
CS 3510 Algorithms 3/26/2024

Lecture 15: Independent Set, Clique, and Vertex Cover

Lecturer: Abrahim Ladha Scribe(s): Richard Zhang

Let’s look at some reductions and discover some more problems that are NP-complete. We
will be looking at Independent Set, Clique, and Vertex Cover.

1 Independent Set

For a given graph with vertex set V and edge set E, a subset of vertices I ⊆ V is independent
if there is no edge between any two vertices in the subset. Lets look at some examples where
finding an independent set is simple.

Figure 1: Independent set of Wheel graph

Figure 2: Independent set of Bipartite Graph

In the graphs from Figure 1 and 2, the black vertices would form an independent set since
there is no edge that has both ends as black vertices. However, finding an independent set
for a graph in general is a really hard problem and is in fact an NP-complete problem, which

15: Independent Set, Clique, and Vertex Cover-1

we will show now. Let formalize it as a decision problem and define it as the following:

INDEPENDENT-SET = {⟨G, g⟩ | G has an independent set of sizeg}

First, we will show that INDEPENDENT-SET ∈ NP. We will define a verifier that takes
in as input a problem ⟨G, g⟩ and a witness ⟨v1, ..., vk⟩, where G is a graph, g is an inte-
ger, and ⟨v1, ..., vk⟩ is a subset of vertices. We first check that k = g. We then check
for each pair of distinct vertices vi, vj ∈ {v1...vk} that there does not exist an edge be-
tween them. If both of these checks pass, then we can return true (the problem instance
⟨G, g⟩ ∈ INDEPENDENT-SET). Else, we return false. Since these checks take polynomial time,
we have a polynomial time verifier and can therefore conclude that INDEPENDENT-SET ∈ NP.

Now, we will show that INDEPENDENT-SET is NP-hard. We will reduce from the 3SAT
problem. So far, all of our reductions have been from boolean formula problems. How can
we convert a CNF-formula to a graph? This does not seem too obvious.

Let’s delve into the 3SAT problem. When you have a satisfying assignment of a formula,
you cannot select literals x and x̄ to be true simultaneously. For example:

(a ∨ x ∨ b) ∧ (c ∨ x̄ ∨ d)

Choosing x in the first clause turns off x̄ in the second. We want to do something similar in
a graph. Choosing a vertex to be part of a candidate independent set turns off its neighbors
from being included in the set.

From the idea above, we can build a polynomial time reduction f : φ → ⟨G, g⟩ such that

φ ∈ 3SAT ⇐⇒ ⟨G, g⟩ ∈ INDEPENDENT-SET

f will take in as input φ, a formula in 3CNF. For each clause in φ, create one ”triangle” per
clause where every vertex in the clause is unique, the vertices are labeled by the clause’s
literals, and these vertices are connected to each other 1. If a literal x is a vertex in a
triangle, put an edge to x̄ in all the other triangles. Lets denote this generated graph as G.
We then set g to be the number of clauses in φ. We now return this new problem ⟨G, g⟩.
Note that this reduction is computable in polynomial time. Building G takes linear time
to build the triangles and, at the worst case, O(n2) time for building the other pairs of edges.

Let’s look at an example. If φ = (x̄ ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ z) ∧ (x ∨ y ∨ z) ∧ (x̄ ∨ ȳ), then the
graph G would look like the one presented in Figure 3.

1For a clause with 2 variables, it would be two vertices connected by an edge. For a clause with 1 variable,
it would simply be the vertex itself

15: Independent Set, Clique, and Vertex Cover-2

x̄

y

z̄ x

ȳ

z x

y

z

ȳ

x̄

Figure 3: Constructed graph of formula (x̄ ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ z) ∧ (x ∨ y ∨ z) ∧ (x̄ ∨ ȳ)

If φ ∈ 3SAT, then there exists a satisfying assignment of the variables that makes φ true. For
each clause, select the corresponding vertex of one of the literals that would be evaluated
to true in the satisfying assignment of the formula. These selected vertices would form an
independent set since only one literal is selected per “triangle” of each clause and that it
is impossible for a literal and its negation to be true and to be selected. This results in no
edges having both ends being selected. Since one vertex of each clause will be selected, the
size of the independent set will be equal to g (which was set to the number of clauses in the
reduction). Therefore, φ ∈ 3SAT =⇒ ⟨G, g⟩ ∈ INDEPENDENT-SET.

If ⟨G, g⟩ ∈ INDEPENDENT-SET2, then an independent size of size g exists. By construction,
there is g “triangles” in the graph, and since you cannot pick two (or more) from a single
triangle, this independent set must have one vertex exactly in each triangle. Each of the
selected vertices corresponds to the assignment of each clause in the formula φ, so we see
that ⟨G, g⟩ ∈ INDEPENDENT-SET =⇒ φ ∈ 3SAT.

Since we found a valid polynomial reduction, we can conclude that 3SAT ≤p INDEPENDENT-SET

and therefore INDEPENDENT-SET is NP-hard.

Since INDEPENDENT-SET ∈ NP and INDEPENDENT-SET is NP-hard, we conclude that INDEPENDENT-SET
is NP-complete. Now that we have one graph problem which is NP-complete, it will make
more graph NP-complete problems easier to prove.

2 Clique

A complete graph is a graph where every vertex is connected to every other vertex. A
clique is a complete subgraph of a graph, meaning that every vertex in this subgraph is
connected to every other vertex in the subgraph. Figure 4 has examples of complete graphs.
Note that Kn denotes a complete graph with n vertices.

2To clarify, this is a G that was constructed from the reduction, not some general graph.

15: Independent Set, Clique, and Vertex Cover-3

K2

K3

K4

K5

Figure 4: Complete Graphs K2, K3, K4, and K5

Figure 5 presents an example of a clique of size 3 (as indicated by the black nodes) present
in a graph.

Figure 5: Clique of a graph

Determining if a clique of a certain size exists in a graph is a very hard problem and is in
fact NP-complete. To prove this, let formalize it as a decision problem and define it as the
following:

CLIQUE = {⟨G, g⟩ | G has a clique of size g}

First, we will show that CLIQUE ∈ NP. We will define a verifier that takes in as input a
problem ⟨G, g⟩ and a witness ⟨v1, ..., vk⟩, where G is a graph, g is an integer, and ⟨v1, ..., vk⟩
is a subset of vertices. The verifier checks that {v1...vk} has size g. Next, it checks if there
exists an edge between every distinct pair vi, vj ∈ {v1...vk}. If both of these conditions
pass, then our witness ⟨v1, ..., vk⟩ is a clique. This verifier takes polynomial time, so we can
conclude that CLIQUE ∈ NP.

15: Independent Set, Clique, and Vertex Cover-4

Now, we will show that CLIQUE is NP-hard by reducing not from 3SAT but from INDEPENDENT-SET.
We need to find a reduction f : ⟨G, g⟩ → ⟨Ḡ, g⟩ such that

⟨G, g⟩ ∈ INDEPENDENT-SET ⇐⇒ ⟨Ḡ, g⟩ ∈ CLIQUE

Lets make Ḡ the complement graph of G and make the variable g stay the same. The
complement of a graph Ḡ includes the edges that do not exist in G and excludes the edges
that do exist in G. More precisely, Ḡ has the same vertex set as G and an edge set that
contains the unordered pairs of the vertices that do not exist in the original edge set of G.
This reduction is polynomial since we are simply looping through pairs of vertices to find
the edges that do and do not exist. Figure 6 presents an example of the complement of the
graph.

G Ḡ

Figure 6: Complement graph

Notice that if a set of vertices are independent, then they share no edges. However, in the
complement graph, these same set of vertices have every possible edge between two vertices
in the set.

If ⟨G, g⟩ ∈ INDEPENDENT-SET, then there exists a selection of the vertices of size g with
no edges between then. Then if an edge e is not in the edge set of G, it must be
in the edge set of Ḡ. Thus, those same vertices in Ḡ share all edges. That is the
definition of a clique, so Ḡ has this clique of size g. Therefore, we can conclude that
⟨G, g⟩ ∈ INDEPENDENT-SET =⇒ ⟨Ḡ, g⟩ ∈ CLIQUE.

Note that since the complement of Ḡ (¯̄G) is equal to G itself, this is a rare time we get the
reverse argument for free. If ⟨Ḡ, g⟩ ∈ CLIQUE, then the clique of size g in Ḡ is an indepen-
dent set of size g in G. Therefore, we can conclude that ⟨Ḡ, g⟩ ∈ CLIQUE =⇒ ⟨G, g⟩ ∈
INDEPENDENT-SET.

Since we found a valid polynomial reduction, we can conclude that INDEPENDENT-SET ≤p

CLIQUE and therefore CLIQUE is NP-hard.

15: Independent Set, Clique, and Vertex Cover-5

Since CLIQUE ∈ NP and CLIQUE is NP-hard, we conclude that CLIQUE is NP-complete.

3 Vertex Cover

A vertex cover is a selection of vertices such that every edge shares one end in the cover.
Figure 7 presents some examples where the black vertices are vertex covers:

Figure 7: Vertex Covers

Notice that the opposite of a vertex cover (vertices not in the vertex cover) can have no
edges in between. Otherwise, this would suggest that there exists an edge with both ends
not in the vertex cover, which is a contradiction. That means that the vertices not in
the vertex cover is just an independent set! The same logic can also be applied when go-
ing from an independent set to a vertex cover. That means that S ⊂ V is a vertex cover
if and only if S̄ = V \S is an independent set. This idea will be important for our reduction.

Determining if a vertex cover of a certain size exists in a graph is a very hard problem and
is in fact NP-complete. To prove this, let formalize it as a decision problem and define it as
the following:

VERTEX-COVER = {⟨G, g⟩ | G has a vertex cover of size g}

First, we will show that VERTEX-COVER ∈ NP. Our verifier takes in as input ⟨G, g⟩ and
⟨v1, ..., vk⟩ and checks for each edge in the graph G if one endpoint is in {v1...vk}. If it
is, then the a vertex cover exists. This verifier runs in polynomial time since we are sim-
ply looping through v1...vk for each edge in the graph. Therefore, we can conclude that
VERTEX-COVER ∈ NP.

To prove that VERTEX-COVER is NP-hard, we will reduce from INDEPENDENT-SET to VERTEX-COVER.
We will define a reduction f : ⟨G, g⟩ → ⟨G, |V | − g⟩ in which V is the vertex set of G and
|V | is the total number of vertices.

If ⟨G, g⟩ ∈ INDEPENDENT-SET, there exists a selection of V , say S where |S| = g, with no
edge between them. Then S̄ = V \S is a set of vertices where all edges have to touch. If no
edge has both ends in S, every edge has one end in V \ S. That means that S̄ is a vertex
cover of size |V | − g, so we have shown that ⟨G, g⟩ ∈ INDEPENDENT-SET =⇒ ⟨G, |V | − g⟩ ∈
VERTEX-COVER.

15: Independent Set, Clique, and Vertex Cover-6

Similarly, if ⟨G, |V | − g⟩ ∈ VERTEX-COVER, then there exists a selection S ⊂ V where
|S| = |V | − g and every edge has at least one end in S. Since S is a vertex cover,
S̄ = V − S has no edges, so S̄ is an independent set of size |V | − (|V | − g) = g. Thus,
⟨G, |V | − g⟩ ∈ VERTEX-COVER =⇒ ⟨G, g⟩ ∈ INDEPENDENT-SET.

Since we found a valid polynomial reduction, we can conclude that INDEPENDENT-SET ≤p

VERTEX-COVER and therefore VERTEX-COVER is NP-hard.

Since VERTEX-COVER ∈ NP and VERTEX-COVER is NP-hard, we conclude that VERTEX-COVER
is NP-complete.

15: Independent Set, Clique, and Vertex Cover-7

	Independent Set
	Clique
	Vertex Cover

