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1 Why Prove Things?

Our goal with mathematics is to seek truth in all forms. The purpose of proof is to establish
the total convincing truth.

It is evident that truth may only be derived and established from other truths. If we
wish to demonstrate total certainty of a mathematical statement, then we must make some
basic assumptions. These are called Axioms

Definition 1.1 (Axiom). An axiom is a statement which may be assumed true without
proof.

Different fields of math use different sets of axioms, and the set of axioms you use
defines the math you are working in. In real numbers, we have axioms like ab = ba, the
communitivity of multiplication. Or a(b+ c) = ab+ ac, distributivity. Usually an axiom is
so simple, it is impossible to prove it, and there is little debate whether or not an axiom is
true. It is so simple that it must be true. In Euclidean geometry, the fourth axiom is “all
right angles equal each other”.

Definition 1.2 (Theorem). A theorem is a statement which is not an axiom, but has been
proven true.

A proof from the axioms involves combining axioms with the laws of thought (themselves
axioms) and other proven theorems. A corollary is a theorem which follows some more
general theorem. A lemma is a tiny helper theorem used to prove some main theorem. A
conjecture is a statement which is unproven. It may be hard to prove, but a mathematician
states it hoping someone else may prove it some day in the future.

2 Direct Proof

Definition 2.1 (Even Number). A number is even if it satisfies the predicate

Even(n) := ∃k[n = 2k]

This is a definition. A number is even if it can be written as two times something. It is
even if it can be split in two wholes equally. A number is even if two divides it.

Definition 2.2 (Odd Number). We can equivalently define the predicate

Odd(n) := ∃k[n = 2k + 1]

Note that an odd number is one which is not even. Odd(n) ≡ ¬Even(n).
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Theorem 1. The product of two even numbers is even.

We could write this using the predicate calculus as

∀a∀b[(Even(a)) ∧ (Even(b)) =⇒ (Even(ab))]

We do not often wish to over detail a theorem in terms of predicates and quantifiers. It
can become too cumbersome. Rather, we express them in terms of natural language. This
is a relatively simple statement, but already involves two quantifiers, a logical and, and an
implication. Statements we wish to prove may be far more complex if written this way.
If asked to rewrite a statement into the propositional and predicate calculus, you should
be able to. Otherwise, just know it is going on in the background. Now let us prove the
theorem.

Proof. Let a be an even number. Then there exists a number k such that a = 2k. Let b be an
even number. Then there exists a number l such that a = 2l. Then ab = (2k)(2l) = 2(2kl).
Since we may write ab as two times something, it is even.

It is polite that the beginning and end of your proof are denoted in some way. In a larger
body of text, which may contain more rambling thoughts, you want to make it clear and
explicit to the reader where the argument begins and where the argument ends. The reader
and writer do a sort of dance or game. Each step is presented to the reader, who digests it,
and is convinced of its truth. As the proof concludes, the reader is forced to conclude the
what the writer lead them too. Note that this proof actually shows more. It shows that the
product of two even numbers is actually divisible by four. Its like, twice as even as normal
even number. Doesn’t matter. We are tasked with proving that a product of even numbers
was even. Were we to conclude that a product of even numbers was divisble by four, it may
not be immediate and clear to a reader that is sufficient for it to be even. Lets do some
more simple examples.

Theorem 2. The product of an odd number and an even number is even.

Proof. Let a be an even number. Then a = 2k for some number k. Let b be an odd number.
Then b = 2l + 1 for some number l. Then ab = (2k)(2l + 1) = 2(k(2l + 1)). Since we may
write ab as two times something, it is even.

Theorem 3. The product of an odd number and an odd number is odd.

Proof. Let a be an odd number. Then a = 2k + 1 for some number k. Let b be an odd
number. Then b = 2l+1 for some number l. Then ab = (2k+1)(2l+1) = 4kl+2k+2l+1 =
2(2kl + k + l) + 1. Since we may write ab as two times something plus one, it is odd.

Corollary 4. If n is a number and n2 is odd then n is odd.

Recall a corollary is a tiny theorem following some main one. This actually doesn’t
directly follow from theorem 3, but from theorem 1 and 3. The product of even numbers
is even and the product of odd numbers is odd. So n2 being odd means that n cannot be
even, so it must be odd.
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3 Proof by Counter Example

If trying to prove ∀xP (x) false, simply find one example c in which P (c) is false.

Theorem 5. The statement “every positive number is the sum of two numbers which are
squared” is false.

We could represent this as ∀n∃a∃b[n = a2 + b2]. To prove that it is false, you simply
need to demonstrate an example where it is false.

Proof. Consider n = 3. For what values a, b could it be the case that 3 = a2 + b2? Since
22 = 4, we know that each of a, b < 2. So a, b can only be 0, 1. But if we try all combinations
of 02 and 12, we only get the possible values of 0, 1, 2. So 3 is a counter example to the
statement, and it is thus, proven false.

One of the most famous examples of a counterexample involves the diologue of Diogenes
and Plato. Plato, great man and great mind had a school in Athens. He had many students
and much recognition. Diogenes was a man who lived in a jar on the outskirts of the city.
Guy was committed to the bit, every bit. One day, Plato attempts to establish the definition
of a man (as in humanity) Plato asserts that

man ⇐⇒ featherless biped

All that are humanity are featherless bipeds, and all that are featherless bipeds are man.
Plato was interested in a dichotomy and hierarchy of all objects, real or otherwise. To an
ancient greek man, the only things he may have seen include some sheep, a mountain, a
cloud, etc. Everything is or isn’t a biped, and is or isn’t featherless. All examples of a
biped he may have known had feathers, except man. As the myth goes, Diogenes busts into
the amphitheatre, raises a plucked chicken and yells “Behold! A Man!”. This is a counter
example. Is a plucked chicken a featherless biped? Yes. Is it a man? Certainly not. Then

man ⇎ featherless biped

Diogenes displays this counter example, and proves Plato wrong.

4 Proof by Contraposition

Recall that we proved using a truth table that the contrapositive of an implication was
equivalent to it.

p =⇒ q ≡ ¬q =⇒ ¬p

To prove an implication. It may then be easier to prove its contrapositive.

Theorem 6. 3n+ 2 is odd, then n is odd.

Let us try to prove it directly first. We will try to prove that n is odd assuming that
3n+2 is odd, so 3n+2 = 2k+1 for some k. Moving terms around, we see that n = (2k−1)/3.
Its not even clear if that is a number! Lets instead prove the contrapositive.
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Figure 1: A Platonic Man

Proof. We prove the equivalent statement that if n is even, then 3n+2 is even. if n is even,
then n = 2k for some number k. If we substitute it into 3n+2, we get 3n+2 = 3(2k)+2 =
2(3k + 1) which is even.

Here, observe that the contrapositive was easier to prove. A direct proof of the theorem
may exist, but you want the shortest, clearest proof possible.

Theorem 7. If n = ab then a ≤
√
n or b ≤

√
n

Also difficult to prove directly, but a very useful property of composite numbers. Since
n is so general, we don’t really have good information about a or b to work with, except
that they exist. Lets instead prove the contrapositive.

Proof. Assume that a >
√
n and b >

√
n. We prove that ab ̸= n. If a >

√
n and b >

√
n

then ab >
√
n
√
n = n. So since ab > n, we know ab ̸= n.

5 Proof By Contradiction

A proof by contradiction is one of the most versatile techniques, and also may involve some
creativity. If you wish to demonstrate some proposition p is true, you can show the negation
of the proposition must be absurd. That ¬p =⇒ (0 = 1). For this reason, it is also called
Reductio Ad Absurdum

Your proof should always begin soon after stating the theorem. The first sentence
of your proof should be an acknowledgement that you are about to perform a proof by
contradiction. Traditionally, if you want to prove p, you may begin with “Assume to the
contrary ¬p”. Or sometimes simply “Suppose not”. It must be made explicit in some
way. You should proceed with deduction applying laws of thought, until you produce the
absurdity. The absurdity is a statement derived as a consequence of ¬p. It aught to be
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so absurd that the reader will have no choice but to accept that ¬p must be false. The
absurdity can take on the form of a negation of a premise or the negation of an axiom. It
can take on the form that there is some statement that p∧¬p is true. It must be clear that
the absurdity is absurd. If it isn’t absurd enough, proceed farther with the proof.

example

Theorem 8. There is no largest number

Proof. Assume to the contrary there was a largest number n. Consider the number n+ 1.
We know n + 1 is a number when n is a number, but n < n + 1, so n was not the largest
number, contradiction.

The statement of the theorem is obvious, but take note of the setup and syntax.

Theorem 9. If x, y are positive real numbers, then
√
x+ y ̸=

√
x+

√
y

Proof. Assume to the contrary that there exists positive real numbers x, y such that
√
x+ y =√

x+
√
y. Then

√
x+ y =

√
x+

√
y (1)

x+ y = (
√
x+

√
y)2 (2)

x+ y = x+ 2
√
xy + y (3)

0 = 2
√
xy (4)

0 = xy (5)

By the zero product property, if xy = 0, then one of x, y must be zero. This contradicts
our assumption that x, y are both positive.

Note again how we negate the implication here. Recall that ¬(p =⇒ q) ≡ p ∧ ¬q.
We phrase this negation as there do exist positive real numbers (p), but

√
x+ y =

√
x +√

y (¬q).
We finish with one more proof and its legend. Pythagoras is well known for many

advancements in mathematics, including the Pythagorean theorem1 He led a society, a cult
maybe, which believed in numerology. They believed that all of nature could be explained
by either numbers, or ratio of whole numbers. Today we write 2

3 and understand it as a
“part”. They did not. They would have interpretted this as 2 : 3, as in two wholes to three
wholes, as a ratio. We may eat 2

3rds of a pie. They would have understood it as two wholes
to three wholes. Two pies of three pies. Every number they believed was either whole, or
a ratio. The concept of an irrational number was unfathomable to them. Following the
Pythagorean theorem grew an essential question. What ratio was the hypotenuse of a right
triangle with unit side lengths? How long was the diagonal of a square of side lengths 1?

1Even though it had been discovered by others, a few thousand years before him.
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Following the Pythagorean theorem, we see that 12 + 12 = c2. For what ratio c could
c2 = 2? Today we know that

√
2 can not be rational, it cannot be represented as a ratio of

whole numbers. Ancient civilizations thought it might be 577/408 or even 305470/216000,
but these are simply approximations. Pythagoras could not comprehend that an irrational
number could exist, since it contradicted his view of nature. A student of his, was able to
demonstrate that not only do irrational quantities exist, but c =

√
2 must be irrational.

Theorem 10. The number
√
2 is irrational.

Proof. Assume to the contrary that
√
2 = m/n for m,n numbers in reduced form. The

numbers m,n do not share any factors, the ratio has been simplified. Certainly every
rational number can be written in such a reduced form. Since it is reduced, we know both
m,n cannot be even, so one must be odd. We may write

√
2 =

m

n
(6)

√
2n = m (7)

(
√
2n)2 = m2 (8)

2n2 = m2 (9)

Since we may write m2 as two times something, it must be m2 is even. Since the square of
an odd number is always odd, then m must also be even. So m = 2k for some k. Then

2n2 = m2 (10)

2n2 = (2k)2 (11)

2n2 = 4k2 (12)

n2 = 2k2 (13)

Since we can write n2 as two times something, n2 is also even, so we know that n must
also be even. But how can both m,n be even? We assumed they were both reduced! If
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they are both even, they are not reduced, as they share the common factor of two. A
contradiction.

I will quote a popular book2 to finish the myth: “For Pythagoras, the beauty of math-
ematics was the idea that rational numbers (whole numbers and fractions) could explain
all natural phenomena. This guiding philosophy blinded Pythagoras to the existence of
irrational numbers and may even have led to the execution of one of his pupils. One story
claims that a young student by the name of Hippasus was idly toying with the number√
2, attempting to find the equivalent fraction. Eventually he came to realise that no such

fraction existed, i.e. that
√
2 is an irrational number. Hippasus must have been overjoyed

by his discovery, but his master was not. Pythagoras had defined the universe in terms
of rational numbers, and the existence of irrational numbers brought his ideal into ques-
tion. The consequence of Hippasus’ insight should have been a period of discussion and
contemplation during which Pythagoras ought to have come to terms with this new source
of numbers. However, Pythagoras was unwilling to accept that he was wrong, but at the
same time he was unable to destroy Hippasus’ argument by the power of logic. To his
eternal shame he sentenced Hippasus to death by drowning. The father of logic and the
mathematical method had resorted to force rather than admit he was wrong. Pythagoras’
denial of irrational numbers is his most disgraceful act and perhaps the greatest tragedy of
Greek mathematics. It was only after his death that irrationals could be safely resurrected.”

2Fermat’s Enigma by Simon Singh
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