
CS 3510 Algorithms 2/22/2024

Lecture 10: Longest Sequences

Lecturer: Abrahim Ladha Scribe(s): Adam Zamlynny

1 Longest Common Substring

Take the two strings “EL GATO” and “GATER”. They both share the letter E which is
a common substring, but they also contain the string “GAT” which is the longest common
substring. Given two strings, we want to find their longest common substring. Brute-force
here, while not that bad can be improved by DP. We do this using two degrees of freedom
where the first is the index of the first string, and the second is the index of the second
string.

We will solve instead the longest common suffix problem, and then transform out solu-
tion into solving the longest common substring.

Let a1, a2 be any strings with a1y, a2y having the longest common suffix y. What is the
longest common substring a1yb1, a2yb2. We might be able to append letters here if y is the
suffix and yb1 will remain the longest common suffix. Thinking about this, we come to the
following. If b1 = b2, then yb1 = yb2 is the longest common suffix of a1yb1, a2yb2. If b1 ̸= b2,
then y is the longest common substring of a1yb1, a2yb2, but a1yb1, a2yb2 have no common
suffix, so their longest common suffix is of length zero.

Think about what the last step is and how that will effect your answer. If you can
inductively come up with an answer from previous answers you’ll save a lot of time.

Let’s define the elements of our table. We’ll have a two dimensional table T , indexed
by the indices i and j. Index i is the index into the first string and j the index into the
second string.

T [i, j] =

{
T [i− 1, j − 1] + 1, if xi = yj
0, if xi ̸= yj

}
Now we can write the code to fill in the table. Here the maximum suffix over all prefixes

is the maximum of the substrings, so instead of finding that at the end, we’re going to do
it as we fill in the table.

10: Longest Sequences-1

def lcsubstring(x, y):

initialize dp as a table of size |x| + 1 by |y| + 1 as 0s

max = 0

maxpos = (0, 0)

for i in 1..(|x| + 1)

for j in 1..(|y| + 1)

if x[i - 1] = y[j - 1]

dp[i, j] = dp[i - 1, j - 1] + 1

else

dp[i, j] = 0

if max < dp[i, j]

max = dp[i, j]

maxpos = i, j

Figure 1: Longest common substring algorithm.

Considering it in terms of suffices is easier than solving this problem in terms of sub-
strings. The table stores the suffix lengths, and the longest suffix of a prefix is of course the
longest substring. We’ll fill in the table.

E L G A T O
0 0 0 0 0 0 0

G 0 0 0 1 0 0 0
A 0 0 0 0 2 0 0
T 0 0 0 0 0 3 0
E 0 1 0 0 0 0 0
R 0 0 0 0 0 0 0

Figure 2: Longest common substring example table.

When filling in the table, we only look if the two letters in the strings are equal and if
they are we add one to the element to the left and up.

Runtime: n × m table with O(1) work for each entry, so O(nm) overall runtime and
space complexity, where n = |x|, and m = |y|.

2 Longest Common Subsequence

Take the example x = a, b, c, b, d, a, b and y = b, d, c, a, b, a. Subsequences are not contiguous,
so for example the subsequences b, c, b, a and b, d, a, b are both valid. Again let’s think about

10: Longest Sequences-2

the last letter that we add since this will be eaiser for the dp approach: if we add one
character, how does that change our state and our answer.

Let X = x1, ..., xm, Y = y1, ..., yn, Z = z1, ...zk where Z is the longest common sub-
sequence. Then if xm = yn, then zk = xm = yn and z1, ..., zk−1 is the longest common
subsequence. If xm ̸= yn, then Zk ̸= Xm or Zk ̸= Yn and Z is still the longest common
subsequence.

Let’s define our recurrence T [i, j] is the longest common subsequence of x1, ..., xi and
y1, ..., yj . If either of the i or j is zero, we want zero because there could not be a subse-
quence. If the two letters are equal we want to add that character so we take the longest
common subsequence of both strings without that character and add one for that charac-
ter. Otherwise, the longest common subsequence is the maximum of the longest common
subsequences with one less character.

T [i, j] =

0, if i = 0 or j = 0
T [i− 1, j − 1] + 1, if xi = yj
max(T [i− 1, j], T [i, j − 1]), if xi ̸= yj

You take the max, since if the letters are different, it may increase a previous longest

subsequence in one, but not both. Consider this example, where d ̸= e but d does increase
one subsequence.

......a.....b...c....|d
..a...b...c...d....|e

def lcsubsequence(x, y):

initialize dp as a table of size |x| + 1 by |y| + 1 as 0s

initialize bt as a table of size |x| + 1 by |y| + 1 as 0s

for i in 1..(|x| + 1)

for j in 1..(|y| + 1)

if x[i] = y[j]

dp[i, j] = dp[i - 1, j - 1] + 1

bt[i, j] = ↖
else

if dp[i, j - 1] < dp[j, i - 1]

dp[i, j] = dp[i - 1, j]

bt[i, j] = ←
else

dp[i, j] = dp[i, j - 1]

bt[i, j] = ↑

Figure 3: Longest common subsequence algorithm.

10: Longest Sequences-3

B D C A B A
0 0 0 0 0 0 0

A 0 0 0 0 1 1 1
B 0 1 1 1 1 2 2
C 0 1 1 2 2 2 2
B 0 1 1 2 2 2 2
D 0 1 2 2 2 2 2
A 0 1 2 2 3 3 3
B 0 1 2 2 3 4 4

Figure 4: Longest common subsequence example dp table.

If you’re trying to follow the notes, refer to both this table and the table below which
shows how this table was made.

B D C A B A
· ← ← ← ← ← ←

A ↑ ← ← ← ↖ ← ↖
B ↑ ↖ ← ← ← ↖ ←
C ↑ ↑ ← ↖ ← ← ←
B ↑ ↖ ← ← ← ← ←
D ↑ ↑ ↖ ← ← ← ←
A ↑ ↑ ← ← ↖ ← ↖
B ↑ ↖ ← ← ↑ ↖ ↖

Figure 5: Longest common subsequence example backtracking table.

The arrows in the above table correspond to the backtracking which you could take to
get an answer. Note that the arrows the algorithms produce give a strict solution.

Runtime: n × m table with O(1) work for each entry, so O(nm) overall runtime and
space complexity, where n = |x|, and m = |y|.

3 Longest Palindromic Subsequence

Suppose you have as input one string x = a1, ..., an and we want to find the longest palin-
dromic subsequence. Notice quickly that this is lcsubsequence(a1, ..., an, an, ..., a1).

We can construct the dp array dp[n][n] with dp[i][j] = largest palindromic subsequence
from ai...aj . We have the base cases where empty strings and single characters are palin-
dromic, so ∀i dp[i][i] = 1.

If ai, ..., aj has the fact that ai = aj , then it could be the ends of a palindrome, but it
depends on ai(ai+1...aj−1)aj , so we obtain the recurrence T [i, j] below:

10: Longest Sequences-4

T [i, j] =

{
2 + T [i+ 1, j − 1], if xi = xj
max(T [i+ 1, j], T [i, j − 1]), if xi ̸= xj

}

def lpalindromesubsequence(x1...x_n):

initialize dp as a table of size n by n as 0s

for i in 1...(n)

dp[i][i] = 1

for s in range 1...(n)

for i in range n-s

j = i + s

if x[i] = x[j]

dp[i][j] = 2 + dp[i+1][j-1]

else

dp[i][j] = max(dp[i+1][j], dp[i][j-1])

Figure 6: Longest palindromic subsequence algorithm.

Runtime: n×n table with O(1) work for each entry, so O(n2) overall runtime and space
complexity, where n = |x|.

10: Longest Sequences-5

	Longest Common Substring
	Longest Common Subsequence
	Longest Palindromic Subsequence

