
ta-
em
d as
t-
t
to

e
ide
ts
re
d
-
in

er,
p-
e
s-
gh
ed.

ing
u-
h is
e
ed
cu-
n
a-
ks

ess
to
s

ive
are
at
o

ty
er-
be

A Programming Model for Active Documents
Paul Dourish, W. Keith Edwards, Jon Howell, Anthony LaMarca, John Lamping,

Karin Petersen, Michael Salisbury, Doug Terry and Jim Thornton

Computer Science Laboratory
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto

CA 94304 USA
paul@dourish.com
ABSTRACT
Traditionally, designers organize software system as active
end-points (e.g. applications) linked by passive infrastruc-
tures (e.g. networks). Increasingly, however, networks and
infrastructures are becoming active components that contrib-
ute directly to application behavior. Amongst the various
problems that this presents is the question of how such active
infrastructures should be programmed.

We have been developing an active document management
system called Placeless Documents. Its programming model
is organized in terms of properties that actively contribute to
the functionality and behavior of the documents to which
they are attached. This paper discusses active properties and
their use as a programming model for active infrastructures.
We have found that active properties enable the creation of
persistent, autonomous active entities in document systems,
independent of specific repositories and applications, but
present challenges for managing problems of composition.

Keywords: Active properties, document management, com-
ponent software, customization.

INTRODUCTION
As computer systems become more powerful and network
bandwidth and capacity increases, new models are emerging
for the development of infrastructure technologies. One of
these is what we call “active infrastructures.”

Traditional approaches have typically concentrated compu-
tational power in fixed locations. So, for example, the
mainframe approach concentrates computing power in one
large, centralized system. Client/server computing distrib-
utes it between two points, but regards the channel between
those points – the network or infrastructure that connects
them – as a static channel. Active infrastructure approaches
explore the opportunities to devolve some computation into
the infrastructure itself. In this model, application semantics
can migrate into infrastructure, which itself becomes an
active entity that can specialize itself to the needs of different
applications. Active infrastructures have been explored in a

range of domains. For example, the Bayou distributed da
base system allows database updates to carry with th
procedures that can resolve conflicts that are encountere
they move through the network [24]; or again, active ne
working allows code to be “injected” into the network so tha
routers and other network components can be specialized
the needs of different applications [27]. Active infrastructur
approaches provide a number of advantages. They prov
applications with specialized infrastructure arrangemen
providing cleaner implementation models; they make mo
efficient use of infrastructures by incorporating specialize
facilities rather than working only in terms of generic fea
tures; and they allow infrastructures to adapt to variations
application demands.

Since active infrastructures are a new approach, howev
they are unfamiliar to programmers, and are not directly su
ported by conventional programming tools (be thos
“conceptual” tools or standard software tools). A set of que
tions arise, then, about the programming model throu
which active infrastructures can be presented and controll

In the Placeless Documents project, we have been explor
an active infrastructure approach to the provision of doc
ment and document management services. Our approac
based on a distributed infrastructure in which activity can b
directly associated with documents, rather than being lock
inside applications that are invoked to process those do
ments. By pushing activity into the infrastructure, we ca
make it independent of particular repositories and applic
tions, so that users can organize activity around their tas
rather than around the details of applications. The Placel
Documents design explores compositional approaches
document service functionality, and new relationship
between applications, infrastructures, and services.

Research Questions
Our system is designed as an infrastructure for interact
document applications. Active infrastructure approaches
normally visible only to systems programmers; their use
the application level is relatively novel. This opens up tw
sets of questions that this paper will address.

The first is how active infrastructures and the extensibili
techniques they introduce can be incorporated into an int
active system model. What sort of conceptual model can

us
ur

ore
as

he
the

de
er,
e.
in
ing
cu-
a

tive
er

ive
are
in
p-
h
t
em
-
ed
ati-
nt
n-

y,

nd
g
d-
the
ent
ri-
is
ing
in
o-

a.
t-
ss
so
u-
rd
S

s to
d-

-

offered to end users to understand how activity is incorpo-
rated into the infrastructure, and how can this be
incorporated into a component model that allows different
activities to be present at the same time?

The second (related) issue is that of the programming model
that the system will present. How can we combine interac-
tive system programming with active infrastructures? What
consequences does an active infrastructure approach hold for
interactive system design and how can these design concerns
be manifest to programmers? How can the active infrastruc-
ture approach be incorporated into current design practice?

In this paper, we reflect on the experiences of designing the
Placeless Documents infrastructure and developing applica-
tions on top of it. We explore the programming model that
we developed and some of its consequences, and show how
it was exploited in applications that we and others devel-
oped. On the basis of these experiences, we draw out some
lessons and discuss our current approach to the provision of
active infrastructure in follow-on work.

PROPERTY-BASED DOCUMENT INFRASTRUCTURE
The Placeless Documents system has been in development
since late 1997. By this stage, we have gained experience
with a variety of prototype implementations as well as a
range of applications of different styles, scopes and models.

The name Placeless Documents reflects the core of our
underlying motivations. Most information management sys-
tems employ hierarchies as the dominant paradigm for
information management – files and directories, email mes-
sages and folders, etc. Hierarchies are used to perform
multiple functions. They are used to present information;
they are used to retrieve information; they are used to store
information; and they are used to control information. So, for
example, when I store a document in the filesystem, I put it
at some particular place in the filesystem hierarchy that both
reflects some features of the document (e.g. when I put it in
T:\home\papers\drafts\uist\placeless.doc) and where
I think I will remember to look for it again; and, by putting it
in certain places (e.g. the Microsoft Windows “briefcase”), I
control something of how that document behaves.

In our model, we want to separate the expression of docu-
ment features and document control from the system of
“places” that the hierarchy describes (hence, “Place-less”).
Our alternative model is based on documentproperties.
Properties are document metadata tags that users and appli-
cations can associate with documents. They are implemented
as arbitrary pairs of string names and Java object values;
their values can be set, tested, retrieved and searched. A doc-
ument can have many different properties associated with it.
We use properties to encode information that is relevant to
the users of the documents (e.g., that a document is a paper,
that it is a draft, that it is being prepared for UIST, etc.) as
well as to associate application information with documents
(e.g. the history of application actions over that document).
Users add properties to documents either directly through
drag-and-drop interfaces such as those explored in a previ-
ous UIST paper [6], or indirectly through property-based
applications [10, 14].

Active Properties
We introduced the document property model in a previo
UIST conference, where we outlined the development of o
initial prototype, called Presto1 [6]. Presto used document
properties to provide a persistent associative document st
for end users and applications, but in Presto the store w
entirely static. In the full Placeless Documents system, t
property store is used as an active infrastructure through
addition of active properties.

Like attributes in Presto, Placeless’ active properties inclu
both a name component and a value component. Howev
active properties include a third component – runnable cod
This code is designed to be run inside the infrastructure
response to various actions upon the document. By attach
active properties to a document, users can make the do
ment responsive to the situations in which it is used. Since
document can have any number of properties attached, ac
properties provide users with compositional control ov
document behaviour.

What sort of behaviours can users achieve through act
properties? Active properties can ensure that document
automatically backed up, or are maintained consistently
multiple places (e.g. on a laptop and a server). Active pro
erties can take functionality normally associated wit
specific applications such as workflow, format or conten
conversion or specialised presentation, and associate th
directly with the document so that they travel with the docu
ment wherever it goes, as it is emailed around, transferr
between systems and so on. Active properties can autom
cally detect document content changes and impleme
features such as notification, summarisation, or version co
trol. Further, these can all be controlled compositionall
available over all document under user control.

We have built the Placeless Documents infrastructure a
used it extensively, exploring its opportunities by buildin
property-based applications and functional elements inclu
ing those described above. Elsewhere, we describe
technical concerns in extending a document managem
system to incorporate active properties, including the dist
bution and efficiency issues that are involved [7]. In th
paper, however, we are concerned with the programm
model that active properties offer, and with the ways
which infrastructure activity can be encapsulated and pr
vided to application developers.

THE ACTIVE PROPERTY PROGRAMMING MODEL
The Placeless Documents infrastructure is written in Jav
We provide a number of interfaces to interoperate with exis
ing application infrastructures. For instance, we offer acce
to the Placeless Documents repository through HTTP,
that existing web clients can operate with Placeless Doc
ments; similarly, we provide access through other standa
Internet protocols such as IMAP and FTP, and offer an NF
interface so that filesystem-based clients can gain acces
Placeless without any adaptation. New applications, inclu

1. Presto used the term “attribute” rather than “property,” but oth
erwise its model is a subset of the property model in Placeless
Documents.

ic
he
-

ss
es
ies
ci-

ch
the
of
ns
an

t
er-

r-

er-
ct
e.
rop-
er

put
t
it

in,
the

e-
the
ed

of
te
ing new services to be written as active properties, are
typically written in Java, using custom APIs.

The infrastructure provides two sorts of active properties,
inline active properties anddelegates.

Inline Active Properties
The standard form of active property is aninline active prop-
erty. Inline active properties change document behaviour by
intercepting and inserting themselves into the execution path
of document operations such asdeleteDocument , addProp-

erty , readContent , and so on.

Placeless provides twelve of these core operations. Each
active property can be associated with any number of these
operations. An active property that transforms content might
insert itself into the execution path of both thereadContent

andwriteContent operations, so that it can transform con-
tent symmetrically; one that logs all document activity might
insert itself into the execution path ofall the document
operations.

Combining Active Properties
A document can have many properties, and since active
properties act just like normal properties, it follows that a
single document can have multiple active properties. Since
any active property can intercept any set of document opera-
tions, it follows that a document might have more than one
active property interested in a specific operation. For exam-
ple, the setProperty operation might be of interest to two
different active properties: an access control property that
wants to restrict write access to the document, and a logging
active property that wants to maintain a history of document
activities. Our infrastructure, then, must provide some mech-
anism for controlling how these active properties combine.

There are two mechanisms that control property combina-
tion: property orderingandphased execution.

In phased execution, the dispatch cycle for a single operation
on a document is divided into three phases, called theverify,
perform and notify phases. Conceptually, the verify phase
determines that the operation is allowed; the perform phase
carries out the operation; and the notify phase carries out any
post-execution cleanup and notifications. When an active
property inserts itself into the execution path for an opera-
tion, it specifies which phase it should be associated with.
Although an active property may have many code methods,
each method is associated with just one phase.

The overall model is shown in figure 1. Consider a specif
document operation. A user or application has invoked t
addProperty operation on a document, to add a new prop
erty to it. This operation dispatches into the Placele
infrastructure, where the active property dispatcher tak
over. First, the dispatcher scans the active propert
attached to this document to determine which have asso
ated themselves with theaddProperty operation in the
verify phase. This results in a set of methods, each of whi
is defined to take as arguments the set of arguments for
addProperty operation, and return a boolean value. Each
these methods is called in turn. If any of the functions retur
false, then the execution sequence is terminated and
exception is thrown to the calling application, informing i
that an active property has declined the operation. Oth
wise, the dispatcher advances to the perform phase.

Again, each property is examined in turn, this time for pe
former methods. TheaddProperty operation does not
support performers, but for those operations that do, the p
former methods may add functionality that alters the effe
of the original operation and its return value if there is on
The interfaces are arranged so that each perform-phase p
erty has access to the result computed “so far” by the oth
performers on the same document. For example, an out
stream for writing the document content will be built so tha
each interposing active property may alter the content as
flows down the stream.

Finally, the dispatcher advances to the notify phase. Aga
the active properties that have registered themselves for
notify phase of thesetProperty operation are called in turn.
Notify methods have no return value; they are entirely ind
pendent of each other. Once they have all been executed,
return value computed during the perform phase is retriev
and returned as the outcome of the operation.

Phased execution allows us to control some of the effects
combining properties, by allowing programmers to associa

property 1 property 2

verifiers

performers

notifiers

Table 1: Operations and their Active Properties

Verify Perform Notify

AddProperty • - •

DeleteProperty • - •

AddMember • - •

GetMembers • • •

RemoveMember • - •

GetPropertyValue • - •

SetPropertyValue • - •

SetQuery • • •

DeleteDocument • • -

ReadContent • • •

WriteContent • • •

CloseOutputStream - - •

GetDelegateFor • - •

Figure 1: Phased execution of active property code.

at
nd
the
re
as

run
ate

ion
are
,
ot

a
le-
t is
er-
at

ked
a-

ion
loit

r-
m

ive

s an
ro-

he
er-
zes
e
nt

oth
ve
nd
ch-
all

reat
o-
s a
sing
ga-
ch
In
may
ill
half
s
i-
them with specific phases of execution. However, there are
other elements of property interaction, particularly in the
case of side effects. We will discuss these, along with the
property ordering mechanism, in more detail after laying out
the full programming model.

Writing Active Properties
Active property writers create a Java class that implements
the ActiveProperty interface. This interface requires some
standard methods for initializing the active property object
itself. In addition, this class will implement a number of
other interfaces. These interfaces describe the operations that
the active property will intercept. For example, the class for
an active property that wants to intercept the verify phase of
the setPropertyValue operation and the notifier phase of
the writeContent operation will implement the interfaces
SetPropertyValueVerifier and WriteContentNotifier .
Table 1 shows the set of available interfaces that an active
property writer can use. Each interface defines the methods
that will be called by the dispatch engine at the relevant point
in the dispatch cycle.

By providing inline active properties that intercept and redi-
rect document operations, programmers give end users
control over the interactive behavior of their documents.
Since active properties can be added to documents at any
point in their lifecycle, this control can be exerted at any
moment and continually revised. From the programmer’s
perspective, code can be incorporated automatically and
transparently with no prior knowledge on the part of the doc-
ument or application developers.

Delegates
The second sort of active property in the Placeless system is
the delegate. While inline active properties insert themselves
into the execution path of existing operations, delegates
extend the API of the documents to which they are attached,
providing new functionality and new call paths.

Conceptually, a delegate is an object which stands for the
document with respect to some operation (in fact, with
respect to a Java interface). If an application wants to make
use of a potential document interface extension for a specific
document, then it makes a call on the document object,
requesting a delegate that implements the interface. The doc-
ument returns a delegate that implements the requested
interface, and that stands for the document for the purposes
of that interface. For example, there is noBackup operation
defined in the standard document operations. However, a
backup application might call a method on a document to
request a delegate that implements theBackupableDocument

interface. If the document is capable of providing one, it
returns an object that implements that interface; calling the
methodgetLastBackupTime() on the delegate would report
when that document was last backed up, and calling
backup() on it would place a copy of the document on a
stable backup medium.

There are three important features to note concerning the
programming model offered by delegates.

The first is that, while the execution of inline active proper-
ties is carried out in the Placeless infrastructure, the

execution of delegates is carried out in the application. Th
is, the delegate object is returned to the application a
becomes part of the application’s address space, with
application in control of when the methods on that object a
invoked. In contrast, inline active properties are executed
a part of the normal execution of the system, and so must
in the Placeless Documents core since they must oper
across all applications.

The second feature is that delegates require coordinat
between the document and the application. Delegates
only provided when an application knows to ask for them
and knows what interface is required. Delegates do n
become active for unspecialized applications.

The third important feature of delegates is that they are
type-safe extension mechanism. Applications request a de
gate specifying a specific Java interface. The delegate tha
returned is an instance of a class that implements that int
face, and is cast to the interface type. Calls upon th
interface can then be made directly, and can be type-chec
by the Java compiler. In contrast to other extension mech
nisms that might rely on the use of features such as reflect
to map strings into method names, this approach can exp
the language’s type system.

Implementing Delegates using Inline Active Properties
Although we have contrasted delegates with inline prope
ties here, inline active properties are in fact the mechanis
by which delegates are associated with documents.

One of the basic document operations that an inline act
property can specialize is calledgetDelegateFor() . This
method takes a Java interface as its argument and return
object that implements that interface as a result. So, a p
grammer wishing to create theBackup delegate would create
two classes. The first class is an implementation of t
Backup interface, and performs the specialized backup op
ations. The second class is an active property that speciali
thegetDelegateFor() method and returns an instance of th
implementation class when it determines that the releva
interface is being requested.

One of our design issues is how a single model supports b
programming and end-user interaction. Using inline acti
properties to implement delegates allows users to exte
document behaviors through the same mechanism – atta
ing properties to documents – that they use to perform
other customizations of the system.

Delegates and Object-Oriented Delegation
Delegation is a technique that has already been used to g
effect in object-oriented programming systems. In fact, pr
totype-based object systems often employ delegation a
means to achieve the same effects that can be achieved u
inheritance in class-based systems [21]. Our use of dele
tion is similar, but we use the term in ways that do not mat
the conventional structure of object-oriented delegation.
an OO delegation system, a message sent to one object
be “delegated” or redirected to a second object, which w
execute the method associated with that message on be
of the first object (or further delegate it). The result of thi
method invocation will be returned to the object that orig

es,
in

ve

of
ve

er

el-
PI
es

te,
iate
l-
is
r-

e
-
nd
se

el-
and
le,
ive
en

be

p-
ny
to
e-
ms
o
r-

o
r-

nt
to
to

m
-
e
vel

ion

ies
ne

hat
or
he
bi-
nally sent the message. This can be seen to be structurally
equivalent to method inheritance; imagine that, by delegat-
ing the message, the first object seems to inherit from the
second object the ability to respond to the message.

Our use of the term “delegate” differs from this model in
three ways. First, our delegates are explicitly visible to the
application; we do not automatically delegate on message
sends. Second, we delegate “downwards” rather than
“upwards.” In our model, a generic object (a document) pro-
vides a more specialized object (the delegate) which will
respond to a set of messages on its behalf. Third, the delegate
does not appear to “subclass” the document because it does
not, itself, implement theDocument interface; instead, it
implements only the interface specified by the application.

Although the differences from OOP conventions are confus-
ing, the separation of the delegate functionality from the
document functionality provides some benefits in the distrib-
uted environment of Placeless programs. In particular, it
means that the delegate can be shipped to other processes or
other nodes without creating the confusion about the identity
of the document that might result from two “document”
objects on different machines.

ACTIVE PROPERTIES AND INTERACTIVE BEHAVIOURS
One feature of the Placeless Documents system and its
approach to active documents that distinguishes it from ear-
lier explorations of active infrastructures is that Placeless is
primarily an infrastructure for interactive applications. The
interaction aspects of our model have two sets of
consequences.

First, the control that active properties themselves offer over
document behavior is interactive control. Active properties
can be added, removed and controlled by end users. Indeed,
in some of our browsers, active properties are entities that
users simply drag-and-drop in order to change the behavior
of documents. This means that the procedures by which
active properties can be associated with documents must be
both simple and responsive, that active properties must be
consistent in their interactions, and that active properties
must support arbitrary compositions. Stronger class-based
approaches, for example, would not satisfy these
requirements.

Second, active properties may affect the interactive behavior
of documents. This affects thestyle of development; since
documents are interactive entities, active properties must
support interactive response times. In addition, active prop-
erties themselves sometimes manage other interactive
objects, such as when they “decorate” document interfaces
with buttons and widgets corresponding to currently-avail-
able actions. The interactive requirements entail a
lightweight approach to active property programming,
which in turns leads to a style of development involving mul-
tiple interacting active properties (which we will discuss in
more detail in the discussion of Programming Issues).

EXAMPLES OF ACTIVE PROPERTIES
Active properties provide a flexible infrastructure for associ-
ating behavior with documents. To make some of this
discussion more concrete, we will briefly describe some of

the applications we have developed using active properti
and then go on to explore some of the issues that arise
using active properties as a programming model for acti
documents.

Workflow
One series of developments concerned the provision
workflow and document management services via acti
properties [5, 14]. Providing workflow in this way migrates
it into the infrastructure, and makes it independent of eith
specific applications or specific repositories.

Our approach combines both inline active properties and d
egates. A delegate encapsulates a workflow-specific A
that allows an application to explore the process instanc
with which a document is associated, query their sta
progress a document from one state to another, assoc
notifications and so forth. Since it is provided through a de
egate, this functionality can be highly specialized but
available only to special-purpose applications that unde
stand how to call on it. By using an inline active property, w
can connect workflow functionality with existing applica
tions. An active property is associated with the read a
write operations for the document; it notices when tho
operations are performed and passes notifications to the d
egate, which can analyze the changes to the content
associate them with the workflow process. So, for examp
if a document represents a form with check boxes, the act
property can notice when the check boxes have be
selected, and the delegate can cause the document to
moved to the next stage of the process, accordingly.

Our implementation uses an internal workflow engine to re
resent and control process instances. However, ma
commercial workflow systems are organized according
the reference model developed by the Workflow Manag
ment Coalition and provide network-accessible mechanis
through protocols such as SWAP [22]. A simpler way t
write our delegate would be to make it a client of such a se
vice. In this way, we could use active properties t
coordinate document activity with an external workflow se
vice, but provide this “activation” independent of any
particular application that end users might want to use.

Delivering Services
The idea of using active properties to coordinate docume
action with external mechanisms such as workflow leads
a variety of ways in which active properties can be used
deliver document services.

Obvious examples include format conversion (e.g. fro
Microsoft Word to PDF) and interpolation (e.g inline recod
ing of images to reduce bandwidth requirements [13]). W
have also used these mechanisms to incorporate higher-le
document services such as content filtering, summarizat
and language translation.

Delivering services such as these through active propert
offers two advantages over conventional approaches, o
technical and one interactive. The technical advantage is t
the services can be offered independently of application
repository. The service is delivered at a point between t
repository and the application, and so applies to any com

a-
it

use
ry
t to
ate
ing

tore,
-
tly,

ce.
a

a-
tic

to
in
So,
m

-
e
er-
sive
is
the
y,
the

-
an

i-
or
xt-
no-
d,

er-
ract

ex-
ic
xt
on-
ts
ey
s,
an

el
of
e
ent
he
de

ice
nation. The interactive advantage is that end users can
compositionally control the deployment of services on a doc-
ument by document basis. Since the functionality appears to
be associated directly with documents, it makes sense to
allow users to control it by acting directly on those docu-
ments, and so, notionally, control the behavior of the
documents rather than that of an abstract service.

Versioning
Finally, we have also used active properties to augment the
services traditionally associated with repositories. For exam-
ple, using active properties, we can add versioning to a
repository that does not otherwise support it.

There are a number of implications of adding versioning via
active properties rather than building it directly into the
infrastructure. For instance, since the Placeless infrastructure
is unaware of versioning, it provides no direct support for the
way in which versioning makes document identity more
complex. The infrastructure, for example, will not be able to
recognize that two different versions are actually the “same”
document. A second consequence is that, since versioning is
added at the middleware level rather than the repository
level, we can, in fact, take advantage of underlying version-
ing facilities when they are provided. This flexibility comes
at a cost; since different repositories often have different ver-
sion semantics, we need to be able to interpret and
interpolate between them.

The versioning property maintains a chain of documents that
are earlier versions of the current content. Each time a user
opens the document for writing, a copy of the original con-
tent is made and linked to the document as an “earlier”
version. This is done by attaching to the document an active
property that intercepts thegetOutputStream() operation,
and hence notices all attempts to write new versions of the
content.2 Previous operations can be retrieved either by
looking directly at the properties that link a document to pre-
vious versions, or through a delegate property which adds an
API for reviewing and retrieving earlier versions.

PROGRAMMING ISSUES
The Placeless Documents infrastructure first became opera-
tional during the summer of 1998; since that time it has been
in daily use and we have refined and revised our core designs
significantly. We have also gained considerable experience
with active property-based applications, some of which we
developed ourselves, and some of which have been devel-
oped by colleagues elsewhere at PARC. A variety of
programming issues have arisen from our experiences devel-
oping applications with active properties.

Programming Using Static Properties
Before discussing active properties, we should first explore
how simple static properties impact programming style. The
combination of freely extensible static properties and fast
query mechanisms allow programmers to exploit new
models for structuring their applications.

Properties provide convenient associative storage. Inform
tion can be stored alongside the documents to which
applies, and retrieved by queries. At the same time, beca
property objects store not just primitive types but arbitra
serialized Java objects, a document’s properties can poin
other documents, and so on, allowing programmers to cre
complex data structures as sets of related documents. Hav
a document store that can be used as a persistent object s
programmers intuitively adopt a style in which data struc
tures are distributed across documents, stored persisten
and reconstituted through queries over the document spa3

Most importantly, since properties are compositional,
single document may participate in many different applic
tions or data structures. The compositional use of sta
properties is mirrored in the use of active properties.

Creating Responsive Documents
One way of interpreting the effect of active properties is
consider that operations that would otherwise be fixed
their consequences can now be made open and flexible.
for example, whereas reading a document’s content fro
disk and displaying it in a window is normally a fixed oper
ation with a fixed implementation, active properties giv
users and documents individualized control over these op
ations. The result is that documents can be made respon
to the contexts in which they are used. A trivial example
that document content can be transformed according to
person who reads it or the time at which it is read; similarl
other document operations can be made responsive to
contexts in which they are carried out.

This facility, along with the associating storage facilities pro
vided by static properties, makes Placeless Documents
excellent platform for the development of interactive appl
cations that exploit contextual factors such as location
participants [1, 19]. Static properties encourage a conte
based approach in which documents and objects are an
tated with information that reflects how they have been use
where, when, by whom, etc.; combinations of these prop
ties can serve as retrieval cues or can be used to ext
relationships between documents or application objects.

Using static properties, however, means that these cont
tual features can be exploited only when specif
applications are running. Using active properties, conte
dependence can be migrated into the infrastructure. The c
textual behavior is associated directly with the documen
themselves. This is valuable since exploiting context is a k
element of the ubiquitous or pervasive computing program
and so requires support at the infrastructure level rather th
in application space. Active properties provide a nov
means for making “passive” entities into active elements
a ubiquitous computing environment. Through their activ
properties, documents can be made responsive to differ
aspects of their use. In addition to being responsive to t
person who acts on them, documents might also be ma

2. Intercepting property operations also allows the property to keep
track of changes to the set of properties associated with the docu-
ment, but we focus on content operations here.

3. Recognizing this feature of a number of early applications, we
provided specialized support for it by developing a package that
allowed programmers to reflect documents as Java Beans and v
versa.

of
n-
ts

he
op-
les
e
a

er-
e
ut
ed
at

cu-
es

e
u-
e
ne
, if
hat
nd
that

;
tial
n-

a
ke

he
d
rail
ep-
m
s

re
r-

h
t
for
at
or
ing
ism

nt
a

e-
responsive to other aspects of the context in which they are
used; e.g. rendering themselves differently and with differ-
ent interface options depending on the viewing device, on
the time of day, or at different points in an organizational
process [10].

Combining Inline and Delegate Properties
In our initial proposals for active property applications, we
favored inline active properties. We proposed the use of
active properties for document format transcoding, for
mobile document services, for configuring the behavior of
external applications or services, and for specializing the ser-
vice characteristics of the infrastructure to application needs.
Our early application development experiences, however,
showed the power of delegates for exploring new application
opportunities. So, our applications emphasized the way in
which users could extend and augment document behavior
using delegate properties.

In fact, there is an important duality between the two forms
of active properties. Inline active properties intercept docu-
ment operations, while delegates provide new facilities. A
common active property idiom is to actually use both sorts;
use an inline property to observe that some operation has
taken place, and then activate a delegate to run some new
document behavior in response. The workflow service is an
example of this idiom. This pairing relies on a natural sepa-
ration of “new” code from “interposed” code. Itcould, of
course, be written as a single active property, but the use of
two different sorts of active property seems to more accu-
rately reflect the programmer’s expectations.

Exploded Applications
In conventional systems, functionality is restricted to appli-
cations. We have shown that active properties allow
functionality to be directly associated with documents and
moved into the infrastructure. So, the presence of active
properties causes us to reassess how applications work and
how they are structured. In Placeless, we can start to think of
applications as consisting of a variety of active properties
that may be spread throughout the document space. We call
these “exploded” applications.

As an example, consider a system that supports document
linking, such as a hypertext system or a document editor that
supports the inclusion of image files by reference. In a con-
ventional application, the relationship between the
documents is only active when the application is running. If
a user deletes or moves a linked file, the application will not
know; the result is a dangling link. Active properties provide
a mechanism to prevent this problem. In Placeless, an appli-
cation that supports document linkage can attach an active
property to any linked document that will intercept move or
delete operations. When these operations occur, it can notify
the user that this is a linked document (and so the user may
not want to move it), and/or notify the application that the
document has been moved (and so it should update its point-
ers). The application has been “exploded” or spread
throughout the infrastructure; it can now be active even when
the central application is not running. So, active properties
change our notions of what constitutes an application.

Ordering
One important set of issues arise around the ordering
property invocations. Properties provide compositional co
trol over the behavior of a document, and ordering affec
how their interactions are controlled.

Placeless provides two mechanisms to control ordering. T
first is the three-phase model described earlier, where pr
erties are invoked separately according to three ro
(verifier, performer, notifier). This mechanism moves som
of the more obvious potential property interactions (e.g.
property that wants to veto the attempts of another to p
form an operation) into the structural domain of th
infrastructure, rather than having the properties “fight it o
amongst themselves.” It also provides a more fine-grain
model which, in turn, encourages property writers to work
a more fine-grained level.

However, it leaves many problems unaddressed. In parti
lar, we observe conflicts between two active properti
involved in the same phase of the same operation. W
explored a variety of designs for this problem, and event
ally fixed on a straight-forward numerical ordering for th
invocation sequence of properties. This allows us to combi
properties that have interdependent effects. For example
we wanted to add to the same document one property t
encrypted file contents before they were written to disk, a
another that compressed them, we would want to ensure
they were always invoked in the right order.

A numerical ordering is clearly flawed in a number of ways
it requires the properties themselves to manage the poten
negotiation to establish their relative order, rather than ha
dling it automatically. However, we believe more
complicated schemes to be overly complex; to establish
language of property side-effects, for instance, would ma
our API considerably more complex.4

Notifications
Another idiom that we observed in early applications was t
use of notifications. “Notifier”-phase active properties ha
been included to support a variety of tasks such as audit t
logging and operation post-processing that could be conc
tualized as a “notification” from one element of the syste
to another. However, more explicit notifications or callback
between different applications turned out to be mo
common that we had anticipated. In particular, we found ou
selves frequently writing notifier active properties – whic
run in the “kernel” or server – that simply looked up clien
processes and informed them of the event. What is more,
certain kinds of applications, such as applications th
present a representation of the activity of other clients
over workspaces, we found these sorts of notifications be
added to many documents. Placeless provided a mechan
for server-side notifications, but not for client-side
notifications.

We augmented our basic APIs to provide support for clie
notifications. Clients can register their notifications with

4. In fact, however, as we will discuss, there are some other ben
fits to having such a descriptive language.

n
e
of

a-
of

ra-
is

us
-

ovi-
er

m-
or

n
ore
er-

es
e
ed
ve
-
s.

ci-
ort
of

to
h
rns
n-
ely
an
r-

-
rk
xi-
ers
g
’s
to
n-

s
i-

g
at
in-

[4]
h-
server; should the client disappear before the notification is
called, then the notification will be silently removed on the
server side. Client-side notifications are associated with pat-
terns of documents, properties or operations. So, an
application can register a single notification that will apply
to any number of documents, or to activities to groups of
properties on those documents, and so on. In addition to
reducing the number of notification instances5 this facility
also allowed notifications to be registered that cannot be
attached to a specific document, such as a notification that a
new document has been created.

Introspection
Our experiences with the compositional effects of active
properties lead to a recognition of the importance of property
introspection – the ability to examine and reason about the
internal structure and behavior of active properties.

There are two reasons that we require some sort of introspec-
tion facility. The first is that properties, themselves, need to
be able to determine how their behaviors might interact, so
that they can potentially “negotiate” about ordering or cus-
tomize their behavior in order to better interoperate with
other properties. For instance, the versioning property might
behave differently when attached to a document that also has
a replication property. The second is that we need to be able
to provide end-users with an understanding of the conse-
quences of their actions. Since seemingly simple actions
such as adding a property to a document might cause a vari-
ety of active properties to be executed, we need to be able to
provide a generic framework in which the potential out-
comes of actions can be determined. This also requires that
we be able to determine something of the structure and
behavior of active properties.

Our active properties are written in Java. As such, their “con-
tents” – the code that they will execute – is largely
inaccessible from user space, outside of the minimal struc-
tural properties that are available through the standard Java
Reflection APIs. These are sufficient to be able to see what
operations and what phases are being intercepted by the
active property, but not to determine what that active prop-
erty will do. Instead, a number of our applications are forced
to depend on active property class names and “well-known”
properties to be able to reason about the behavior of proper-
ties attached to documents.

One alternative would be to write active properties in a more
declarative “little language” with less expressive power than
full Java, and about which we might be able to reason more
carefully. This approach has been used in other systems such
as DPF [12]. We deemed this approach inappropriate for the
initial explorations that Placeless Documents was designed
to support; when we were engaged in the design we lacked
sufficient experience with active properties to design such a
language. The experience we have now gained suggests that
the ability to use active properties to relate document behav-
ior to the functionality of external services (e.g. external

workflow engines or format conversion services) is a
important feature of our design. In order to support this, w
must necessarily give up strong control over the semantics
active property execution. A voluntary declarative specific
tion of the side-effects or performance requirements
active properties may be incorporated in the future.

RELATED APPROACHES
There are two areas of related work relevant to our explo
tion of programming models for active documents. One
the set of investigations into active infrastructures of vario
sorts; the other is the exploration of compositional program
ming models for interactive behavior.

Active Infrastructures
Placeless Documents represents one approach to the pr
sion of active infrastructures. Similar issues occur in oth
systems tackling similar problems.

The Bayou distributed database infrastructure gave progra
mers active control over the database system’s policy f
managing conflicts. By weakening the traditional ACID
properties, replacing them with a more fluid set of “sessio
guarantees” [23], Bayou provided a data storage layer m
attuned to the needs of application domains such as coop
ative work [9]. Bayou allowed programmers to attach piec
of code called “mergeprocs” to updates, which would b
executed to resolve conflicts encountered as they filter
through the network of database servers. Like our acti
properties, mergeprocs were written in a full high-level lan
guage, raising the same sorts of introspection problem
However, since different mergeprocs would not be asso
ated with the same update, Bayou had little need to supp
compositionality and so did not suffer the same problems
ordering, etc., that occur in Placeless Documents.

Active databases more generally provide a mechanism
incorporate dynamically computed data and “triggers” wit
data objects, allowing the data to respond actively to patte
of access [17]. These tend to be written in restricted la
guages, and the ways in which they can interoperate and r
on external services is much more restricted than we c
offer, allowing active databases to offer stronger perfo
mance guarantees at the cost of expressiveness.

Active networking [27] is an approach to network architec
ture in which programs are executed inside the netwo
architecture itself. This approach supports much more fle
ble management of network resources. For example, rout
can exploit downloaded code to dynamically control routin
patterns, allowing applications to specialize the network
response to their particular requirements. This is similar
work on composable protocols [16] in that it affects the co
figuration of networking behavior, but critically different in
where it locates computation, and in particular that it allow
computation to move around and to be configured dynam
cally. Work on Active Names [26] has explored insertin
active mediation into just the name lookup process, so th
dynamic or caller-dependent bindings are managed in a pr
cipled way.

Some interactive application toolkits, such as Prospero
and Intermezzo [8], have incorporated extensibility tec

5. In fact, our implementation allows multiple instances of an
active property to share code, so the overhead of multiple instances
is not one of memory footprint, but one of actual code.

n-
to
a-
rst
ic
to
si-
g

he
in

he
from
t-

ch
of

ive
en-
ts.

ave
to
or

ern
d-

en
of

if-
g

nts
ow-
de
in

ch
ible
tra-

it
ir

l as
e-
the
rs.

ies.
t to
that
on-
s,
e a

l-
ss
he
he
niques so that application developers can extend toolkit
functionality or interfaces. However, they typically do not
attempt to expose this extensibility model to end users as we
do in Placeless Documents.

This is also true of explorations of active infrastructures in
the operating systems domain. Work such as that on Spin [3],
scheduler activations [2], exokernels [11] and the Mach
External Pager [18] have all explored mediating the behavior
of otherwise static infrastructure components. Much of the
effort has been directed towards finding a balance between
the expressiveness of the interface and the security and
resource management implications of broadening it too far.

Compositional Interactive Behaviors
Unlike other approaches to active infrastructures, Placeless
is focussed directly on interaction concerns. How does the
active property model compare to other approaches provid-
ing compositional interactive behaviors?

In contrast to traditional “widget” programming, Myers’
“interactors” model provides an encapsulation of interactive
behavior that is separate from the graphical elements to
which it is connected [15]. Interaction patterns and graphical
elements of the user interface are developed and specified
separately; interactors can then be attached to graphical ele-
ments to give those objects interactive behaviors. This is
similar to the separation between documents and active
properties; they also have similar compositional properties
which make for similar programming experiences. However,
Myers’ interactors model is aimed specifically at the creation
of graphical user interfaces, while the active property model
is more general.

Active properties also resemble the programming model of
prototype-based object-oriented programming languages
like Self [25]. Like objects of a traditional OO language, Self
objects combine data and activity (methods); but unlike the
traditional approach, Self provides no classes to encapsulate
object structures, but allows objects to inherit directly from
each other, through a prototype mechanism. Placeless Docu-
ments is similar to Self in the way that users experience
documents (objects) directly rather than in terms of pre-
defined structures; and similarly, a number of our user
interfaces are designed around the same principles of con-
creteness and uniformity that characterize Self user
interfaces [20]. However, although our early designs incor-
porated it, Placeless Documents does not provide inheritance
or the propagation of properties or activity through a “chain”
of documents. This is because of Placeless’ schizophrenic
nature, being both an application infrastructure and a system
for end users. While application developers might be
expected to understand a model structured around prototype
inheritance, we felt that end-user would not.

FOLLOW-ON WORK
The Placeless Document system is still under active develop-
ment. In particular, a new “kernel” architecture (the core
property storage and activation engine) is currently being
developed, and explores more advanced ideas for the inte-
gration of Placeless’s property mechanisms with the
relational database beneath the covers.

Another feature that is being explored in this new impleme
tation is a richer mechanism for application programmers
describe to the infrastructure the structure of their applic
tions and their use of properties for data storage. In the fi
instance, this facility is aimed primarily at the use of stat
properties and schemas, but it also offers the opportunity
alleviate some of the problems associated with the compo
tion of active properties. A declarative means for describin
application needs allows the system to adapt itself to t
needs of each application and to take a more active role
managing their interactions.

We have already described a number of ways in which t
system has been changed to incorporate lessons learned
early application experiences (e.g. the introduction of clien
side notifications). By working closely with application
developers, we are still learning new ways to better mat
the conceptual model that Placeless offers to the needs
both programmers and end-users.

CONCLUSIONS
Infrastructures have traditionally been construed as pass
elements of computing systems; activity has been conc
trated at the end-points of the system, on servers or clien
However, researchers in a variety of systems arenas h
been exploring the use of active infrastructures in order
specialise infrastructures to the needs of particular clients
to better capitalize on the increased performance of mod
infrastructure components (e.g. increased network ban
width). In the Placeless Documents project, we have be
exploring an active infrastructure approach in the context
interactive document services and applications.

Active infrastructures have been conceptualized in many d
ferent ways, encapsulating many different programmin
models. The programming model for Placeless Docume
has been designed to meet two goals. On one hand, it is p
erful enough to allow application developers to create a wi
range of applications that can take advantage of activity
the infrastructure. On the other, since we are aiming atinter-
active document applications, the programming approa
must also encapsulate a conceptual model that is access
to end-users. The Placeless Documents system blurs the
ditional boundary between users and developers, since
gives users compositional control over the behavior of the
document systems. While our approach is not as genera
that of traditional end-user programming systems, it non
theless requires that users be able to understand
encapsulation and composition model that our system offe

Our conceptual model has been based on active propert
Static properties describe features of documents relevan
user needs; active properties add encapsulated code
affects how the document behaves. Properties can be c
trolled individually by end-users and application developer
can be composed to create complex behaviors, and provid
consistent interface for managing documents.

We have worked with a variety of people outside the deve
opment group to develop applications for Placele
Documents organized in terms of active properties. On t
positive side, we have found that people take naturally to t

nd

n
e
s

ge
c.

o

I.
:

rk

k

.,
-
d

d

re

er
s,

ns

of
),

F

.
ent

.
A
M
er

y.
s,

.
a
t

mp.
active property model, and can quickly and easily create
applications factored into active properties. Active proper-
ties also encourage a decomposed model in which behaviors
are persistently associated with documents so that applica-
tion activity is distributed throughout the infrastructure and
permanently available. On the negative side, we have
encountered problems where active properties hide applica-
tion behavior, making it hard for users to understand the
consequences of their actions; document behavior may result
in unexpected and unforeseen active property invocations.
This has not caused any significant problems in the small
applications we have explored, but raises some issues to be
addressed in future explorations.

The active property model spans two worlds – the world of
end-user document management and the world of applica-
tion development. As computers become more powerful and
applications need to be more and more radically adapted to
the needs of different users and different environments,
system developers will increasingly need to build bridges
between these two worlds. In the Placeless Documents sys-
tem, active properties have begun to provide us with some
clues as to the problems and opportunities that these require-
ments will present.

ACKNOWLEDGEMENTS
We would like to thank Dirk Balfanz, Jacek Gwizdka,
Minwen Ji, Eyal de Lara and Ian Smith for their bravery in
experimenting with active properties.

REFERENCES
1. Abowd, G., Dey, A., Orr, R. and Brotherton, J. 1998. Context-

awareness in Wearable and Ubiquitous Computing. Virtual
Reality, 3, 200-211.

2. Anderson, T., Bershad, B., Lazowska, E. and Levy, H. 1992.
Scheduler Activations: Effective Kernel Support for User-
Level Management of Parallelism. ACM Trans. Computer
Systems, 10(1), 53–79.

3. Bershad, B., Savage, S., Pardayk, P., Sirer, E., Fiuczynski, M.,
Becker, D., Chambers, C. and Eggers, S. (1995). Extensibility
and Safety in the SPIN Operating Systenm.Proc. ACM Symp.
Operating System Principles(Copper Mountain, CO). New
York: ACM.

4. Dourish, P. 1998. Using Metalevel Techniques in a Flexible
Toolkit for CSCW Applications.ACM Trans. Computer-
Human Interaction, 5(2), 109-155.

5. Dourish, P., Bentley, R., Jones, R. and MacLean, A. (1999).
Getting Some Perspective: Using Process Descriptions to Index
Document History.Proc. ACM Conf. Supporting Group Work
GROUP’99(Phoenix, AZ). New York: ACM.

6. Dourish, P., Edwards, K., LaMarca, A. and Salisbury, M.
(1999). Uniform Document Interaction with Document
Properties.Proc. ACM Symp. User Interface Software and
Technology UIST’99(Asheville, NC). New York: ACM.

7. Dourish, P., Edwards, K., LaMarca, A., Lamping, J., Petersen,
K., Salisbury, M., Terry, D. and Thornton, J. (in press).
Extending Document Management Systems With Per-User
Active Properties.ACM Trans. Information Systems.

8. Edwards, K. 1996. Coordination Infrastructure in
Collaborative Systems. PhD dissertation, College of
Computing, Georgia Institute of Technology, Atlanta, GA.

9. Edwards, K., Mynatt, E., Petersen, K., Spreitzer, M., Terry, D.,
and Theimer, M. 1997. Designing and Implementing
Asynchronous Collaborative Applications with Bayou.Proc.
ACM Symp. User Interface Software and Technology UIST’97
(Banff, Alberta). New York: ACM.

10. Edwards, K. and LaMarca, A. 1999. Balancing Generality a
Specificity in Document Management Systems.Proc. Seventh
IFIP Conf. Human-Computer-Interaction Interact’99
(Edinburgh, Scotland).

11. Engler, D., Kaashoek, F. and O’Toole, J. 1995. Exokernel: A
Operating System Architecture for Application-Level Resourc
Management.Proc. ACM Symp. Operating Systems Principle
SOSP-95, 251–266. New York: ACM.

12. Engler, D. and Kaashoek, F. 1996. DPF: Fst, Flexible Messa
Demultiplexing using Dynamic Code Generation. Pro
SIGCOMM’96. New York: ACM.

13. Fox, A., Gribble, S., Brewer, E. and Amir, E. 1996. Adapting t
Network and Client Variation via Real-Time Distillation.Proc.
ACM Symp. Architectural Support for Programming
Languages and Operating Systems ASPLOS-VII(Boston, MA).
New York: ACM.

14. LaMarca, A., Edwards, K., Dourish, P., Lamping, J., Smith,
and Thornton, J. 1999. Taking the Work out of Workflow
Mechanisms for Document-Centered Collaboration.Proc.
European Conf. Computer-Supported Cooperative Wo
ECSCW’99(Copenhagen, Denmark). Dordrecht: Kluwer.

15. Myers, B. 1990. A New Model for Handling Input.ACM Trans.
Information Systems, 8(3), 289–320.

16. O’Malley, S. and Peterson, L. 1992. A Dynamic Networ
Architecture.ACM Trans. Computing Systems, 10(2), 110–143.

17. Paton, N. and Diaz, O. 1999. Active Database Systems.ACM
Computing Surveys, 31(1), 63-106.

18. Rashid, R., Tevanian, A., Young, M, Golub, D., Baron, R
Black, D., Bolosky, W. and Chew, J. 1987. Machine
Independent Virtual Memory Management for Page
Uniprocessor and Multiprocessor Architectures.Proc. ACM
Conf. Architectural Support for Programming Languages an
Operating Systems(Palo Alto, CA). New York: ACM.

19. Schilit, B., Adams, N. and Want, R. 1994. Context-awa
Computing Applications. Proc. Workshop on Mobile
Computing Systems and Applications (Santa Cruz, CA).

20. Smith, R., Maloney, J. and Ungar, D. 1995. The Self-4.0 Us
Interface: Manifesting a System-Wide Vision of Concretenes
Uniformity and Flexibility.Proc. ACM Conf. Object-Oriented
Programming Languages, Systems and Applicatio
OOPSLA’95(Austin, TX). New York: ACM.

21. Stein, L., Lieberman, H. and Ungar, D. 1987. A Shared View
Sharing: The Treaty of Orlando. In Kim and Lochovsky (eds
Object-Oriented Concepts, Databases and Applications. New
York: ACM Press.

22. Swenson, K. 1998. Simple Workflow Access Protocol. IET
Internet Draft.

23. Terry, D., Demers, A., Petersen, K., Spreitzer, M., Theimer, M
and Welch, B. 1994. Session Guarantees for Weakly Consist
Replicated Data.Proc. Intl. Conf. Parallel and Distributed
Information Systems(Austin, Texas).

24. Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M
and Hauser, C. 1995. Managing Update Conflicts in Bayou,
Weakly Connnected Replicated Storage System. Proc. AC
Symp. Operating Systems Principles SOSP’95 (Copp
Mountain, CO). New York: ACM.

25. Ungar, D. and Smith, R. 1987. Self: The Power of Simplicit
Proc. ACM Conf. Object-Oriented Programming Language
Systems and Applications OOPSLA’87(Orlando, FL). New
York: ACM.

26. Vahdat, A., Dahlin, M., Anderson, T., and Aggarwal, A.1999
Active Names: Flexible Location and Transport of Wide-Are
Resources.Proc. 1999 USENIX Symposium on Interne
Technologies and Systems (USITS).

27. Wetherall, D. 1999. Active NetworkVision and Reality:
Lessons from a Capsule-Based System. Proc. ACM Sy
Operating System Principles SOSP-17(Liawah Island, SC).
New York: ACM.

	Abstract
	Introduction
	Research Questions
	Property-Based Document Infrastructure
	Active Properties
	The Active Property Programming Model
	Inline Active Properties
	Combining Active Properties
	Table 1: Operations and their Active Properties

	Writing Active Properties

	Delegates
	Implementing Delegates using Inline Active Properties
	Delegates and Object-Oriented Delegation

	ACTIVE PROPERTIES AND INTERACTIVE BEHAVIOURS
	Examples of Active Properties
	Workflow
	Delivering Services
	Versioning
	Programming Issues
	Programming Using Static Properties
	Creating Responsive Documents
	Combining Inline and Delegate Properties
	Exploded Applications
	Ordering
	Notifications
	Introspection
	Related Approaches
	Active Infrastructures
	Compositional Interactive Behaviors
	follow-on work
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	References
	1. Abowd, G., Dey, A., Orr, R. and Brotherton, J. 1998. Context- awareness in Wearable and Ubiqui...
	2. Anderson, T., Bershad, B., Lazowska, E. and Levy, H. 1992. Scheduler Activations: Effective Ke...
	3. Bershad, B., Savage, S., Pardayk, P., Sirer, E., Fiuczynski, M., Becker, D., Chambers, C. and ...
	4. Dourish, P. 1998. Using Metalevel Techniques in a Flexible Toolkit for CSCW Applications. ACM ...
	5. Dourish, P., Bentley, R., Jones, R. and MacLean, A. (1999). Getting Some Perspective: Using Pr...
	6. Dourish, P., Edwards, K., LaMarca, A. and Salisbury, M. (1999). Uniform Document Interaction w...
	7. Dourish, P., Edwards, K., LaMarca, A., Lamping, J., Petersen, K., Salisbury, M., Terry, D. and...
	8. Edwards, K. 1996. Coordination Infrastructure in Collaborative Systems. PhD dissertation, Coll...
	9. Edwards, K., Mynatt, E., Petersen, K., Spreitzer, M., Terry, D., and Theimer, M. 1997. Designi...
	10. Edwards, K. and LaMarca, A. 1999. Balancing Generality and Specificity in Document Management...
	11. Engler, D., Kaashoek, F. and O’Toole, J. 1995. Exokernel: An Operating System Architecture fo...
	12. Engler, D. and Kaashoek, F. 1996. DPF: Fst, Flexible Message Demultiplexing using Dynamic Cod...
	13. Fox, A., Gribble, S., Brewer, E. and Amir, E. 1996. Adapting to Network and Client Variation ...
	14. LaMarca, A., Edwards, K., Dourish, P., Lamping, J., Smith, I. and Thornton, J. 1999. Taking t...
	15. Myers, B. 1990. A New Model for Handling Input. ACM Trans. Information Systems, 8(3), 289–320.
	16. O’Malley, S. and Peterson, L. 1992. A Dynamic Network Architecture. ACM Trans. Computing Syst...
	17. Paton, N. and Diaz, O. 1999. Active Database Systems. ACM Computing Surveys, 31(1), 63-106.
	18. Rashid, R., Tevanian, A., Young, M, Golub, D., Baron, R., Black, D., Bolosky, W. and Chew, J....
	19. Schilit, B., Adams, N. and Want, R. 1994. Context-aware Computing Applications. Proc. Worksho...
	20. Smith, R., Maloney, J. and Ungar, D. 1995. The Self-4.0 User Interface: Manifesting a System-...
	21. Stein, L., Lieberman, H. and Ungar, D. 1987. A Shared View of Sharing: The Treaty of Orlando....
	22. Swenson, K. 1998. Simple Workflow Access Protocol. IETF Internet Draft.
	23. Terry, D., Demers, A., Petersen, K., Spreitzer, M., Theimer, M. and Welch, B. 1994. Session G...
	24. Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M. and Hauser, C. 1995. Managing...
	25. Ungar, D. and Smith, R. 1987. Self: The Power of Simplicity. Proc. ACM Conf. Object-Oriented ...
	26. Vahdat, A., Dahlin, M., Anderson, T., and Aggarwal, A.1999. Active Names: Flexible Location a...
	27. Wetherall, D. 1999. Active Network Vision and Reality: Lessons from a Capsule-Based System. P...

	A Programming Model for Active Documents
	Paul Dourish, W. Keith Edwards, Jon Howell, Anthony LaMarca, John Lamping, Karin Petersen, Michae...
	Computer Science Laboratory Xerox Palo Alto Research Center 3333 Coyote Hill Road Palo Alto CA 94...

