
CS 3510 Algorithms 3/14/2023

Lecture 14: Satisfiability

Lecturer: Abrahim Ladha Scribe(s): Jiaxuan Chen

1 Introduction

Let’s review what we did last time. We began our discussion on NP-completeness. To prove
some problem B is NP-complete, you should:

1. Prove B ∈ NP by showing it is verifiable in polynomial time.

2. Prove B is NP-hard. That is, A ≤p B.

• Choose some known A which is NP-complete.

• Give some reduction f computable in polynomial time such that, for every x ∈ A:

x ∈ A(is good) ⇐⇒ f(x) ∈ B(is good),

x /∈ A(is bad) =⇒ f(x) /∈ B(is bad).

In order to prove a problem is NP-complete, this depends on some other known NP-complete
problem existing. Cook and Levin independently did this. They proved SAT is NP-complete
without a predecessor. That is, ∀A ∈ NP, A ≤p SAT. Note that, this is true for every prob-
lem in NP. But, what is SAT?

A variable is one of x1, x2, . . . , xn.
A literal is a variable or its negation xi or ¬xi.
A clause is an OR of several literals.
A formula in CNF form is an AND of several clauses.

For example:
(x1) ∧ (¬x1)

14: Satisfiability-1



is unsatisfiable. Another example might be satisfiable:

(x ∨ y ∨ z) ∧ (x ∨ z ∨ w) ∧ . . .

SAT

SAT is extremely universal. Most constraint problems can be made to look like SAT. Each
clause is a constraint: every constraint must be satisfied, but they can be satisfied in a
number of ways.
Let’s say you have to feed everyone. You want either a burger, a gyro or a cheeseburger.
My buddy only wants a cheeseburger. Each of us is a constraint. We have variables like
you order a burger (b) or gyro (g). Our SAT formula is like:

(b ∨ g ∨ c) ∧ c

The formula (x1 ∨ ¬y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ ¬yn) is satisfiable only when x1 = y1, x2 =
y2, . . . , xn = yn. A SAT formula for string equality.
To be clear, an assignment is a selection of variables xi ∈ {0, 1}. An assignment satisfies a
given boolean constraint, an assignment satisfies I.

SAT Definition: Φ ∈ SAT such that Φ is a formula in CNF form and is satisfiable.

Recall Cook and Levin proved L ∈ NP =⇒ L ≤p SAT. So if SAT ∈ P =⇒ NP ⊆ P =⇒
P = NP. SAT is like an elected representative of the entire class of NP. This is also why we
don’t believe there exists a polynomial time algorithm for SAT.

kSAT definition: ∃Φ such that Φ is a formula in CNF, satisfiable, each clause has at most
k literals.

3SAT

We prove that 3SAT is NP-complete by reduction. First, we show 3SAT ∈ NP. Our witness
is simply the assignment of variables for the problem instance solution. All these compu-
tations can be done in polynomial time. For all Φ(C1, . . . , Cm), check if Φ(C1, . . . , Cm) = 1
or not.

Now we prove SAT ≤p 3SAT . For a general SAT formula, we convert it to a 3SAT instance
such that Φ is satisfiable (∈ SAT ) if and only if F (Φ) is satisfiable (∈ 3SAT ). We describe
our reduction F as follows: For an input Φ of every SAT formula has some max clause size
k. If k ≤ 3 then Φ is both in SAT and 3SAT . Now suppose Φ has max clause size k > 3.
We convert a clause of size k > 3 to a pair of clauses, one of size k− 1 and the other of size
3. We add a variable z as follows:

(x1 ∨ x2 ∨ · · · ∨ xk−1 ∨ xk) ⇐⇒ (x1 ∨ x2 ∨ · · · ∨ xk−2 ∨ z) ∧ (xk−1 ∨ xk ∨ ¬z)

14: Satisfiability-2



Where each xi is a literal. Note, if the k clause is true, at least one of its literals is true,
so there is a selection of z to make the two clauses true. If the k clause is always false, the
two clauses are also always false for any selection of z. Note, it is important this conversion
does not change the satisfiability of Φ. Repeat this process, adding dummy variables, until
Φ only has clauses of size 3.

• Note: Since this does not alter satisfiability, Φ ∈ SAT if and only if F (Φ) ∈ 3SAT .
reduction F occurs in polynomial time.

• This reduction F occurs in polynomial time.

• We conclude: SAT ≤p 3SAT and so, 3SAT is NP-complete.

Note that since Cook-Levin showed us SAT ∈ NP, 3SAT ≤p SAT, and we found 3SAT ∈ NP,
3SAT ≤p 3SAT. This implies 3SAT is NP-complete without having to repeat the entire SAT
proof. A simple reduction suffices. It is possible to repeat this reduction for 4SAT, 5SAT,
. . . , kSAT for any k ≥ 3.

What about 2SAT? Actually, 2SAT ∈ P, so if 3SAT ≤p 2SAT, SAT ∈ P and NP = P.
Surely, we don’t believe should happen. Recall (p ⇒ q) ⇔ (¬p ∨ q). So every 2SAT clause
of size two is an implication.

(a∨b) ⇔ (¬a ⇒ b), (¬a∨b) ⇔ (a ⇒ b), (a∨¬b) ⇔ (¬a ⇒ ¬b), (¬a∨¬b) ⇔ (a ⇒ ¬b).

Create a graph two vertices for each literal, two edges for each clause. If (a ∨ b) a clause,
add edge ¬a → b, ¬b → a. Recall implication is transitive, and a formula is unsatisfiable if
and only if ∀x, (x ⇒ ¬x) or (¬x ⇒ x) so ∃ a path in our graph from x to ¬x and from ¬x
to x.

(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

x → ¬y
¬y → x
¬x → ¬y
¬y → ¬x
x → y
y → ¬x

If x = 0 ⇒ y = 1, if y = 1 ⇒ x = 0.

CircuitSAT

Let circuitSAT be defined as the set:

circuitSAT = {C | C a boolean circuit with AND/OR/NOT gates and a way to bring output to 1}

We prove that circuitSAT is NP-complete.

14: Satisfiability-3



• First, we show that circuitSAT ∈ NP. The verifier V takes as input ⟨C⟩ and a witness
of n bits, and runs ⟨C⟩ on the inputs. The size of the input is obviously polynomial
(increasing depth or more gates).

• Now, we show that 3SAT ≤p circuitSAT. Let Φ be a 3SAT formula. We create
a boolean circuit with variables x1, . . . , xk and additional input wires for negated
literals. We add one root gate on the next layer. For each clause, add a sub-circuit
for the appropriate three. Then, add an ”AND” gate to AND the clauses together.

• If Φ ∈ 3SAT , this circuit C = F (Φ) ∈ circuitSAT.

• If Φ /∈ 3SAT , this circuit is also unsatisfiable.

• Construction of this circuit obviously takes polynomial time.

We conclude that 3SAT ≤p circuitSAT so circuitSAT is NP-complete.

14: Satisfiability-4


	Introduction

