
CS 3510 Algorithms 3/12/2024

Lecture 13: NP-completeness

Lecturer: Abrahim Ladha Scribe(s): Himanshu Goyal

1 Introduction

This lecture is like my sales pitch to the field of complexity theory. An algorithm is a
constructive solution to a problem. For some problem, an algorithm is an upper bound. A
problem has complexity. An algorithm has run time. Given a problem, there may exist any
number of upper and lower bounds. Those lower bounds can involve deep mathematical
relationships between problems (or class of problems).

Why are we studying complexity in an algorithm course? Sometimes, those deep mathe-
matical relationships are themselves, just algorithms!

Example: Let us consider the following problem, discusses its complexity (upper and lower
bounds)

• Input: Unsorted list of integers

• Output: the list of indices as if it was sorted

Here is one potential solution: We have an obvious upper bound on sorting. In O(n log n)
time, sort the array, keeping track of indices and then return indices. Can we do faster?
Is there some o(n log n) algorithm? Suppose to the contrary, there exists an o(n log n)
algorithm, (suppose its O(n) even). Then we given an o(n log n) sorting algorithm

Unsorted
Array

o(n log n)
indices

O(n)

Sorted
Array

Using the indices, you can sort the array in linear time. So this gives a o(n log n) + O(n)
= o(n log n) sorting algorithm, a contradiction. Therefore, the complexity of this problem
is Ω(n log n). This way of solving problems is commonly referred as reduction and is very
popular in complexity theory.

Its all about this kind of thinking. Do not think about solving the problem. Do not solve the
problem. Instead think about how this problem relates to a known problem. All algorithms
in this unit will only be reductions, i.e. an algorithm to convert one problem instance into
instance of another problem. This is the true moral of this unit.

13: NP-completeness-1

2 Background

A decision problem is a problem which can be phrased as a Yes/No question. For instance,
PATH = {⟨G, s, t⟩ | there ∃ a path from s to t in G}. Here, it is not asking for the path.
It is asking only, if there exists a path. A search problem is one which would actually
output path. Every search problem obviously has a corresponding decision problem. In our
formalisation, we only consider decision problems.

Define P to be the class of decision problems decidable in polynomial time. If A ∈ P , ∃
an algorithm on input x, to correctly say yes if x ∈ A and no if x ̸∈ A, ∃ some k > 0 such
that this algorithm runs in O(nk) time.

Reason 1: The class P captures our intuitive notion of what it means for an algorithm
be be “efficient”. If there exists a polynomial time algorithm for a problem, either the
problem is ridiculously trivial, or we have some deep mathematical characterization, an
understanding of the problem. Think about how all our fast algorithms did things based
on properties of the problem they were solving. Most problems have terrible brute force
algorithms, most problems seems to be in EXP.

Reason 2: P is closed under operations which do not violate our intuition about ef-
ficiency. The sum, product, composition of polynomials are all polynomials. If f , g are
polynomial time algorithms they are “efficient”. Running f , then running g should also
maintain this intuition about “efficiency”. This algorithm has run time f + g, also a poly-
nomial.

Reason 3: Although by the time hierarchy theorems, there do exist problems of Ω(n99),
none of these appear natural or useful. The highest polynomial time algorithm I have
personally seen is for the LLL1 algorithm, what it solves is unimportant to us, but its
existence was surprising. It solves a very hard problem in O(n8) time, thought to be super
polynomial. The original O(n8) time algorithm is actually unusable in practice and is purely
a theoretical result. However, now since its poly time, it can be handed off to the engineers.
There are many hardcore pruning algorithms which have unclear analysis, but make the
LLL algorithm practically instant on any input I could test. Recall why big-O hides those
addition and multiplication constants. Its not our job, its someone elses. A poly time
algorithm for a problem implies non-trivial intuition about the problem statement. If you
can be offered this little insight, you can perhaps expand it to take more. This is why its
hard to find practical high degree poly time algorithms. If it gets too high, then its not
poly time. Many of the algorithms we studied ran in times O(n), O(n log n), O(n2) and not
much more.

A final reason is that most models of computation can simulate each other up to a
polynomial degree. Within P, there should be caution. Our concern for this will be around
and just outside of P, so we will continue to only use and care about the word-RAM model.

2.1 Examples within P

• PATH = {⟨G, s, t⟩ | there ∃ a path form s to t in G}. BFS/DFS can solve this problem
in linear time.

1https://en.wikipedia.org/wiki/LenstraLenstraLovsz_lattice_basis_reduction_algorithm

13: NP-completeness-2

https://en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm

• RELPRIME ∈ P i.e. RELPRIME = {⟨x, y⟩ | gcd(x, y) = 1} since GCD takes
polynomial time (cubic in fact)

3 Complexity Classes

NP = Non-deterministic polynomial time. With out getting too muddy into the definition
of non-determinism. Lets give an equivalent deterministic definition.

A ∈ NP if solutions to problems in A are verifiable in polynomial time. A ∈ P =⇒ ∃ a
polynomial time algorithm. The algorithm may take on {⟨G, s, t⟩ and determines ∃ a path
or not. A ∈ NP =⇒ ∃ a poly time verifier V which takes on input {⟨G, s, t⟩ the problem
instance, and also a witness/certificate/solution say ⟨v1, v2....vk⟩ and determines yes/no, if
⟨v1, v2....vk⟩ is a path in G from v1 = s to vk = t.

If P is the class of decision problems solvable in polynomial time, NP is the class of
problems verifiable in polynomial time. The problems in P have solvers, or algorithms,
the problems in NP have verifiers, autograders, for them. The problems that a verifier is
verifying may not be solvable in polynomial time. But a solution to a problem can be easily
checked. There is no discussion on how this solution is obtained. It is given to you by god.
To show a problem is in NP, just show how you could write an efficient verifier. It takes as
input the problem, but also the answer, and simply checks it.

COMPOSITES ∈ NP where COMPOSITES = {n | n is not prime}, why? the problem
instance would be some ⟨n⟩, the witness would be the factors p1, ..., pk. Now, we can com-

pute N
?
= p1 · p2.... · pk in polytime.

Let us prove one direction of a famously hard problem. Let A ∈ P. We show =⇒ A ∈
NP. Since this is ∀A ∈ P, then we conclude P ⊆ NP.

If A ∈ P, ∃ a poly time algorithm f to decide A. We give a poly time verifier V. V on
input (Problem p, witness = “”) simply returns f(p). Essentially your verifier just solves
the problem! Since f is polytime, so is V obviously. Another way to think: a witness can
only speed up computation. Having the answers can only help, so P ⊆ NP.

We believe its strict but cannot prove it. We have some, many, thousands of problems
in NP, we do not believe to be in P. But we can not prove it. The history of complexity
theory is a history of failure.

Let EXP = problems solvable in exponential time. We know, and we can prove P ⊊ EXP.
There are problems in EXP provably not in P. We also know we can brute to solve the
problems in NP, so we see P ⊆ NP ⊆ EXP. Since P ⊊ EXP, one of the P ⊊ NP, NP ⊊ EXP

must be true. So if you could show NP = EXP, this would imply, P ̸= NP for free. P
?
= NP

is then equivalent to question “ Are there any decision problem requiring exponential time
to solve which also require super polynomial time to verify?”

Let L = SPACE(log n) and PSPACE =
⋃∞

k=0 SPACE(nk) be defined as polynomial
and logarithmic space respectively. By the space hierarchy theorem, we know L ⊊ PSPACE

13: NP-completeness-3

but we similarly have the chain L ⊆ P ⊆ NP ⊆ PSPACE. If you could prove L = P and
NP = PSPACE then you would get P ̸= NP for free! If you could show P = PSPACE , you
would get P = NP for free.

If P ̸= NP, our world looks like

P P NP PSPACE EXP

From now on, we won’t care about outside NP. Let us zoom in.

P NP

NP - Complete

4 NP-Completeness

NP-Complete problems are the hardest problems in NP.

P

NP

NP-Complete

13: NP-completeness-4

Why do we care about NP-Completeness. It depends who you are. To me, it means you
can give up working on a problem, or apply NP-complete specific technqiues, such as SMT
solvers.

How do we prove a problem is NP-Complete: First we define a poly time reduction for
two problems, A and B, we say A ≤p B. (A is poly time reducible to B) if exists f which
is computable in polynomial time such that

x ∈ A ⇐⇒ f(x) ∈ B

Note this implies x /∈ A ⇐⇒ f(x) /∈ B. f maps right answers to right answers and
wrong answers to wrong answers.

A Bf

f

Intuitively, you should think A ≤p B means “B is harder than A”. B is an upper bound
for A or A is an lower bound for B.

If A ≤p B and B ∈ P =⇒ A ∈ P . If A ≤p B then ∃ f such that x ∈ A ⇐⇒ f(x) ∈ B,
with f computable in poly time. If B ∈ P , the ∃ algorithm for B(x) which runs in poly
time, we give a poly time algo for A to prove A ∈ P.

algo for A(x):

compute f(x)

if f(x) in B

return true

else

return false

Here we accept x if the algorithm for B accepts f(x). We reject x if the algorithm for B
rejects f(x). So this decides A by looking at B. Since f, algo for B are computable in poly
time, so this decides A in poly time.

To prove B is NP-Complete you show:

13: NP-completeness-5

• B ∈ NP

• B is NP-hard: If A is some NP-Complete problem, prove A ≤p B by giving a poly
time reduction form A to B.

Cook and Levin2 independently proved ∀A ∈ NP that A ≤p SAT . We will take about
SAT next time, but for us all that matters is that there exists an NP-Complete Problem.
To show some B is NP-Complete, pick a candidate NP-Complete problem (like SAT) and
show SAT ≤p B. By transitivity, this shows ∀A ∈ NP, A ≤p SAT ≤p B =⇒ ∀A ∈ NP,
A ≤p B or that “B is harder than anything in NP”. Combining this with B ∈ NP, you get
“B is the hardest problem in NP” truely one of many.

We will have a vast collection of NP-Complete problems by our polynomial time reduc-
tions, they all are as hard as each other up to a polynomial factor. A fast algorithm for one
is a fast algorithm for all.

Prove: SAT (or any other NP-complete problem) ∈ P =⇒ NP = P. We already know
P ⊆ NP, so we prove just NP ⊆ P

Proof: Let A ∈ NP, we know A≤p SAT. We proved A≤pB and B ∈ P =⇒ A ∈ P. So
A ∈ P =⇒ NP ⊆ P =⇒ P = NP.

2https://en.wikipedia.org/wiki/Cook–Levin theorem

13: NP-completeness-6

13: NP-completeness-7

	Introduction
	Background
	Examples within ¶

	Complexity Classes
	NP-Completeness

