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Last time, we discussed what linear programming (LP) was and how many diverse problems
it can represent. Today, we do a far more in depth example and detail the Simplex method,
as well as the duality theorems.

1 LP and Simplex In-Depth

Recall LP standard form. Given a m× n matrix A , a m× 1 vector b, and an n× 1 vector
c, we find a solution x of size n× 1 such that

maximize
x

cTx

subject to Ax ≤ b,

x ≥ 0

Consider the following linear program:

maximize
x

2x1 + 3x2 + 5x3

subject to x1 + 2x2 + x3 ≤ 4,

x1 ≥ 0,

x2 ≥ 0,

x3 ≥ 0

Each constraint adds a geometric figure to our n space (where n is the number of vari-
ables). The set of feasible solution to an LP forms a polyhedron in n-space. The constraint
x1, x2, x3 ≥ 0 force us into the positive octant. This forms a triangle based pyramid (pic-
tured below)!
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In order to maximize cTx, we can treat it as a plane where it equals some value z that we
control (cTx = z). We take its plane and intersect it with this polyhedron. On some fixed
plane with a fixed value z, the points will have the same objective function value, so we
seek a maximal place to shift the plane given its slope. This shift is performed by changing
the value of z and finding the maximum z that intersects with our polyhedron.

It is a guarantee that such a maximum exists at an extreme point (or equal to all points
on a line). The simplex algorithm simply iterates over the polyhedron’s external points,
increasing the objective function each time until it cannot be increased any more. Here we
see the max is at (0, 0, 4) with a value of 20.

It is a feat we are searching for a real number solution but only need to check finitely many
extreme points.

Let’s now do a more complex example. Suppose the following LP in standard form was
given:

maximize
x

3x1 + x2 + 2x3

subject to x1 + x2 + 3x3 ≤ 30,

2x1 + 2x2 + 5x3 ≤ 24,

4x1 + x2 + 2x3 ≤ 36,

x1, x2, x3 ≥ 0

First, we put this LP into ”slack form” to convert inequalities to equalities.

z = 3x1 + x2 + 2x3

x4 = 30− x1 − x2 − 3x3

x5 = 24− 2x1 − 2x2 − 5x3

x6 = 36− 4x1 − x2 − 2x3

Although not shown, all the variables are constrained to be nonnegative (x1, x2, x3, x4, x5, x6 ≥
0). If we have the constraints in the form Ax ≤ b, then we can express such constaints to
be Ax + s = b with s ≥ 0. The slack form would therefore be in the form s = b − Ax and
is shown above. In the example, s =

[
x4 x5 x6

]T
. z would be the value of the objective

function which we are trying to maximize. It will become clear later why the objective
function is expressed this way. Denote the variables on the left hand side as basic variables
and the variables on the right hand side as nonbasic variables.

We need to start somewhere, so we start off with a basic feasible solution that sets all the
nonbasic variables to be 0. To satisfying the constraints, the basic variables would be set
accordingly, giving us an initial basic solution of (x1, x2, x3, x4, x5, x6) = (0, 0, 0, 30, 24, 36).
The current objective function value is 0.

As we run simplex, we will ”pivot” to increase the current objective function value. This
will rewrite our LP by swapping one basic variable for one nonbasic variable to maximize
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the objective function. Think of the basic variables as those which are loose. An equality
constraint is tight if its nonbasic variables get its basic variable to be equal to 0.

We choose the variable in the right side of z whose coefficient is largest and is nonbasic. This
is the entering variable. Then, choose the ”tightest” constraint which we will elaborate
more later. The basic variable associated with that constraint will be the leaving variable.
In this example, x1 is the entering variable since its coefficient in the objective function is
the highest and is a nonbasic variable. As we try to increase the value x1 and increase the
objective function value, we find that x6 will be the first basic variable that will become
zero, specifically when x1 = 9. This makes the corresponding constraint for x6 the tightest
constraint. Another way of seeing it is that each of the constraints provide an upper bound
on the value of x1. The upper bounds would be 30, 12, 9 and the constraint with the lowest
upper bound (constraint with basic variable x6) is chosen. We then solve for x1 on this
constraint and obtain

x1 = 9− x2
4

− x3
2

− x6
4

Finally, we rewrite the LP by substituting this (basically doing Gaussian elimination) for
any occurrence of x1 on the right side of the LP. What we get is this:

z = 27 +
x2
4

+
x3
2

− 3x6
4

x1 = 9− x2
4

− x3
2

− x6
4

x4 = 21− 3x2
4

− 5x3
2

+
x6
4

x5 = 6− 3x2
2

− 4x3 +
x6
2

Notice that x1 is now a basic variable and x6 is now a nonbasic variable. x1 has ”en-
tered” the group of basic variables, while x6 left that group. We then create a new
solution that again make the current nonbasic variables 0. The current solution is now
(x1, x2, x3, x4, x5, x6) = (9, 0, 0, 21, 6, 0) and has an objective function value of 27.

Now let’s do another ”pivot” operation. What is the next variable we choose as the entering
variable? It would not be x6 since it has a negative coefficient in the objective function. x3
has the largest coefficient in the objective function and is nonbasic, so it will become the
entering variable. The constraint with basic variable x5 limits the increase of x3 the most,
so x5 is the leaving variable and we substitute the following:

x3 =
3

2
− 3x2

8
− x5

4
+

x6
8
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The new LP would now be the following after the substitution:

z =
111

4
+

x2
16

− x5
8

− 11x6
16

x1 =
33

4
− x2

16
+

x5
8

− 5x6
16

x3 =
3

2
− 3x2

8
− x5

4
+

x6
8

x4 =
69

4
+

3x2
16

+
5x5
8

− x6
16

x3 is now a basic variable and x5 is now a nonbasic variable. Again, after setting the cur-
rent nonbasic variables to be all zero, we have a current solution of (x1, x2, x3, x4, x5, x6) =
(334 , 0,

3
2 ,

69
4 , 0, 0) and a current objective function value of z = 111

4 .

We can only increase x2 to increase the objective function value. The upper bounds would
be 132, 4,∞. The constraint with x4 as the basic variable has an upper bound of ∞ for
x2 since x4 increases as x2 increases. The constraint for the basic variable x3 constraints
x2 the most, so x2 will enter and x3 will leave. Performing the same substitution as the
previous ”pivot” operations, we get the following LP:

z = 28− x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4− 8x3
3

− 2x5
3

+
x6
3

x4 = 18− x3
2

+
x5
2

Since all the coefficients in z are now all negative, we cannot continue pivoting and increasing
the objective function value. We have reached the optimal solution and maximum objective
function value, which is (x1, x2, x3, x4, x5, x6) = (8, 4, 0, 18, 0, 0) and z = 28. Observe the
values of the original slack variables x4, x5, x6. These values determine how much slack, or
difference, between the light and right hand sides of their corresponding constraints.

We have now reached the end of the simplex algorithm for this example. Simplex at a high
level converts an LP into slack form and keeps pivoting to increase the objective function
value until it cannot increase it anymore. The last solution found becomes the final solution
returned.

2 Duality

How do we know simplex returns the optimum? Recall how a max-flow min-cut solution
was the optimum. If a flow for a network was equal to the min-cut of that same network,
that flow was the maximum flow. Finding the max flow was a maximization problem and
finding the min cut was a minimization problem, but they both have the same optimal
objective function value. Similarly, take any LP in standard form and call it the Primal. It
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has an ”evil” LP called a Dual which minimizes but has the same optimal objective function
value.

Primal

maximize
x

cTx

subject to Ax ≤ b,

x ≥ 0

Dual

minimize
y

bT y

subject to AT y ≥ c,

y ≥ 0

Note that the Dual of the Dual is the Primal. They are like brothers. If the Primal has m
constraints, the Dual will have m variables. If the Dual has n constraints, the Primal will
have n variables. We will prove that their optimal objective values are the same with the
Weak Duality Theorems.

Theorem (Weak Duality Theorem). Given a primal LP (A, b, c) and its dual, let x be a
feasible solution for the primal LP and let y be a feasible solution the dual LP. Then, we
have

cTx ≤ bT y

The Weak Duality Theorem can show that the max-flow ≤ min-cut in a flow network.

Proof: Let n be the number of variables in the Primal and m be the number of variables
in the Dual.

cTx =
n∑

j=1

cjxj ≤
n∑

j=1

[
m∑
i=1

(aijyi)xj

]
=

m∑
j=1

[
n∑

i=1

(aijxj)yj

]
≤

m∑
i=1

biyj = bT y

Two important results come from the Weak Duality Theorem.

1. If cTx = bT y, then x, y are the optimal solutions for their corresponding LP’s. If
a solution x for the Primal has an objective function value equal to bT y, then this
must be the highest. Otherwise, a solution with a higher objective function value
would be greater than bT y and thus contradict the Weak Duality Theorem. A similar
explanation can be made for a solution y for the Dual.

2. If the Primal has a solution that is unbounded, then the Dual has no feasible solutions.
If the Dual has a solution that is unbounded, then the Primal has no feasible solutions.
Say that the Primal was unbounded, but the Dual had a feasible solution. This
feasible solution would have a finite objective function value. However, the Weak
Duality Theorem states that this Dual feasible solution should have a greater objective
function value than any solution of the Primal, which is impossible since the possible
Primal objective function values are unbounded! Therefore, no feasible solution exists
for the Dual. A similar explanation can be made for the second case.
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Why is simplex optimal? It actually solves both the primal and the dual simultaneously,
just like how the max-flow algorithm also finds the min cut.

Recall our solution to the example problem was (x1, x2, x3) = (8, 4, 0) with z = 28. The
final z equation representing the objective function was in the form v′ +

∑
c′jxj . With n as

the number of original variables in the Primal, each entry in y for the Dual would then be
the following:

yi =

{
−c′n+i if xn+i is nonbasic

0 otherwise

Applying this to the final z equation in the example (z = 28− x3
6 − x5

6 − 2x6
3 ), we get that

y1 = 0, y2 = 1
6 , y3 = 2

3 . y1 = 0 since x1+3 = x4 and x4 become a basic variable at the end.
Plugging these values into bT y gives us 28 which is the same as the maximum objective
function value for the Primal.

3 A quick way for certifying optimality

We can certify that a solution from simplex is the best by applying Gaussian elimination
and the rules of algebra. Let’s look at the following LP:

maximize
x

x1 + 6x2

subject to x1 ≤ 100 (a),

x2 ≤ 300 (b),

x1 + x2 ≤ 400 (c)

Simplex returns x1 = 100, x2 = 300 with the objective function value as 1900. We can
use Gaussian elimination by multiplying inequality (b) by 5 and adding it to inequality (c)
(5b + c = x1 + 6x2 ≤ 1500 + 400 = 1900. With these constraints, we have shown that the
objective function value cannot exceed 1900. Since the simplex solution has a objective
function value of 1900, we know that this solution is the optimum.

4 Quick Remark about the Runtime of Simplex

The runtime for the average case is polynomial. However, with some inputs, simplex may
run for

(
m+n
n

)
iterations. Since each iteration runs in O(mn) time, the worst case runtime

would be exponential.
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