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1 Universes of Discourse

Without defining what a set is, we implement some common notation for the universes of
discourse.

• The Naturals N = 0, 1, 2, 3, ...

• The Integers Z = ...,−2,−1, 0, 1, 2, ...

• The Rationals Q = a/b where a, b are any integer but b isn’t zero.

• The Irrationals I any quantity which isn’t rational

• The Reals R = any number with any decimal expansion. Every real is either rational
or irrational.

• The Complex Numbers C = a+ bi where a, b are any reals and i2 = −1.

2 Exhaustive Proof

Suppose we want to prove a statement of the form ∀xP (x). If we are lucky enough that the
universe of discourse of x is finite, then we may simply prove it for each x. If x can only be
one of a, b, c, d, then ∀xP (x) = P (a) ∧ P (b) ∧ P (c) ∧ P (d) Lets do a simple example

Theorem 1. If n is a number between two and four, then n2 > n

Proof. We confirm that 22 = 4 > 2 and 32 = 9 > 3 and 42 = 16 > 4.

This obviously doesn’t work in the case that the universe of discourse is infinite. You
are not allowed to have an infinitely long proof. A proof of ∀xP (x) must itself be of finite
length, but assert something which is true for infinitely many values of x.

3 Proof by Cases

A theorem may require a trickier proof, in that it may need to be decomposed into cases.
If you wish to prove a statement of the form (p1 ∨ ... ∨ pk) =⇒ q, it is equivalent to prove
(p1 =⇒ q) ∧ ... ∧ (pk =⇒ q). For example, if you wish to prove a statement about all
numbers, you may do it into cases, one case with the assumption that your number is even,
and another case with the assumption that your number is odd.

Theorem 2. If n is any number, then n2 + n is even.
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Proof. Let n be any number. Then we have two cases.
Case 1: If n is even, then n = 2k for some k. Then n2 + n = 4k2 + 2k = 2(2k2 + 1)

which is even.
Case 2: If n is odd, then n = 2k+1 for some k. Then n2 + n = 4k2 +4k+1+2k+1 =

2(2k2 + 3k + 1) which is even.

Note that when you break your problem into cases, they must cover the entire universe
of discourse. If you wish to prove something is true for any integer of Z, it is not sufficient
to prove it in the cases that x > 0 and x < 0, since you have not covered the case that
x = 0. Famously, the four color theorem was proved by checking nearly two thousand cases.
Along with a proof of each case, they have to provide a proof that the those were the only
cases.

4 Without Loss of Generality

Sometimes, a theorem doesn’t need multiple cases if the cases are all the same. For example,
suppose you were to prove “If x, y have opposite parity then xy is even”. You don’t need
to split this into the two cases that x even y odd and x odd y even. Since xy = yx, you
may simply say “by loss of generality, suppose x is even and y is odd”. Each case is simply
a relabeling of the other where you swap what x and y are called.

5 Infinitely Many Primes

This is a cool proof, couldn’t figure out where else to show it so its goes here

Theorem 3 (Euclid’s Theorem). There are infinitely many primes.

Proof. Assume to the contrary there are only finitely many prime numbers. Then there are
only finitely many primes p1, p2, ..., pk where pi denotes the ith prime number. Consider
the number

n = (p1 · p2 · ... · pk) + 1

Note that n is not equal to any of the finitely many primes, so by assumption, it must not
be prime, but be composite. Then it has a prime divisor p, which must be one of p1, ..., pk.
But then p divides P = p1 · ... · pk and p divides n = (p1 · p2 · ... · pk) + 1. So p divides
n − P = (p1 · p2 · ... · pk) + 1 − (p1 · p2 · ... · pk) = 1. But no prime number divides 1, a
contradiction.

6 Non-constructive Proof

Suppose we want to prove a statement of the form ∃xP (x). We may simply find a value x
from its universe of discourse which satisfies the predicate P . As it turns out, this is not
necessary. You can prove something to exist without knowing what it is. Again, we witness
the power of proof.

Theorem 4. Some digit of π = 3.14... appears infinitely often.
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Proof. Suppose not. Then every digit of π appears only finitely many times. Then the
decimal expansion of π must terminate, which would imply that π is a rational, contradic-
tion.

Observe how we used the fact that decimal numbers which terminate must be rational.
Any terminating decimal of the form 1.23 may be written as 1 + 23

100 . Next, note that this
proof established that a digit of π does appear infinitely often. It didn’t establish which
digit, or how often, or where it appears. It simply established exactly and only what it
stated. It didn’t give us any method to even determine what digit appears infinitely often.
This is why we may denote the proof as non-constructive.

Theorem 5. There exists rational numbers a, b such that ab is rational.

This result should surprise you. If a, b are irrationals, it turns out, you would be wrong
to expect that ab is also irrational.

The proof should surprise you even more. It doesn’t won’t tell us for which irrational
numbers a, b is the theorem true, or even one example. But it does simply assert such a
pair of irrationals must exist.
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In either case, we have asserted that there exist irrational a, b such that ab is rational.

For the proof, we don’t even know if
√
2
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2
is rational or irrational! Yet in either case,

we may assert the existence of irrationals a, b with the property that ab is rational. One of

the pairs a, b =
√
2,
√
2 or a, b =
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,
√
2 must work. We don’t know which, but we know

it must be one of them!
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