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Lecture 13: Greatest Common Divisor

Lecturer: Abrahim Ladha

1 GCD

Definition 1.1. For two numbers a, b the greatest common divisor of a, b is a number d ≥ 1
such that d | a and d | b.

gcd(a, b) computes the greatest common divisor of a, b. For example, gcd(105, 30) =
gcd(3 · 5 · 7, 2 · 3 · 5) = 3 · 5 = 15. You can analogously think of gcd like a set intersection.
What number is greatest to divide into both a, b? If a = 22 and b = 23, then their greatest
common divisor must be 22.

2 Euclidean Algorithm

The following is an easy divide and conquer algorithm discovered long ago by Euclid to
calculate gcd of any two numbers.

function gcd(a, b)

if b = 0

return a

else

return gcd(b, a mod b)

Proof of Correctness: We can prove correctness by proving that gcd(a, b) = gcd(a, a − b).
Repeatedly subtracting b from a will give you a (mod b). We will show these two numbers
to be equal by proving that they divide each other. If two numbers divide each other, they
must be equal, as a number is greater than or equal to any of its factors.

Proof. Let d = gcd(a, b). If d | a (d divides a), and d | b (d divides b), then a = dk, and
similarly b = dl for some numbers k, l. So, a − b = dk − dl = d(k − l). Therefore, d is a
factor of a− b, hence d | (a− b). So, d | gcd(b, a− b).

Let gcd(b, a − b) = d′. Then, d′ | b, d′ | (a − b). So d′ | (a − b) + b = a. So d′ | a and
d′ | b =⇒ d′ | gcd(a, b) =⇒ d′ = d. Since these two numbers divide each other, they must
be equal. Easy!!

You can think of the euclidean algorithm as swapping (a, b) for a pair of smaller numbers
with the same gcd.

gcd(25, 11) = gcd(11, 3) = gcd(3, 2) = gcd(2, 1) = gcd(1, 0) = 1

To write the execution of the algorithm, put the larger number on the left hand side,
and represent it in division form a = bq + r. Then repeatedly chain down.
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gcd(25, 11) =

25 = 2 · 11 + 3

11 = 3 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

When the last remainder is zero, then you have your greatest common divisor.

3 Extended Euclidean Algorithm

Theorem 1 (Bezout’s). For any numbers a, b there exists integers s, t such that

gcd(a, b) = as+ bt

Bezout’s theorem is incredibly important, but we won’t be able to prove it with the
tools we have now. We will be able to show you how to calculate s, t given a, b, gcd(a, b).
The calculation simply takes the execution of the euclidean algorithm, and uses it to find
s, t. As we computed the euclidean algorithm, we went through a sequence of pairs

(25, 11) → (11, 3) → (3, 2) → (2, 1) → (1, 0)

We will work backwards through the pairs, until we are left with a linear combination of
the first pair. For example, we will replace 3 with a linear combination of 25 and 11. The
way we will do this, is by taking the steps of the euclidean algorithm and substituting them
back into each other back up until the first one. First, take your equations, and rewrite
them with the remainder on one side

gcd(25, 11) =

25 = 2 · 11 + 3 3 = 25(1) + 11(−2)

11 = 3 · 3 + 2 2 = 11(1) + 3(−3)

3 = 1 · 2 + 1 1 = 3(1) + 2(−1)

2 = 2 · 1 + 0 0 = 2(1) + 2(−1)

Our pairs are (1,0), (2,1), (3,2), (11,3) and (25,11). Let us compute s, t such that
25s + 11t = 1 working backwards First, write the gcd(a, b) = 1 as a linear combination of
the first pair, (1,0)

1 = 1 + 0

Next, we want to go from pair (1,0) to pair (2,1) so we will use the last equation of
0 = ... and substitute this in.

1 = 1 + 0 = 1 + [2(1) + 2(−1)] = 2(−1) + 1(3)
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Note how we have written the linear combination of (0,1) as a linear combination of (2,1).
Let us substitute out the 1 for a linear combination of 3 and 2. Since we leave the 2
unchanged, we will have a linear combination of 3 and 2.

1 = 2(−1) + 1(3) = 2(−1) + [3(1) + 2(−1)](3) = 3(3) + 2(−4)

Now we replace the 2 with the linear combination of 11 and 3.

1 = 3(3) + 2(−4) = 3(3) + [11(1) + 3(−3)](−4) = 11(−4) + 3(15)

Replace 3 with a linear combination of 25 and 11 and we will be complete

11(−4) + 3(15) = 11(−4) + [25(1) + 11(−2)](15) = 25(15) + 11(−34)

So we may conclude that
1 = 25(15) + 11(−34)

For a, b = 25, 11 our values of s, t = 15,−34. These are not guaranteed to be unique or
minimal, and you may find other numbers which work, but the extended Eucldean algorithm
is guaranteed to give you a pair of numbers s, t to satisfy Bezout’s theorem.

4 Fundamental Theorem of Arithmetic

Lets prove a theorem to make some proofs easier.

Theorem 2 (Fundamental Theorem of Arithmetic). Every number has a unique prime
factorization

Proof. Assume to the contrary a number has a non-unique prime factorization. n =
p1...pk = q1...ql where p1, ..., pk, q1, ...., qk are all primes. By assumption to the contrary,
there is some pi not equal to any qj for any j.

Since pi | n, notice that pi | q1...ql. Since pi is prime, then pi | qj for some qj . Since qj
is prime, then it must be the case that not only pi | qj , but that pi = qj . Contradicting our
assumption pi is not equal to any qj .

5 LCM

Definition 5.1. For any two numbers a, b, the least common multiple of a, b is the smallest
number l such that a | l and b | l

One way to compute the lcm of two numbers is to write out two sequences of multiples
of numbers, and take the first number to appear in both. For example, to compute that
lcm(4, 6) = 12, you could observe that:

4, 8, 12, 16, ...

6, 12, ...

Is there a better way to compute the lcm? We give a relationship between lcm, gcd, and
the product.
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6 relationship LCM and GCD

Theorem 3. For any numbers a, b ≥ 1 it is true that

gcd(a, b)lcm(a, b) = ab

Proof. By the fundamental theorem of arithmetic, a, b have unique prime factorizations.
Without loss of generality, suppose that a has pk as its largest prime divisor and b has pl
as its largest prime divisor with k ≥ l. Suppose the factorizations are

a = 2a13a2 ...pakk =

k∏
i=1

paii

b = 2b13b2 ...pbll =
l∏

i=1

pbii

Since gcd(a, b) | a and gcd(a, b) | b we know that

gcd(a, b) = 2min(a1,b1)3min(a2,b2) · ... · pmin(ak,bk)
k =

k∏
i=1

p
min(ai,bi)
i

Similarly, the least common multiple must be large enough to accomodate all the prime
divisors of both a, b so

lcm(a, b) = 2max(a1,b1)3max(a2,b2) · ... · pmax(ak,bk)
k =

k∏
i=1

p
max(ai,bi)
i

Since k ≥ l, the values for bi with i > l may be zero. Then

gcd(a, b) · lcm(a, b) =( k∏
i=1

p
min(ai,bi)
i

)
·
( k∏

i=1

p
max(ai,bi)
i

)
=

( k∏
i=1

p
min(ai,bi)+max(ai,bi)
i

)
For any two numbers, x, y it is true that max(x, y) + min(x, y) = x + y. One will be the
min, the other must be the max. So( k∏

i=1

p
min(ai,bi)+max(ai,bi)
i

)
=

( k∏
i=1

pai+bi
i

)
=

( k∏
i=1

paii pbii

)
=

( k∏
i=1

paii

)
·
( k∏

i=1

pbii

)
= ab
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