple
devices that may belong to a single user, or multiple users, allowing interaction
with multiple parts of the page from different devices. Fundamentally, however,
this system is not about integrating control of multiple networked resources into
a single UI, but about taking a single UI and splitting it across multiple de-
vices. Other web-oriented systems include Bandelloni et al.’s [2005] work on
automatic generation of migratory web interfaces. That approach is based on a
proxy server, reminiscent of that of Fox et al.’s work [1998] on “transformational
proxies” to “retarget” existing application UIs to new platforms, such as PDAs.
Bandelloni et al.’s [2005] work builds on existing proxy-based approaches to
support migration of the interface across new devices and to new modalities.
Much like Bharat and Cardelli’s [1995] work on migratory applications, this ap-
proach shares some surface-level similarities with Obje (support for device-rich
environments), but fundamentally is aimed at addressing problems of migra-
tion rather than interoperation.

5. THE OBJE INFRASTRUCTURE

This section describes the basic design of Obje. We first examine the low-level
capabilities that we expect to be built into devices and applications that imple-
ment the Obje software stack; then we describe how these low-level capabilities
are wrapped in a programming model that supports the creation of dynamically
extensible devices and applications. We note that the design target for the Obje
platform is primarily network-connected devices (meaning devices with either
a wired or wireless network interface and standard TCP/IP capabilities) with a
modicum of processing power (typically meaning an embedded-class processor
such as might be found on a set-top box, Internet appliance, or mobile phone).
While we do not target extremely low-end devices (such as lightswitches, or sim-
ple sensors, or devices without network connectivity) directly, we have designed
our architecture to accommodate such devices through a proxy mechanism, as
described shortly.

The key distinguishing feature of our middleware platform is that it allows
runtime extensibility of devices and applications, allowing new devices that
enter the network to provide code to peers to allow them to interoperate with
the new device.

This ability is provided through a bootstrap protocol, layered on top of TCP/IP,
that provides a number of operations designed to support runtime extensibility.
Most importantly, the protocol allows a new device on the network to provide a
peer with the following:

—an implementation of a new application layer protocol needed to communi-
cate with the device;

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:13

—an implementation of one or more type-handling modules, to render or process
media or other data received from the new device;

—an implementation of new user interface controls, which can be used to con-
trol the device remotely; and

—a transparent bridging mechanism that can allow a peer to acquire new dis-
covery protocols, or the ability to interact with devices that may not exist on
the IP network, or that may not directly support the Obje software platform.

We call this our bootstrap protocol because it is used only for the initial negotia-
tion and transfer of new capabilities necessary for compatible communication.
Once this initial bootstrap transfer has completed, two devices communicate
with each other directly using these new capabilities, and the bootstrap protocol
is not used for further communication.

As noted earlier, these new capabilities are in the form of mobile code: self-
contained executable content delivered over the network to the peer device. The
Obje platform itself is agnostic to the format of this mobile code: the platform
allows for a variety of code formats, including platform-independent code (e.g.,
Java bytecodes) as well as highly-tuned, platform-specific code (which of course
would only be executable on a compatible target device).

Coupled with this bootstrapping mechanism for delivering new capabilities
to peer devices, we have also developed a security framework for encryption
and authentication without the need for centralized trusted third parties; this
framework is intended to allow device creators or application developers to
easily experiment with a range of application-layer access control policies that
support the ad hoc, decentralized model of communication that is our goal.

Devices can participate in the Obje platform in one of two ways. First, to
participate natively, devices must carry an implementation of the bootstrap
protocol, may have one or more versions of mobile code intended for use by
peers (these would typically be carried in some form of stable storage, such as
firmware, flash, or on a disk), and may optionally have the ability to execute
code received over the network. Second, and as we explain in later sections, our
architecture also provides for non-Obje devices to participate in the platform
indirectly through proxies provided by a host computer or other device.

5.1 The Obje Bootstrap Protocol and Code Formats

The Obje bootstrap protocol is defined as a profile on the Blocks Extensible
Exchange Protocol (BEEP) [Rose 2001], which is a generic application protocol
framework for bidirectional, connection-oriented communication. BEEP pro-
vides a number of facilities that Obje relies upon, such as message framing,
asynchronous messaging, and a range of TLS-based security features that pro-
vide message integrity and privacy as well as authentication of peers on the
network.

Obje devices advertise their presence over the local link via the widely-used
Zeroconf discovery mechanism, which is based on multicast DNS (mDNS) and
DNS Service Discovery (DNS-SD) [IETF 2005]. Device advertisements take the
form of Uniform Resource Identifiers (URIs) that indicate the IP address and

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:14 • W. K. Edwards et al.

port number of a BEEP endpoint on that device. Once a URI for a given device
has been discovered, an Obje peer may communicate with it using the boot-
strap protocol. This initial communication is started through a FetchRequest
message to the peer, which in turn responds with its ComponentDescriptor.
ComponentDescriptors are short XML documents that provide descriptive in-
formation about a device (name, icons, and so forth) as well as information
about which roles the device may play (source or recipient of data, and so
forth, as described below), and any mobile code that may be provided by the
device.

We call these bundles of mobile code granules, and they are represented
in the bootstrap protocol by elements called GranuleDescriptors. Each Gran-
uleDescriptor indicates a location from which the mobile code may be loaded
(typically, from the device itself, although this mechanism allows a device’s code
to be loaded from a third party on the network), as well as parameters used to
initialize loaded code granules, a universally unique version identifier that may
be used by clients to cache code granules, and a specification of the platform
requirements of the code granules.

Most devices on the network will have the ability to send or receive data from
other devices; devices that can do so declare in their ComponentDescriptors any
content types that they may be able to process “natively,” meaning, without the
need to acquire any code granules from a peer in order to interpret the received
data. These declarations are in the standard MIME format [Borenstein and
Freed 1992]. This mechanism allows for the creation of devices that can partic-
ipate natively in the Obje protocols, but do not require the ability to download
and execute mobile code; this trade-off means that such Obje-compatible devices
can be built more cheaply, but at the cost of losing the runtime extensibility that
mobile code provides. For example, a small viewing device may declare that it
can accept JPEG and PNG image data only, and refuse to accept (or be unable to
process) granules that could extend its type-handling behavior to other image
formats.

Depending on the roles a device plays, it may provide a number of types of
granules to its peers to adapt their behavior in specialized ways. For example, a
device that can act as an originator of data (called a DataSource) may be able to
transmit specialized granules that provide peers with new protocol implemen-
tations or new type-handling behavior (including new CODECs) as described
in Section 6.1, Data Transfer. Other sorts of devices may provide custom UI im-
plementations or custom discovery protocols other than Zeroconf (see Sections
6.3 and 6.4, Aggregation and User Control and Metadata, respectively). Obje
defines a fixed number of device roles, and thus a fixed number of granule types.
Devices that play a given role are written to provide or accept the granule types
defined by that role.

Table I shows an overview of the different device roles and the corresponding
granule types used by those roles. Devices that can participate in data transfer
implement one or both of the DataSource or DataSink interfaces; such devices
support extensibility on support various aspects of data transfer, using Session,
Typehandler, and Controller granules. Devices that can provide access to other
devices, for example by encapsulating a new discovery protocol, support the

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:15

Table I. The Four Primary Modes of Extensibility Defined by Obje

(described as four “roles” in which devices can be used; devices that play one or more of these

roles can provide or use a fixed set of granule types. Devices may participate in multiple roles)

Capability Device Roles Granule Types

Data transfer extensibility DataSource DataSink Session Typehandler Controller

Discovery protocol extensibility Aggregate ResultSet

UI extensibility Component UI

Metadata extensibility Component Context

Aggregate role, which provides extensibility in how peers acquire access to other
devices on the network through ResultSet granules. Devices that provide access
to custom user interfaces to control them, as well as to descriptive metadata,
participate in the Component role, which is considered a base-level role that all
devices should support; these devices use UI and Context granules to support
extensibility along these dimensions.

Once a granule, such as a new protocol implementation, is transferred to a
peer, it is executed directly by that peer. Thus, after the initial bootstrap phase to
exchange any code necessary for compatibility, two Obje peers can communicate
directly with one another, using whatever protocol- and data type-handling
behavior is implemented by the granules provided by the source device.

Effectively, this mechanism allows peers to be built against a static proto-
col specification (the bootstrap protocol), which is then used to exchange new
capabilities necessary for compatibility (in the form of granules) as new peers
enter the network. It is this approach that allows devices to be coded against a
fixed protocol, and fixed set of granule types, and yet be extensible to support
new devices encountered “in the wild”.

5.2 The Obje Programming Model and Runtime

We have developed a programming model and runtime software stack that
wraps the low-level bootstrap protocol, along with other aspects of our infras-
tructure including remote code-loading and discovery extensibility. In this sec-
tion we describe this programming model as well as a Java-based implementa-
tion of our runtime. Our programming model not only allows easier creation of
applications, but also maps the capabilities of the platform into a polymorphic,
object-oriented framework: devices on the network appear to applications as ob-
jects in their local address spaces; the roles those devices can play are mapped
onto a fixed set of interfaces implemented by those objects; the methods in
those interfaces use and return objects that themselves expose well-known in-
terfaces, and which are implemented by the granules returned from devices on
the network. Thus, to applications, the loading of code granules is transpar-
ent, appearing simply as new, polymorphic implementations of already-known
interfaces.

This approach of transferring necessary implementations of known inter-
faces across the wire, rather than through standard single address-space
method calls, is similar to Java’s Remote Method Invocation (RMI) frame-
work [Wollrath et al. 1996]. However, our implementation differs from RMI
along a number of key dimensions. First, it is not specifically tied to the Java

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:16 • W. K. Edwards et al.

programming language, and can support mobile code in a number of formats.
Second, it neither provides nor requires the distributed garbage-collection facil-
ities of RMI; code transferred to an application is used to create a new instance
of an object in the application’s address space, rather than a reference to a re-
mote object that must be factored in to a reachability analysis for distributed
garbage-collection. Third, it does not use serialization (which can often be frag-
ile, especially in the face of object versioning or the need for multiplatform sup-
port) to transfer instance data across the wire; only implementations are moved.

Devices are represented in the Obje programming model by components,
which are simply objects that reside in the address space of the client applica-
tions that use them. Components can be thought of as proxies for accessing a
device such as a projector, printer, or PDA. This programming model is imple-
mented by a small messaging kernel that forms the Obje runtime, and against
which applications are linked. The messaging kernel implements the Object
bootstrap protocol, and is responsible for creating new component proxy object
representations within the client application’s address space; this representa-
tion is created from information contained in the device’s ComponentDescriptor.
The kernel, upon receipt of the Component Descriptor from a device, generates
a proxy object that represents the new device, and notifies the application that
it is available via a simple event interface.

The component proxy objects that are generated by the kernel implement one
or more programmatic interfaces that allow applications to access information
about the remote device, as well as to acquire mobile code from it. Thus, while
applications operate on these component objects using normal local method
calls, these calls are translated into wire messages in the bootstrap protocol
by the messaging kernel, and are sent to the backend service or device. For
example, invoking one of the data transfer-related interfaces on a component (as
described below) causes a request for the necessary granule to be encapsulated
into the bootstrap protocol and sent to the remote device, which then returns
the code to the client.

Figure 1 illustrates the process. Here, the messaging kernel in the appli-
cation first discovers the device, and then acquires its Component Descriptor,
which the kernel uses to create a new component object that acts as a proxy
for the device. The application can interact with this new component object to
query its name and other descriptive information, as well as to obtain mobile
code from it that can be used to extend the application’s behavior in certain
prescribed ways.

When mobile code granules are transferred to a device, the messaging kernel
exposes these as objects that implement a set of interfaces that define the ways
in which clients can interact with new implementations that specialize their
behaviors. These objects provided by the messaging kernel are simply “wrapper”
objects that call into the granule, and implement the well-known interfaces
defined by that particular granule type (as indicated by the rightmost column in
Table I). Thus, applications written against the high-level programming model
never see granules directly, but rather normal Java objects that implement well-
known interfaces, but whose implementations come from granules delivered
over the wire.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:17

Fig. 1. The application on the left discovers the device on the right. A Component Descriptor,

passed via the bootstrap protocol, encapsulates information describing the device (1). The Compo-

nent Descriptor is used by the messaging kernel in the application to create a component repre-

sentation as a proxy for the device (2).

Figure 2 illustrates the process of acquiring and using granules from the
application’s perspective. Here, application code interacts with a component
object, which acts as a local proxy for the device shown on the right. Local
method calls on the component cause the messaging kernel to request necessary
granules from the back-end device, which are then returned to the application;
both the request and the response are transmitted over the bootstrap protocol.
Once the granules are returned, the messaging kernel creates a wrapper ob-
ject that delegates local invocations of well-known methods to the code in the
granule. In the case shown in Figure 2, granules provide a custom protocol im-
plementation, custom data type-handling code, and a custom user interface for
interacting with the device; in essence, these granules represent polymorphic
implementations of the interfaces known to the client, transfered over the wire
from the originating device. Once the new protocol granule has been loaded,
the application communicates with the device using the protocol implemented
by that granule, rather than the bootstrap protocol.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:18 • W. K. Edwards et al.

Fig. 2. The application interacts with the component to retrieve granules from the device, which

allow the application to specialize its behavior for protocol, data type, and UI handling. Here, the

application invokes a local method call on the the component that causes it to request a granule from

the backend device (1). That device returns granules that provide new protocol implementation,

data type-handling behavior, and UI specific to controlling communication (2). These are loaded

into the application and returned as granules via the local method call on the component, where

they can be used by the application (3).

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:19

In our current implementation, the messaging kernel is implemented in Java
and produces component proxy objects that implement a small, fixed set of
Java interfaces corresponding to the device roles described above. Thus, our
high-level programming model most easily supports applications written in
Java, although as noted we do support transfer and loading of native mobile
code (described in Section 6, System Experiences and Reflection). Because the
core protocols and wire formats of Obje are language-independent, devices and
applications can be written against the bootstrap protocol directly in languages
other than Java.

The next sections describe the patterns used by devices in specific roles to
support extensibility of data transfer, discovery, user control, and metadata.

6. OBJE DEVICE ROLES AND COMMUNICATION PATTERNS

This section describes the patterns used by devices in specific roles to support
extensibility of data transfer, discovery, user control, and metadata.

6.1 Data Transfer

The most important (and most complex) Obje mechanisms are those that sup-
port extensible data transfer between devices, such as a PDA sending data
to a printer or a video camera sending a video stream to a fileserver. These
mechanisms have been successfully used in a wide range of devices and client
applications (see Section 7, The User Experience of Recombinant Computing for
details), and provide runtime extensibility along three important dimensions:
extensibility to new protocols, extensibility to new data types, and extensibility
to new user interfaces for controlling a data transfer. The next three sections
discuss each of these in turn.

6.1.1 Protocol Extensibility. Obje devices can play two roles in a data
transfer: data sources and data sinks. These roles dictate how the devices will
exchange mobile code during a data transfer: data sources provide new mobile
code-based protocol implementations, which are then used by data sinks to re-
trieve data from the source using the new protocol. In the Obje terminology, this
new protocol implementation is carried in a type of granule called a session.

Since many connections between devices are initiated as a result of some user
action at a client, the basic communications pattern supports transfers started
by a third party such as a remote control device, browser, or other application.
In this pattern, a client requests a session granule from a source. The client
will then pass this session to a data sink device to start the transfer. From this
point, the source and sink exchange data directly, without it passing through
the client. Figure 3 illustrates how a session is passed from source to sink by
way of a client application that initiates the connection.

Note that the act of requesting a session from a source, as well as passing it to
a sink, will involve a number of messages in the bootstrap protocol. Specifically,
this sequence of operations will cause a request for the session granule to be
sent to the remote source device, the mobile code for the session granule being
returned over the network from the remote source to the client, and then passed

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:20 • W. K. Edwards et al.

Fig. 3. Data transfer initiated by a client application. In step 1, the session granule is requested

from the source by the client application; in step 2 it is provided to the receiving device. Both of

these transfers happen over the bootstrap protocol. In step 3, the source and sink communicate

directly using the protocol implemented by the source’s session granule.

from the client to the remote sink. The Obje messaging kernel performs these
requests as the client invokes operations on the component objects in its address
space, hiding the details from the client.

In terms of our programming model, data source components provide a
method that allow clients to list the formats of the data they provide (in the
form of MIME types [Borenstein and Freed 1992]), as well as a method to return
a new session granule from the device. Once a client has retrieved the session
granule from the source device, it can pass it to any data sink device through
a method defined on sink components. The session granule is then marshaled
and passed over the network to the receiving device, which unmarshals it and
invokes the code within it to read data from the original source.

Since the source device provides the session granule, it effectively has control
over both endpoints of the communication, allowing it to use whatever protocol
is appropriate for the type of data being transferred, with neither the destina-
tion nor the initiating client having to have a priori knowledge of that protocol.

In addition to providing protocol implementations, session granules also sup-
port a number of operations that allow clients to control the transfer of data
between devices. Specifically, clients can terminate a session (stopping the flow
of data), and can also subscribe to receive notifications about changes in the
state of the transfer (that it has failed, for instance). In essence, the session
acts as a capability, allowing any party that holds it to change its state, or be
informed of changes in its state. Distribution of state updates happens in a
semicentralized manner: updates cause a message to be sent to the source that
created the session, which sends the update to other holders of the session. As
described below, this same mechanism is also used to asynchronously distribute
user interface granules to devices involved in the transfer.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:21

6.1.2 Data Type Extensibility. The features of the data transfer pattern
outlined above (independence from specific protocols, the ability for third par-
ties to initiate connections, and the ability to receive notifications about changes
in the state of a transfer) are necessary but not sufficient for providing the flex-
ible and seamless version of recombination that we envision. Namely, it allows
easy, protocol-independent interconnections among components, but only inso-
far as those components understand the same data types.

Just as we believe that future devices will bring with them new protocols,
an ability to work with new data formats and media types is also required. If
components must be prebuilt to understand each other’s data types in order to
work together, we drastically limit their ability to interoperate in a truly ad hoc
fashion and to evolve to support arbitrary new devices. We must move away
from the requirement that devices must be replaced or manually updated each
time a new data format appears on the network.

There are a number of approaches one might take to overcome this conun-
drum of extensibly handling new data types. One approach (reminiscent of
Ninja’s paths [Gribble et al. 2001; Mao and Katz 2002]) would be to allow filter
services such as Ockerbloom [1998]) to exist on the network that accept data in
one format and translate it to another. We intentionally avoided this approach,
however, first because it requires the presence of additional infrastructure on
the network (the filter services themselves), but primarily because of its im-
plications for the user experience. We wanted to avoid a data-flow model that
required users to explicitly connect through a chain of format conversion fil-
ters. Our initial user studies led us to believe that most nontechnical (and even
many technical) users did not easily grasp such a model; on the other hand,
automated filtering would be problematic because our desire to allow semantic
extensibility would require users to be involved in selecting among multiple
(potentially semantically incompatible) filters.

Instead, the approach taken by Obje is to use mobile code to allow for ex-
tensibility to handle arbitrary data types, without the need for excessive user
involvement, and especially without the need for a “wiring diagram” style of
connection. Obje allows devices to broaden their statements of compatibility
beyond simple MIME types. For example, a projector—a device that by its se-
mantics is designed to display things—might claim that it can understand not
only JPEG data, but also that it understands the semantics of other things
that are displayable. In other words, a device might claim that it understands
some abstract representation of a set of operations that it can perform on data
without having to understand the data itself.

These widened statements of compatibility are declared as programmatic in-
terfaces in the list of understood types. For example, a projector may list not only
that it can accept JPEG data (MIME type image/jpeg), but also that it is written
to use granules that implement a Viewer interface that it will invoke to display
data (which we likewise express as a custom MIME type, application/x-obje-
typehandler-granule; representationClass=com.parc.obje.datatransfer.Viewer).
By declaring that it understands a particular interface, a sink indicates that it
is written to understand and use objects that implement that interface. Like-
wise, a source that declares that it can provide a particular interface means

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:22 • W. K. Edwards et al.

Fig. 4. A projector device uses a typehandler to process data in an unknown format. Here, the

session granule has already been transferred to the sink device. When data is delivered in Pow-

erpoint format, a typehandler granule implementing a Powerpoint Viewer is transferred over the

bootstrap protocol (step 1). After this, data is transferred between source and sink using the proto-

col implementation provided by the session granule, and the received Powerpoint data is rendered

via the typehandler Powerpoint Viewer granule (step 2).

that it can transfer a granule that provides a specific implementation of that
interface.

We call these mobile code-based implementations typehandlers, because they
provide code that allows a receiver to process a previously unknown data type.
In essence, this extension of the type system allows sources and sinks to nego-
tiate richer interfaces to the data they exchange, and allows data type-specific
implementations of these richer interfaces to be acquired at runtime. If both
the source and sink agree on an interface they understand, a mobile code-based
implementation of this interface will be transferred from the source to sink as
a granule, and invoked by the sink to handle the data.

The set of interfaces that these typehandlers may implement is open-ended
and extensible. This is the same as with MIME types: there is an extensible
set of them, new ones will come over time, and they must be known to the
involved parties for communication to occur, but no one else need understand
them.

Figure 4 shows an example, displaying Powerpoint format data on a projec-
tor that is not explicitly written to use such data. In this case, the projector
is written to understand a number of raw data types (GIF and JPEG, in our
current implementation), and is also written to understand objects that imple-
ment an interface called Viewer. Any party that can provide a Viewer wrapper
around its data can thus connect to the projector. Here, the projector down-
loads and a specific typehandler granule that, once instantiated, provides an

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:23

implementation of this interface that renders Powerpoint, a format previously
unknown to the projector.

The use of typehandler granules doesn’t solve all problems with type
compatibility—in the example above, even though the projector doesn’t have
to understand Powerpoint directly, it must still be written to understand the
Viewer interface. The typehandler approach does, however, provide a number of
concrete benefits over simply requiring agreement on simple data types. Most
importantly, typehandlers provide a means for dynamic extension of the set of
types that can be used between two devices. As long as a sink is written to accept
a typehandler interface, components that were previously incompatible with it
can be made compatible through the addition of a typehandler that meets that
interface. Such easy, dynamic extension of type compatibility is not possible
when only static types are allowed, without rewriting either source, sink, or
both.3

Such dynamic extensibility is especially important when a source provides
an unusual format. For example, one of our Obje services provides a live video
stream of a computer’s display, using VNC [Richardson et al. 1998]. We neither
require nor expect all receivers to be able to parse and process VNC data, so
the source provides a typehandler that implements a Viewer interface. Through
this interface, any sink that is written to understand the semantics of Viewers
can accept and display a live VNC stream.

6.1.3 Transfer Control Extensibility. The final aspect of extensible data
transfer behavior concerns how we can control arbitrary aspects of a data trans-
fer beyond simply starting and stopping the transfer. For example, consider a
generic browser-style application created using Obje. If a user uses this ap-
plication to connect a file of Powerpoint slides to a projector, we would like to
display to the user controls specific to that interaction. This may include UIs
for the particular model of projector as well as for the slide show. Of course,
we need to be able to do this without requiring that the browser be specifi-
cally written to understand the details of projectors, or of Powerpoint slides.
This ability to acquire and display arbitrary per-device user interfaces is nec-
essary, given the user-in-the-loop philosophy that is fundamental to the Obje
approach.

Obje uses the same state notification mechanism defined by session granules
to deliver yet another type of granule, which we call controllers, to any of the
parties that hold a copy of the session object [Newman et al. 2002a]. Using this
mechanism, any party that holds the session can “add” a controller granule,
which causes it to be delivered to any other parties holding the session that
have solicited an interest in receiving such granules; this arrangement allows
user interface code to be delivered asynchronously over the network, at the
time it is needed and for presentation by whichever client is managing user
interaction.

3A secondary potential benefit, although one we have not explored in depth, is that by “wrapping”

data formats in programmatic types, there is the opportunity for more fine-grained machine rea-

soning about type compatibility, using methods such as those proposed by Wing and Ockerbloom

[2000] based on formal notions of subtyping and type compatibility [Liskov and Wing 1994].

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:24 • W. K. Edwards et al.

Fig. 5. Projector and slide show controllers running on an iPaq PDA. The client application solicits

to receive controllers from any session in which it is involved. Received controllers for a given session

are presented in tabbed panels.

A key advantage of this approach is that controllers can be added by any party
that holds the session, in the same way that any party that holds the session
can also update its state. This means that sinks, sources, and typehandlers can
all add controllers. For example, in our Powerpoint case, when a connection is
established to the projector, the projector (sink) component may add controls for
adjusting brightness and other projector parameters. The typehandler—which
is the only party in this scenario that would understand Powerpoint data—
would add the slideshow controls. Both would be transmitted over the network
to the application that initiated the connection.

Figure 5 shows a set of simple controllers from the Powerpoint-to-projector
example, running on a PDA. Note that the controller delivered to the PDA can
provide potentially arbitrary functionality, based on the code that is delivered
to it. In this case, the Powerpoint controller displays miniature versions of the
current slide and notes on the PDA screen, even though the PDA is not coded to
understand Powerpoint files, and does not even have the application installed.
This controller also allows the user to draw on the slide using a stylus; the
strokes are communicated back to the Powerpoint typehandler executing on
the projector, where they are rendered over the slide.

Together, the dimensions of runtime extensibility provided by the Obje data
transfer mechanisms (extensibility to new protocols, new data type-handling
behavior, and new UIs) allow applications and devices to richly interact with
each other, while requiring only minimal a priori knowledge of each other.

6.2 Aggregation

The second major group of mechanisms in Obje supports aggregation. Aggre-
gates are components that appear as logical collections of other Obje compo-
nents. In Obje this pattern is used in a wide range of situations: to access filesys-
tems, which appear as collections of components representing files and folders;
to support devices that encapsulate new discovery protocols; and also to support
devices that provide access to nonIP networks and legacy (nonObje) devices. Any
situation in which a device provides access to other devices uses this interface.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:25

From the perspective of our programming model, applications initiate an in-
teraction with an aggregate component by performing a query() method call,
defined by the Aggregate component interface. Applications pass a parameter
that allows them to match devices based on their type, or metadata associated
with them (see Section 6.3, User Control and Metadata for details on device
metadata), allowing applications to only be notified of a subset of available
devices that pass some filter. The query operation returns a ResultSet to the re-
questing application. ResultSets are granules that present a simple dictionary
view (component IDs as keys and components as values) of the devices that
match the query. Once an application has a ResultSet, it can iterate through
the “contained” devices and solicit notifications about changes in the set of de-
vices that the original query matches, allowing push-based notification of new
devices. Thus, the semantics of ResultSets are that they are “live,” and may be
continually updated as matching devices come and go.

In our high-level programming model, initial Zeroconf-based discovery is
presented to applications as a “root” Aggregate component that contains all
Zeroconf devices on the local link, and supports the same query and notification
mechanisms described here. This root aggregate is instantiated and provided
to applications by the Obje runtime stack to bootstrap their discovery of devices
on the network.

Because ResultSets are implemented as mobile code-based granules, this
simple pattern can support a great deal of extensibility and power. For exam-
ple, this mechanism allows applications to take advantage of arbitrary new
discovery protocols and to interact with devices on physical networks that the
applications themselves do not have direct access to. The sections below de-
scribe how these scenarios work in Obje.

6.2.1 Discovery Extensibility. While Obje devices support Zeroconf as their
standard discovery mechanism, such a “one size fits all” approach is unten-
able in a world with a rich variety of devices and networked environments
[Edwards 2006]. As a simple example, Zeroconf does not provide the ability to
easily discover devices outside the local link; in such cases, it may be useful
to support discovery mechanisms that use a registry service, which can allow
better adminstrative configuration over which devices are discoverable.

Thus, one key application of the aggregation mechanism is to provide alter-
native means of discovery for Obje devices and applications. This model allows
a device or service to be deployed onto the network; once discovered normally
via Zeroconf, this device or service can provide to its peers new mechanisms
for discovery via ResultSet granules. In effect, existing clients on the network
gain the power of new discovery protocols automatically via deployment of a
single device or service, and without requiring that they be aware of the new
discovery mechanisms.

In the most simple case, the ResultSet granule delivered to devices can sim-
ply forward the operations performed on it to a remote device or service that
performs discovery on its behalf. This allows a device or service to serve as
a discovery bridge—it can perform discovery using arbitrary other protocols
and return the results to unmodified applications in the form of standard Obje

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:26 • W. K. Edwards et al.

Fig. 6. Two common discovery patterns using ResultSets. On the left, a ResultSet granule acts

as a simple “shim,” providing access to a separate discovery service running on a remote machine;

the ResultSet implements a private protocol for communicating with the remote service. On the

right, a ResultSet granule implements a custom discovery protocol that executes directly in the

application.

ComponentDescriptors. In other cases, the ResultSet granule may itself pro-
vide a custom implementation of a new discovery protocol that executes directly
in the client, thereby allowing clients to directly discover other peers that may
have been inaccessible to them previously.

Figure 6 illustrates both of these cases. In the first case in Figure 6, a
lightweight “shim” ResultSet communicates using a custom, private protocol
to a back-end service that serves as a discovery bridge for Jini services; this
back-end service invokes the Jini discovery protocol [Sun Microsystems 1999]
and returns discovered services to the client. Because ResultSets leverage mo-
bile code, however, other configurations are possible. For example, a ResultSet
granule can provide a full implementation of a new discovery protocol, which
can then be delivered to the client where it executes locally. In the second case
in Figure 6, the discovery process does not happen in the external service;
instead, it happens within the client itself, which has been dynamically ex-
tended to use the Jini discovery protocol through the code contained within the
granule.

Whether discovery happens in the application or in some external service or
device is up to the entity that provides the ResultSet granule. In either case,
the application simply operates on the ResultSet using the standard iteration
operations defined on it, and need not care how the custom implementation
does its work.

6.2.2 Legacy Device Support. The Aggregate pattern is also used by Obje
to provide access to legacy devices, meaning both non-Obje devices and devices

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:27

Fig. 7. Using aggregates to provide access to legacy resources. Here, a Bluetooth proxying service

executes on a remote machine to provide access to legacy Bluetooth devices that do not run Obje.

As the service discovers a Bluetooth device (on the left), a ComponentDescriptor is generated for

it and delivered to the client application via the proxying service’s ResultSet granule, embedded

in the client. The client can operate on this proxy component just as it can any other component.

On the right, data transfer operations invoked on the component are forwarded back to the bridge

service, which uses the Bluetooth device’s native protocols (RF-OBEX) to transfer data to it.

on non-IP networks. In these cases the Aggregate device acts as a proxy for one
or more devices that do not themselves implement the Obje bootstrap protocol.
This can allow, for example, USB connected devices on a PC to be exposed as if
they were native Obje devices through a “USB Aggregate” that runs on the PC,
understands how to communicate with these devices, generates ComponentDe-
scriptors for them, and can participate in the Obje bootstrap protocol on their
behalf.

Figure 7 illustrates a Bluetooth Aggregate. This is a service running on a ma-
chine with both a Bluetooth and a traditional wired network interface, which
exposes itself as an Obje aggregate device. The ResultSet granule delivered to
clients by this component will communicate with the back-end machine, where
the Bluetooth discovery protocol (SDP) [Bluetooth Consortium 2001] is used to
discover devices within range. As devices are discovered, the service generates
a ComponentDescriptor for each of the devices, returning them to the client
through the ResultSet, as shown in the first illustration in Figure 7. To the
client, these aggregate-generated components are indistinguishable from any
other component; the Bluetooth aggregate itself simply appears as a collection
of all of the Bluetooth devices on the network. Operations on these proxy com-
ponents, however, are relayed over the wired network to the remote machine,
which then uses the Bluetooth Object Exchange protocol (RFOBEX) to commu-
nicate with the device. In this way, aggregates can play a proxying role, acting
as an intermediary in interactions between the proxy component for a device
and the device itself. This arrangement can allow the interconnection and use
of arbitrary legacy devices, even on different networks.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:28 • W. K. Edwards et al.

We have created a number of such proxying aggregates for legacy devices,
allowing full networked access to devices such as USB cameras, web cams, and
music players, and Bluetooth phones and PDAs.

From the client’s perspective, all of these varied uses are possible using the
same aggregate interface, and without rewriting. At startup, Obje applications
acquire a reference to a single “root” aggregate, provided by the Obje runtime,
which allows access to an initial layer of devices discovered on the local link via
Zeroconf. Some of these devices may themselves act as aggregates, providing
access to collections of components made available via new discovery mech-
anisms, or via proxying legacy devices, potentially on nonIP networks. New
discovery protocols can be made available (either directly, or indirectly through
bridging) to all clients simply through a single new device on the network. Like-
wise, proxies for devices residing on different networks, or for devices that do
not communicate using Obje at all, can be achieved through the addition of the
necessary proxy aggregate to the network. We believe that this range of uses
demonstrates the potential of combining fixed interfaces with mobile code—
by installing one device on the network, all existing devices and clients can
benefit.

6.3 User Control and Metadata

The data transfer and aggregation mechanisms are the primary way that Obje
supports extensible and adaptable interdevice communication. However, Obje
also supports two mechanisms designed to allow human users to more easily
control and understand the Obje devices available on the network. Both of these
capabilities are supported by the base Component role, implemented by all Obje
devices at a minimum in addition to whatever other roles they may support.

The first of these capabilities allows client applications to directly request a
UI from a device. The ability of devices to provide UIs for controlling them is a
kind of “escape hatch,” allowing Obje devices to provide access to functionality
that cannot be easily represented using the data transfer or aggregation inter-
faces. Applications agree on the mechanisms for acquiring and displaying such
UIs, but have no knowledge of the particular controls provided by any UI. This
device-level UI mechanism is different from the UIs provided by controllers,
which are specific to a single, ongoing communication between peers; here, the
UI is meant to be a top-level administrative interface for the device as a whole.
In the case of a printer for example, an application could request the printer’s
UI granule and invoke it to display a control panel to the user, allowing control
over defaults such as duplex, stapling, and so on.

Since different client platforms support a wide range of possible UI mecha-
nisms, Obje allows devices to provide multiple UI granules; applications select
from these by specifying the platform of the desired UI. For example, a client
running on a laptop might request a “javax.swing” GUI, while a PDA might
request a “thinlet” XML-based UIs. The strategy is flexible in that it allows
devices to present arbitrary controls to users, and allows multiple UIs, perhaps
specialized for different platforms, for a given device. The primary drawback
is that it requires device developers to create separate UI granules for each

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:29

type of presentation platform. A solution would be to use a device-independent
UI representation, such as those proposed by Hodes and Katz [1999] or UIML
[Harmonia Inc. 2000], and then construct a client-specific instantiation of that
UI at runtime. We are not currently focusing on developing such representa-
tions ourselves, but rather on the infrastructure that would be used to deliver
them to clients.

Obje also provides a mechanism that allows devices to provide arbitrary
descriptive metadata about themselves. Since our premises dictate that the se-
mantic decisions about when and whether to use a component must ultimately
lie with the user, we must provide mechanisms to allow users to understand
and make sense of the services available on the network. For example, simply
knowing that a device can be a sender or receiver of data provides little utility
if no other information can be gleaned about it. For this reason, Obje devices
support the ability for applications to retrieve a granule from a device that
provides metadata about that device, which may include such details as name,
location, administrative domain, status, owner, and so on.

Our representations for metadata are very simple: metadata granules pro-
vide access to a simple map of key-value pairs, with keys indicating the names
of attributes (“Name,” “Location,” and so on), and values that are arbitrary ob-
jects. The set of keys is extensible, as we do not believe any fixed set is likely
to support the needs of all applications or components. Likewise, we neither
require nor expect that all applications will know the meaning of all keys, nor
share a common metadata ontology. The goal of this mechanism is primarily to
allow sense-making by users, and only secondarily to allow programs to reason
about metadata.

6.4 Security Framework

Obje’s approach to interoperation raises a number of issues from the systems
perspective, particularly concerning security. These range from the need to de-
termine the safety of mobile code to concerns such as authentication and access
control in peer-to-peer settings. For the issue of safe execution of mobile code,
we consider ourselves to be consumers of solutions rather than providers. For
Java-based code granules, we currently support the mechanisms provided by
Java’s security primitives. These are, however, fairly brittle in an environment
of ad hoc interoperation. For example, the Java security system allows down-
loaded code to be granted rights based on where it came from, who is running
it, or who signed it [Gong 1999]. Of these, the assignment of rights based on
signing is potentially the most useful, although it requires shared notions of
identity known to both the sender and receiver of the code (a common certifi-
cate authority, for example). The Java concept of granting access based on where
downloaded code came from is largely unworkable under Obje, since Java uses
a URI to indicate “where code came from”. In a peer-to-peer environment, with-
out stable IP addresses, much less verifiable domain names to identify peers,
this model is lacking.

Sandboxing of code, a mechanism which is also supported by Java through
the use of security policies, is likewise somewhat brittle under assumptions such

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:30 • W. K. Edwards et al.

as ours. Different granules may require radically different resources from their
hosts, and thus it is difficult to define a single security policy that will support
the desired behavior—and enforce the desired restrictions—a priori. Perhaps
even worse from our perspective is that users must necessarily be “in the loop”
of device interactions; previous research (including Whitten and Tygar [1999]
as a canonical example) has shown that the finer points of security are not
well-understood by users. We do not believe it is tenable to require that end-
users make decisions about the correct permissions necessary for execution of
a given piece of code since, obviously, many users will instead disable security
altogether, defeating any protections that might otherwise be in place.

Thus, while the common Java security features are available in Obje (at least
for situations in which granules contain Java bytecodes), these features are in-
sufficient for our model of interoperation; thus, we have focused on providing
an alternative set of mechanisms that are more amenable to our vision of peer-
to-peer connectivity and ad hoc interoperability. Specifically, our model follows
three basic principles. First, to ensure data integrity and privacy, all communi-
cation among Obje peers must be both encrypted and authenticated. Second, to
enable the fullest range of peer-to-peer applications, we need to be able to sup-
port authenticated and access-controlled interactions among devices that may
have no a priori trust relationships with each other. For example, we do not
require that they each possess certificates issued and signed by some common,
centralized certificate authority (although this ability is available as an option
if device manufacturers or service builders choose to obtain such certificates).
Finally, it is the device offering its services that makes the final decision about
which peers are allowed to access it; this determination must be made on the
device itself.

The core approach we have taken is to create a general security framework as
a part of the Obje core, which addresses these three principles. This framework
provides mechanisms for encryption and authentication without the need for
centralized trusted third parties, and is intended to allow device creators and
application developers to easily experiment with a range of application-layer
access control policies.

At the base level, Obje uses TLS to secure all interactions among compo-
nents and to exchange and verify credentials that are used to enable access
control decisions to be made in a distributed context. We use TLS in “client
authentication” mode, which means that peers in an interaction will mutually
authenticate each other. Obje supports a flexible model of identity for purposes
of authentication: the platform can support a “device certificate” (meaning a
certificate issued and signed by a known certificate authority) if device makers
choose to do so. If such device certificates are not present, devices will gener-
ate cryptographic public/private key pairs along with a self-signed certificate
that will be used to identify the device and secure future communication with
peers.

Layered on top of this model, device and service creators can implement plug-
gable access control policies that allow the owners (or creators) of Obje devices
or services to dictate who or what has access to these resources. To create a new
security policy, developers must implement a small number of security-related

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:31

callback functions. These callbacks are invoked on a device when a peer at-
tempts to access its functionality (such as starting a connection to or from it,
requesting the contents of an aggregate, and so forth), allowing the device to
make a local determination about who or what will access it. Common policies,
for instance, may allow trusted access to all devices that have certificates issued
by the same entity (such as a home certificate authority), or allow communica-
tion only with “whitelisted” peers, or restrict access to devices that have been
indicated as “trustworthy” (for at least a limited set of operations) by a trusted
third party.

In addition to such “standard” policies, to date we have used this framework
to explore two novel end user-oriented security policies for pervasive environ-
ments. The first, used by the Casca tool [Edwards et al. 2002b], allows device
owners to grant access to their devices to others based on a grouping model.
Users create new collections or “groups” of devices that will be accessible to
a set of users who are associated with that group. Each group has its own
root certificate that identifies it and, when signed, can be used by devices and
users to prove their membership in that group. These group credentials are
used to secure communication between peers that are members of the group.
The underlying security framework allows application developers to add such
application-specific logic (the notion of groups, and group members, along with
other features such as delegation) by creating a set of callback functions that
work in concert with each other to implement the desired policy.

A second, more exploratory model, described in depth in Smetters et al.
[2006], uses a device called the Instant Matchmaker to create secure relation-
ships among peers; this system is specifically intended to allow secure connec-
tions in environments that may include both trusted and untrusted devices and
sensitive and nonsensitive content. The matchmaker device acts as a trusted
intermediary that can provide the necessary credentials to establish access
rights to Obje devices. The device exploits proximity-based authentication [Sta-
jano and Anderson 1999] to allow users to physically point to peers that should
be allowed access to a given device; such a pointing gesture conveys the user’s
intent, which in turn causes the exchange of the required device credentials nec-
essary to allow the user’s desired action. This model supports implicit security
[Smetters and Grinter 2002], in which there is no explicit, a priori determina-
tion of which principals have access to a given resource. Similar proximity-based
interactions have been explored in other domains, where they have been shown
useful as an approach to end-user security [Balfanz et al. 2002; Rekimoto et al.
2003; Swindells et al. 2002].

A final aspect of security that we have explored is the use of encrypted, and
optionally signed, granules. These mechanisms can support a range of features.
For example, encrypted granules can be used to allow interoperability among
only a subset of devices. While such a technique may seem antithetical to our
goal of open, ad hoc interoperability, such features are important in certain
contexts such as consumer electronics, where device vendors may want to allow
certain features to be supported only when used with devices also sold by them.
Granule signing, while currently supported by Obje, has not been explored or
exploited in depth. In theory, such code-signing facilities could be used to provide

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:32 • W. K. Edwards et al.

an additional layer of security or robustness to allow devices to be configured
to only accept code from peers that can be verified in some way.

7. THE USER EXPERIENCE OF RECOMBINANT COMPUTING

As noted earlier in this article, ad hoc interoperability comes at a cost: while
it holds the promise of allowing interactions among devices with only limited
beforehand knowledge of each other, it removes the current tight semantic in-
tegration that exists when devices are able to interact.

Thus, one of the key questions of this work is how usable is a world in which
users assume the burden of determining when and whether devices should
work with one another. We have explored this question through a combination
of application building, deployment, and experimentation, pursuing the style
of iterative development of infrastructure to reflect human-centered needs ad-
vocated in Edwards et al. [2003].

7.1 From Device-Oriented Interaction to Task-Oriented Interaction

Some of the earliest applications our team built were generic browser applica-
tions, which provide direct access to the Obje devices on the network. These
applications present simple lists of discovered devices and map user operations
in the UI onto Obje device operations: for example, dragging and dropping a
source device onto a sink initiates a data transfer and displays any received
controller UIs in the browser; double clicking an aggregate device “opens” it,
revealing the components to which it provides access. We believe that such
generic applications, which allow users to discover and interact with arbitrary
devices in an ad hoc fashion, will play an important role in any ubiquitous com-
puting future. In the absence of specialized applications for every conceivable
task, a more generic tool—one without specialized domain knowledge—will
necessarily play a part.

We have built and studied a number of these applications. The first (reported
in Newman et al. [2002b] and Edwards et al. [2004] and shown in Figure 8),
was a web-based application designed for access on a PDA. Our early expe-
riences with this tool informed a number of our architectural design choices,
particularly in our data transfer design. For example, early versions of Obje re-
lied on external filter services, which could be chained when performing a data
transfer. The UI designs that were implied by this mechanism required the
user to “hand assemble” chains of data transformations to connect two devices
in situations where their data types would have otherwise been incompatible.
While other sorts of user interfaces could have been created, for example by
automatically finding paths of filters, such arrangements remove the user from
the process of determining which filter services to use, which is important in the
situation where filters execute on the network on hosts with different speeds or
different levels of trustworthiness. The user, not the system, is better equipped
to consider these factors.

Feedback from users on our prototype UIs based on filter chaining led to
the creation of the typehandler mechanism, which has the benefit that in cases
where compatible typehandlers exist, initiating a data transfer requires only

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:33

Fig. 8. An early Obje browser running in a web browser. Basic facilities are shown for sorting and

selecting components by location.

the specification of the source and sink devices. This architecture essentially
bundles the filter service code into a granule, which then executes in the re-
ceiving sink.

However, interfaces that directly expose such low-level operations are still
difficult for users to work with. Our experiences showed that the basic concept
of exposing data-flows between devices as a first class operation in the interface
was confusing to many users. During our tests, for example, some users wanted
to simply “open” a Powerpoint file once it had been located, expecting it to appear
on the display in the room. These desires seem to betray expectations based on
PC use, in which the tight coupling (both semantically and physically) between
the PC and its display device allows actions such as opening a file to have a
relatively unambiguous meaning. In a more loosely-coupled world, potential
ambiguities exist, which must be resolved by the user.

These experiences seem to point toward a fundamental problem with creat-
ing usable interfaces for a world of ad hoc interoperability. Generic tools (i.e.,
meaning, tools that can work with arbitrary devices) are necessary to take full
advantage of the infrastructure. And yet, by their nature, such generic tools do
not have the tight semantic integration—the “understanding” of what certain
devices or content types “mean” built into their programming—that supports
good ease of use. Further, it requires that the underlying mechanisms provided
by the infrastructure be understandable and usable by users if they are to take
advantage of this power.

We believe that one approach to resolving this dilemma is to create facili-
ties for moving from device-oriented interactions to task-oriented ones. That is,
rather than specifying the various data flows among individual devices, the user
would simply select a desired task and the system would instantiate the neces-
sary device-to-device interactions. Of course, actionable representations of such
tasks must exist for this option to be available. There are a number of ways such

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:34 • W. K. Edwards et al.

Fig. 9. The OSCAR user interface. From left to right: the device and media list, device and media

detail, connection list, connection detail, setup list, and setup detail screens.

representations could come into being. They could be created by experienced
users much in the way that Excel macros for a given site are often created
by local “gurus,” and then shared throughout that site [Mackay 1990, 1991].
We have explored this approach, which we call task-oriented templates. These
templates are XML documents that contain “slots” that describe the devices
that are needed to accomplish a given task, in terms of input and output types,
metadata properties, and so forth. When a template is instantiated, the tem-
plate engine attempts to match available devices to slot descriptions (perhaps
with help from the user), and then creates the necessary connections among
them. For example, a “give a presentation” template would specify slots for
projectors, speakers, and a source slides file; instantiating this template would
create the connections among Obje devices to allow easy setup of a conference
room.

One application we have developed, called OSCAR (for Obje Service Com-
poser and Recomposer) uses such templates as the foremost feature in its in-
terface [Newman et al. 2008]. In OSCAR, templates are presented to users as
“setups” that they can instantiate to control and interact with networked me-
dia appliances around their homes. Figure 9 shows an overview of the OSCAR
interface.

Of course, this approach still requires that someone have the knowledge,
skill, and time to create templates for each common task. Another approach,
which we plan to explore in the future, is to observe the connections users
establish among devices and attempt to infer useful relationships from this
observation. For example, if a user commonly creates a particular set of con-
nections among devices, the system may store a generalized representation of
this configuration, allowing the user to recreate it later. In essence, under this
approach, templates are created by the system through a learning technique.
The system mines the semantic information provided by users through their
actions to create reusable descriptions of tasks.

More generally, we believe that the sorts of open-ended device use available
through systems that support ad hoc interoperability point to the importance

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:35

Fig. 10. The Orbital Browser’s interface, and its input device. Spinning and pressing the knob

allows users to navigate to any discoverable device, initiate and terminate connections, and so

forth.

of service composition techniques. Service composition is the process of combin-
ing multiple, discrete services or devices together to achieve some higher-level
goal. A number of other researchers have explored service composition in the
context of web service composition [Chakraborty and Joshi 2001] as well as
ubiquitous computing [Ponnekanti et al. 2001; Humble et al. 2003; Omojokun
and Dewan 2003]. For example, the CAMP system [Truong et al. 2004] uses
a novel magnetic poetry interface, allowing users to select and arrange avail-
able verbs and nouns to indicate desired compositions of services. We have also
explored the design space of service composition interfaces through a number
of tools that embody different interaction approaches to composition. For ex-
ample, the Orbital Browser [Ducheneaut et al. 2006] (Figure 10) provides a
lightweight interface that uses only a knob as an input device to select and
compose services. This tool was intended to demonstrate a minimalistic in-
terface for providing open-ended service composition. We argue that provid-
ing powerful, end user-oriented tools for service composition will become even
more essential as we move to a world in which device connectivity is not lim-
ited by what the developers of those devices foresaw, but by users’ desires and
needs.

7.2 Specialized Application Domains

A second context in which we have explored the user experience of ad hoc
interoperability is through applications intended for specific domains. Although
we believe that generic tools will necessarily have an important role to play in
future ubicomp environments, we also believe that there will always be a need
for specialized tools that embody certain notions about how they will be used.
While still open-ended in the sense that they can make use of arbitrary new
devices that appear on the network, they frame users’ interactions with these
devices within a certain context.

For example, we have created an Obje-enabled set-top box for media-oriented
applications [Edwards et al. 2005]. This system allows users to interconnect
audio- and video-related services hosted on the box, as well as Obje devices and

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:36 • W. K. Edwards et al.

Fig. 11. Top-level on-screen user interface for our set-top box, showing top-level options grouped

by media type. Users interact with the interface through a standard infrared remote control.

legacy devices elsewhere on the home network. By making assumptions about
the context of use (storing and playback of media files), the interface can be
streamlined somewhat: the system discovers and groups all devices and content
available on the home network into either “audio” or “video” classes (depending
on the MIME types they support), and organizes these into menus. Selecting a
media source allows the user to either play the content “here” (meaning to one
of the sink devices connected directly to the set-top), or to a list of compatible
sinks discovered elsewhere on the network. Figure 11 shows one view of the
system.

An area we have explored in some depth is the potential of interoperability
frameworks such as Obje to support easier collaboration among users, including
not only information sharing, but also device sharing. For example, the Casca
tool was created to support ongoing, small-group collaboration, allowing users
to publish access to files and devices from their laptops into a shared space, thus
making them available to others who are “members” of that space [Edwards
et al. 2002b]. Another application that uses Obje to support collaboration is the
Sharing Palette [Voida et al. 2006], which provides the ability to push content
to collaborators using a lightweight icon bar, as well as to establish sharing
groups and publicly-accessible files and devices. Both of these tools leverage
Obje to allow collaborators to not only files share, but also access devices and
services; for example, these tools can allow a user to provide access to his or her
webcam, to a restricted filespace, or a home printer to a collaborator: essentially,
whatever Obje devices or services are available can be shared using these tools.
Figure 12 shows both of tools.

Still another tool is a specialized application for meeting-room display con-
trol [Newman et al. 2007], shown in Figure 13, which allows easy networked
discovery and control of displays, including projectors and plasma screens. This
application only discovers devices that can accept viewable media types; in our
environment, this typically includes devices such as projectors and plasma dis-
plays. Users can select a discovered display and mirror their laptop screens onto
it. This tool has seen daily use around PARC in a number of meeting rooms for

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:37

Fig. 12. The image on the left shows Casca. The open area to the right of the window is a canvas

into which files, services, and devices can be dragged and dropped, sharing them with the current

members of that shared space. The image on the right shows the Sharing Palette, a lightweight

interface for small group-oriented sharing.

Fig. 13. The Obje Display Mirror before and after a connection is made. On the left, the user sees

a list of available screens. After connection, a control UI is presented to all connected users of the

selected screen, allowing control of the display to be shared.

over a year. This interface limits the complexity seen by the user by restricting
the user’s view to the networks of appropriate peers only.

We believe that these tools point to the power of allowing open-ended device
access through traditional applications, which may serve to contextualize users’
needs better, and may help constrain the set of available options. For example,
while the functionality provided by the meeting-room tool could be accessed
through a generic browser (find and select the laptop mirror service, find and
select the projector device, connect them, and so on), the meeting-room tool con-
textualizes this functionality to provide easier access by making assumptions

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:38 • W. K. Edwards et al.

about use (only show display devices, assume that the laptop mirror service is
running on the current machine).

8. SYSTEM EXPERIENCES AND REFLECTION

In addition to gaining experience about how users cope with open-ended op-
portunities for device use, we have also gained a number of important insights
regarding our underlying system design. The major motivation for the Obje
architecture was to provide an infrastructure for unplanned, opportunistic in-
teroperation between networked devices and to explore programmatic patterns
for defining these devices. As such, we believe that our metrics for success rest
both on usability issues, such as described above, and on design issues, that is,
whether we can support the sorts of powerful, open-ended device use we had en-
visioned. In our research, issues such as performance, development complexity,
and so on took a tertiary position.

In order to evaluate the “correctness” of our design—how well it can accom-
modate a range of devices and application needs—we built a wide variety of
Obje-enabled devices and applications, which required our architecture to cope
with diverse performance, security and usability requirements, as well as a
variety of data types. To date, we have developed a dozen distinct applications
using the architecture, support for roughly fifty devices and services (including
a number of “proxy” services for accessing legacy devices, including Bluetooth
and USB; media-oriented components such as DVD and CD players, music and
video libraries, and networked displays; software services such as IM, gateways
and RSS feeds; and others), and over a dozen typehandlers for various media
(including image, audio, and video formats, as well as rich content types such
as Powerpoint). As our core interfaces have stabilized, we have been able to
build both extremely generic and extremely domain-specific applications with
relative ease.

The applications described earlier have proven able to appropriate new de-
vices and content types seamlessly as they appear on the network. For exam-
ple, while the Casca collaborative tool was not specifically written to support
video conferencing, it acquires that functionality as soon as members of a group
share cameras, speakers, and microphones. In general, each of these applica-
tions demonstrates the value of an interoperability approach that combines
fixed programmatic interfaces (for compatibility) with mobile code (for runtime
extensibility). Each of our applications is able to interact with new types of
devices that become available on the network, including devices that appeared
after the applications were written. These applications acquire new behaviors
from the devices that appear, extending their abilities to interact with new
media types, communicate using new protocols, and present custom user inter-
faces. In view of the fact that we have not yet encountered applications that
caused our model to break, our experience to date has encouraged us that the
Obje architecture can support a wide range of device types.

Our meta-interface approach does, however, come with some performance
costs due to the use of mobile code. When a connection between devices is initi-
ated, there is startup overhead as bootstrap occurs and granules are sent over

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:39

the wire. However, once the necessary granule arrives at a peer, the perfor-
mance is comparable to the hard-coded case. For example, we have successfully
transmitted DVD-quality MPEG2 video data across a (wired) IP network with
no visible performance issues once the video begins streaming. Startup latency
has been acceptable for interactive applications (in the fraction of a second
range), even for complex granules such as in the case of the MPEG2 decoder
used in our set-top box application.

Much of the complexity associated with creating Obje-enabled devices is mit-
igated through toolkits we have created to allow developers to wrap existing
devices and services with Obje functionality. Generally, relatively minimal code
is required to add Obje functionality to a software service. For example, an ex-
isting text-to-speech service required roughly 50 lines of glue code to make it
a native Obje service. Creating software proxies for a nonObje device is gener-
ally fairly easy, as long as the device can be accessed via software libraries or
documented protocols. The hardest case, of course, is directly running Obje on
embedded devices, which requires porting the bootstrap protocol implementa-
tion directly to the device. We have successfully ported the core Obje software
stack to a range of devices, including a home gateway device and a number of
mobile phones and PDAs.

While we have not performed any formal evaluations to measure the com-
plexity of supporting new devices and services with our toolkit, we have been
able to observe a number of interns and external collaborators use the code,
and have been generally pleased with the ability of developers other than the
system creators to use it. As an example, we have found that undergraduate
interns have been able to build relatively sophisticated Obje-native services
(such as an initial version of the extensible public display system described in
Black et al. [2003]) in only a few days.

After a number of iterations of the system, our core platform is relatively
tuned, small, and portable, and runs on a range of laptop, desktop, and server
systems (including Windows, Linux, MacOS X, and Solaris), as well as mobile
and embedded platforms. For example, a very portable, Java-based implemen-
tation of the Obje runtime platform is well under a megabyte, and runs on
both “heavyweight” desktop virtual machines (such as Java SE version 6) as
well as “lightweight” embedded virtual machines (including the CreMe virtual
machine,4 a small VM for embedded devices that equates roughly to JDK 1.1.8);
we have also created a more tuned version of around 200KB designed to run on
mobile phones under the J2ME CDC Profile.

Pervasive use of mobile code is a key architectural feature of Obje; however,
mobile code brings with it a number of challenges and caveats. The issue of se-
curity is obviously a paramount concern, as discussed earlier. However, another
challenge of dealing with mobile code is to ensure that the execution environ-
ment expected by a granule exists at a receiving device. While this challenge
certainly exists for platform-specific native code (which, modulo emulation fa-
cilities, is bound to particular CPU and operating system types), we note that
it is also true of supposedly platform-independent code as well. For example,

4http: / / www.nsicom.com.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:40 • W. K. Edwards et al.

Java code has dependencies on libraries being installed on the intended host,
correct version matches, and so forth.

Our current solution is to make high-level declarations of the dependencies
that must be satisfied for a given custom object to run. These dependencies are
communicated to potential hosts via the Obje bootstrap protocol, where they
can be evaluated by the host to see if the custom object may be executed by it.
Declarations are simply in the form of strings (“Java 1.3.1 + javax.comm” or
“x86 Windows XP”) that must be understood by the intended recipient in order
for the code to be executable.

This technique is robust enough for our current uses, but could obviously
be significantly expanded. We are investigating a more complex format for
the declaration of dependencies that must be satisfied in order for mobile
code to run, as well as some automated tools for extracting such dependen-
cies. This more structured format should allow more robust arbitration of code
dependencies.

9. CONCLUSIONS AND FUTURE DIRECTIONS

This article has described Obje, a system designed to support ad hoc interop-
eration of devices and services on a network through the use of a fixed set of
interfaces to dynamically extend behavior. The architectural approaches of the
system have evolved in response to our experiences with applications and with
users.

We make no claims that the set of mechanisms presented here is the only
way one can address ad hoc interoperation. Obje embodies one approach, which
we have found to work well for the set of applications and users we have investi-
gated. Other approaches are certainly possible, and may better support certain
applications. In general, however, we have been pleased by the range of appli-
cations we can support with the system, as well as the richness of interactions
among devices.

We believe that the primary challenges posed by our approach come from
the user-experience perspective. In particular, the overarching question is
whether users can accomplish their goals with a system that potentially pro-
vides less application support than has been traditional. We believe that new
UI techniques can help to maintain the usability that might be missing oth-
erwise. The Obje system demonstrates the potential benefit of removing ap-
plication constraints from decisions about interoperability; the challenge now
is to address the user experience issues that this opening affords. We be-
lieve that the trade-off in power versus usability is worth it already; fur-
ther work on service composition, and moving toward creating lightweight,
task-oriented representations of device state will only shift the balance fur-
ther in favor of architectural approaches that can allow this sort of ad hoc
interoperability.

ACKNOWLEDGMENTS

We wish to thank the large number of people who have contributed to Obje ei-
ther through its development or its use. In particular we wish to acknowledge

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:41

the contributions of Mark Howard, Andy Vyrros, Alyssa Glass, and Karen
Marcelo to the development of the system; Diana Smetters, Dirk Balfanz,
and Hao-Chi Wong for their work on the security aspects of Obje; our interns
Shahram Izadi, Julie Black, Jason Hong, and Niels Castle Anderson; Nicolas
Ducheneaut and Beki Grinter for invaluable guidance in our study designs; and
PARC management for their support over the years.

REFERENCES

BALFANZ, D., SMETTERS, D. K., STEWART, P., AND WONG, H. C. 2002. Talking to strangers: Authen-

tication in ad hoc wireless networks. In Proceedings of the Network and Distributed Systems
Security Symposium (NDSS’02).

BANDELLONI, R., MORI, G., AND PATERNO, F. 2005. Dynamic generation of web migratory inter-

faces. In Proceedings of the Conference on Human Computer Interaction with Mobile Devices and
Services (MobileHCI).

BHARAT, K. A. AND CARDELLI, L. 1995. Migratory applications. In Proceedings of the ACM Sympo-
sium on User Interface Software and Technology (UIST’95). ACM, New York, 133–142.

BLACK, J. A., EDWARDS, W. K., NEWMAN, M. W., SEDIVY, J. Z., AND SMITH, T. F. 2003. Supporting

extensible public display systems with Speakeasy. In Public and Situated Displays: Social and
Interactional Aspects of Shared Display Technologies, K. O’Hara, et al. Eds., Kluwer Academic,

Amsterdam.

BLUETOOTH CONSORTIUM. 2001. Specification of the Bluetooth System, Version 1.1 Core.

http://www.bluetooth.com.

BORENSTEIN, N. AND FREED, N. 1992. MIME (multipurpose internet mail extensions): Mechanisms

for specifying and describing the format of internet messages. Internet RFC 1341.

BOX, D., EHNEBUSKE, D., KAKIVAYA, G., LAYMAN, A., MENDELSOHN, N., NIELSEN, H. F., THATTE, S., AND

WINER, D. 2000. W3C note: Simple object access protocol (SOAP) 1.1. World Wide Web Con-

sortium.

CHAKRABORTY, D. AND JOSHI, A. 2001. Dynamic service composition: state-of-the-art and research

directions. Tech. rep.TR-CS-01-19, CSEE, University of Maryland, Baltimore.

DUCHENEAUT, N., SMITH, T., BEGOLE, J., NEWMAN, M. W., AND BECKMANN, C. 2006. The Orbital

browser: Composing Ubicomp services using only rotation and selection. In Proceedings of
the ACM Conference on Human-Factors in Computing Systems (CHI’06). ACM, New York,

321–326.

EDWARDS, W. K., NEWMAN, M. W., SEDIVY, J. Z., SMITH, T. F., AND IZADI, S. 2002a. Challenge: Recom-

binant computing and the Speakeasy approach. In Proceedings of the 8th ACM International
Conference on Mobile Computing and Networking (MOBICOM). ACM, New York.

EDWARDS, W. K., NEWMAN, M. W., SEDIVY, J. Z., SMITH, T. F., BALFANZ, D., SMETTERS, D. K., WONG,

H. C. AND IZADI, S. 2002b. Using Speakeasy for ad hoc peer-to-peer collaboration. In Pro-
ceedings of the ACM Conference on Computer-Supported Cooperative Work. ACM, New York,

256–265.

EDWARDS, W. K., BELLOTTI, V., DEY, A. K., AND NEWMAN, M. W. 2003. Stuck in the middle: The

challenges of user-centered design and evaluation of infrastructure. In Proceedings of the ACM
Conference on Human Factors in Computing Systems. ACM, New York, 297–304.

EDWARDS, W. K., NEWMAN, M. W., SEDIVY, J. Z. AND SMITH, T. F. 2004. Supporting serendipitous

integration in mobile computing environments. Int. J. Hum. Comput. Stud. 60, 666–700.

EDWARDS, W. K., NEWMAN, M. W., SEDIVY, J. Z., AND SMITH, T. F. 2005. An extensible set- top box

platform for home media applications. IEEE Trans.Consumer Electron. 51, 4, 1175–1181.

EDWARDS, W. K. 2006. Discovery systems in ubiquitous computing. IEEE Pervasive Comput. 5, 2,

70–77.

FOX, A., GOLDBERG, I., GRIBBLE, S. D., LEE, D. C., POLITO, A., AND BREWER, E. A. 1998. Experi-

ence with Top Gun Wingman: A proxy-based graphical web browser for the 3com Palm Pilot. In

Proceedings of the Middleware Conference.

GELERNTER, D. 1985. Generative communication in Linda. ACM Trans. Program. Languages Syst.
7, 1, 80–112.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:42 • W. K. Edwards et al.

GONG, L. 1999. Inside Java 2 Platform Security: Architecture, API Design, and Implementation.

Addison-Wesley, Reading, MA.

GRIBBLE, S. D., WELSH, M., VON BEHREN, J. R., BREWER, E. A., CULLER, D., BORISOV, N., CZERWIN-

SKI, S., GUMMADI, R., HILL, J., JOSEPH, A., KATZ, R. H., MAO, Z. M., ROSS, S. AND ZHAO, B. 2001.

The Ninja architecture for robust internet-scale systems and services. Comput. Netw. 35, 4,

473–497.

HARMONIA INC. 2000. User interface modeling language 2.0 draft specification. http://www.uiml.

org/specs/uiml2/index.htm.

HAN, R., PERRET, V., AND NAGHSHINEH, M. 2000. WebSplitter: A unified XML famework for multi-

device collaborative web browsing. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work (CSCW). ACM, New York, 221–230.

HODES, T. AND KATZ, R. H. 1999. A document-based framework for internet application control.

In Proceedings of the 2nd USENIX Symposium on Internet Technologies and Systems (USITS).
59–70.

HUANG, A. C., LING, B. C., BARTON, J. AND FOX, A. 2001. Making computers disappear: appliance

data services. In Proceedings of the 7th ACM/IEEE International Conference on Mobile Comput-
ing and Networking (MOBICOM).

HUMBLE, J., CRABTREE, A., HEMMINGS, T., AKESSON, K.-P., KOLEVA, B., RODDEN, T. AND HANSSON, P. 2003.

Playing with the bits: User-configuration of ubiquitous domestic environments. In Proceedings
of the 5th International Conference on Ubiquitous Computing.

INTERNET ENGINEERING TASK FORCE (IETF). 2005. Zeroconf Working Group. http://www.zeroconf.

org.

JOHANSON, B., FOX, A., AND WINOGRAD, T. 2002. The interactive workspaces project: experiences

with ubiquitous computing rooms. IEEE Pervasive Comput. 1, 2, 71–78.

JERONIMO, M. AND WEAST, J. 2003. UPnP Design by Example. Intel Press.

KICIMAN, E., MELLOUL, L., AND FOX, A. 2001. Towards zero-code service composition. In Proceedings
of the Workshop on Hot Topics on Operating Systems (HOTOS).

KICZALES, G., DES RIVIERES, J., AND BOBROW, D. G. 1991. The Art of the Metaobject Protocol. MIT

Press, Cambridge, MA.

KINDBERG, T. AND BARTON, J. 2001. A web-based nomadic computing system. Comput. Netw. 35,

4, 443–456.

KINDBERG, T. AND FOX, A. 2002. System software for ubiquitous computing. IEEE Pervasive Com-
put. 1, 1, 70–81.

LEE, K., LAMARCA, A., AND CHAMBERS, C. 2003. HydroJ: Object-oriented pattern matching for evolv-

able distributed systems. In Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA). ACM, New York.

LISKOV, B. AND WING, J. M. 1994. A behavioral notion of subtyping. ACM Trans. Program. Lang.
16, 6, 1811–1841.

MACKAY, W. E. 1990. Patterns of sharing customizable software. In Proceedings of the Conference
on Computer Supported Cooperative Work. ACM, New York.

MACKAY, W. E. 1991. Triggers and barriers to customizing software. In Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI’91). ACM, New York, 153–

160.

MAO, Z. M. AND KATZ, R. H. 2002. Achieving service portability using self-adaptive data paths.

IEEE Comm. 40, 1, 108–114.

NEWMAN, M. W., IZADI, S., EDWARDS, W. K., SEDIVY, J. Z., AND SMITH, T. F. 2002a. User interfaces

when and where they are needed: An infrastructure for recombinant computing. In Proceedings
of the 15th ACM Symposium on User Interface Software and Technology (UIST’02). ACM, New

York.

NEWMAN, M. W., SEDIVY, J. Z., EDWARDS, W. K., SMITH, T. F., MARCELO, K., NEUWIRTH, C. M., HONG, J.

I. AND IZADI, S. 2002b. Designing for serendipity: Supporting end-user configuration of ubiq-

uitous computing environments. In Proceedings of the Designing Interactive Systems Conference
(DIS’02).

NEWMAN, M., DUCHENEAUT, N., EDWARDS, W. K., SEDIVY, J., AND SMITH, T. 2007. Supporting

the unremarkable: Experiences with the Obje display mirror Personal Ubiquitous Comput.
(DOI:10.1007/s00779-006-0117-0). To appear.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

Experiences with Recombinant Computing • 3:43

NEWMAN, M., ELLIOTT, A., AND SMITH, T. F. 2008. Providing an integrated user experience of net-

worked media, devices, and services through end-user composition. In Proceedings of the Inter-
national Conference on Pervasive Computing (PERVASIVE’08).

NICHOLS, J., MYERS, B. A., HIGGINS, M. HUGHES, J., HARRIS, T. K., ROSENFELD, R., AND PIGNOL, M.

2002. Generating remote control interfaces for complex appliances. In Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST’02). ACM, New York,

161–170.

OBJECT MANAGEMENT GROUP. 1995. CORBA: The common object request broker architecture, Rev.

2.0.

OCKERBLOOM, J. 1998. Mediating among diverse data formats. Tech.rep., CMU-CS-98-10,

Carnegie Mellon University.

OLSEN, D. R., JEFFRIES, S., NIELSEN, T., MOYES, W., AND FREDERICKSON, P. 2000. Crossmodel in-

teraction with XWeb. In Proceedings of the ACM Symposium on User Interface Software and
Technology (UIST). ACM, New York, 191–200.

OMOJOKUN, O. AND DEWAN, P. 2003. A high-level and flexible framework for dynamically composing

networked devices. In Proceedings of the 5th IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA) .

PONNEKANTI, S. R., LEE, B., FOX, A., HANRAHAN, P., AND WINOGRAD, T. 2001. ICrafter: A service

framework for ubiquitous computing environments. In Proceedings of the UBICOMP Conference.

56–75.

PONNEKANTI, S. R., AND FOX, A. 2004. Interoperability among independently evolving web ser-

vices. In Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware.

331–351.

REKIMOTO, J., AYATSUKA, Y., KOHNO, M., AND OBA, H. 2003. Proximal Interactions: A direct manipu-

lation technique for wireless networking. In Proceedings of the INTERACT Conference. Richard-

son, T., Stafford-Fraser, Q., Wood, K. and Hopper, A. 1998. Virtual network computing. IEEE
Internet Comput. 2, 1.

ROSE, M. 2001. RFC 3080: The blocks extensible exchange protocol core. Internet Engineering

Task Force (IETF).

SMETTERS, D. K. AND GRINTER, R. E. 2002. Moving from the design of usable security technologies

to the design of useful secure applications. In Proceedings of the ACM New Security Paradigms
Workshop. ACM, New York.

SMETTERS, D. K., BALFANZ, D., DURFEE, G., SMITH, T., AND LEE, K. 2006. Instant matchmaking:

Simple secure virtual extensions to ubiquitous computing environments. In Proceedings of the
8th International Conference on Ubiquitous Computing (UBICOMP). Lecture Notes in Computer

Science, vol. 4206, Springer, Berlin, 477–494.

STAJANO, F. AND ANDERSON, R. J. 1999. The resurrecting duckling: Security issues for ad hoc wire-

less networks. In Proceedings of the 7th Security Protocols Workshop. Lecture Notes in Computer

Science, vol. 1796, Springer, Berlin, 172–194.

SUN MICROSYSTEMS. 1999. Jini discovery and join specification.

SWINDELLS, C., INKPEN, K. M., DILL, J. C., AND TORY, M. 2002. Use that there! Pointing to establish

device identity. In Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST). ACM, New York.

TRUONG, K. N., HUANG, E. M., AND ABOWD, G. D. 2004. CAMP: A magnetic poetry interface for end-

user programming of capture applications for the home. In Proceedings of the 6th International
Conference on Ubiquitous Computing (UBICOMP). 143–160.

UPNP FORUM. 2005. MediaServer V 1.0 and Media Renderer V 1.0. http://www.upnp.org/

standardizeddcps/mediaserver.asp.

UNIVERSAL SERIAL BUS IMPLEMENTER’S FORUM. 2000. Universal serial bus revision 2.0 specification.

VENNERS, B. 2005. The ServiceUI API specification, version 1.1a. http://www.artima.com/

jini/serviceui/Spec.html.

VOIDA, S., EDWARDS, W. K., NEWMAN, M. W., GRINTER, R. E., AND DUCHENEAUT, N. 2006. Share and

share alike: Exploring the user interface affordances of file sharing. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI). ACM, New York.

WALDO, J. 1999. The Jini architecture for network-centric computing. Comm. ACM, 76–

82.

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

3:44 • W. K. Edwards et al.

WEISER, M. AND BROWN, J. S. 1996. Designing calm technology. http://powergrid.electriciti.

com/1.01.

WHITTEN, A. AND TYGAR, J. D. 1999. Why Johnny can’t encrypt: A usability evaluation of PGP 5.0.

In Proceedings of the 9th USENIX Security Symposium. 23–26.

WING, J. M. AND OCKERBLOOM, J. 2000. Respectful type converters. IEEE Trans. Softw. Engin. 28,

7, 579–593.

WOLLRATH, A., RIGGS, R., AND WALDO, J. 1996. A distributed object model for the Java system.

USENIX Comput. Syst. 9.

Received June 2005; revised March 2007; accepted July 2007 by Prasun Dewan

ACM Transactions on Computer-Human Interaction, Vol. 16, No. 1, Article 3, Publication date: April 2009.

