
CS 3510 Algorithms 1/15/2024

Lecture 3: Arithmetic
Lecturer: Abrahim Ladha Scribe(s): Saahir Dhanani

Arithmetic involves some basic operations on numbers, such as addition, subtraction, multi-
plication, exponentiation, and so on. We will formalize these operations by discussing some
algorithms for arithmetic.

1 Representations of Numbers

In order to discuss algorithms that operate on numbers, we must discuss how numbers are
their representation. What are the ways to write down a number? Like any other object,
numbers have an encoding. On computers, this encoding is a sequence of bits. In the context
of algorithms, we are concerned with the runtime in terms of the size of the input, not the
input itself. Given n bits, the largest number we can represent is 2n − 1. In other words,
given a number, x, it takes n = log x bits to represent the number on a computer. Note
that here we don’t particularly care about the base. Recall the change of base formula

logb n =
loga n

loga b

The only difference between log10 and log2 is multiplication by a constant. All logs have
the same asymptotics, but are scaled differently. We only use base 10 because we have 10
fingers. We will use base 2 most commonly because computers also do.

2 Algorithms for Addition

The first arithmetic operation you learn is always addition.

1. Basic Addition Algorithm:
This is the addition algorithm you learned in grade school
Input: Two n-bit numbers: x, y
Output: The sum x+ y
Example: input: x = 1000101 and y = 1110111

1 000 101(69)
+ 1 110 111(119)

10 111 100(188)

For each bit, we loop right to left and do either 2 or 3 steps, depending on if we have
to carry or not. This means that it takes ≤ 3n + 1 steps to complete this algorithm,
which is O(n).

3: Arithmetic-1

Can we do better? No! Its not possible, since it takes Ω(n) time to even read the input
and write the down the answer. Since we have a matching upper and lower bound, we
know that addition takes Θ(n) time, and cannot be improved.

Even though computers may be able to add 32-bit numbers in one step, constant time,
adding arbitrarily large numbers will be a function of the number of 32 bit blocks its
represented as, so it really is asymptotically linear time. If you are working in an
enviroment with fixed point arithmetic, then you may assume all the basic arithmetic
operations take constant time. That is not the case for the algorithms in this lecture.

3 Algorithms for Multiplication

The next obvious step after addition is moving on to multiplication. We give four multipli-
cation algorithms.

1. Basic Multiplication Algorithm:
This is the kind of multiplication you would’ve learned in grade school.
Input: Two n-bit numbers: x, y
Output: The product xy
Example: input: x = 1101 and y = 1011

1101
× 1011

1101
1101

0000
1101

10001111

Note that, if we consider the bits of y as yn...y1, then

xyn2
(n−1)+xyn−12

(n−2)+...+xy22+xy1 = x(yn2
(n−1)+yn−12

(n−2)+...+y22
1+y12

0) = xy

As each yi is a bit, we just add together up to n shifts of x. Think of yi as a bit
selecting whether we add that shift or not. Since there are n possible additions, and
each one takes O(n) time, the total runtime for this multiplication algorithm is O(n2).

Is it possible to do better than this? Al-Khwarizmi noticed that there was a recursive
algorithm for multiplication.

3: Arithmetic-2

2. Recursive Multiplication Algorithm:
Input: Two n-bit numbers: x, y
Output: The product xy
Pseudocode :

def mult(x, y):
Base Case
if y == 0: return 0
Split problem in half , recursively call mult
z = mult(x, floor(y/2))
if y is even:

return 2*z
if y is odd:

return 2*z + x

Let us now prove the correctness of this algorithm: First, the base case is good because
anything times 0 is still 0. Next, if y is even, then z = x

y

2
, which means that 2z = xy,

as desired. Otherwise, if y is odd, then z = x
y − 1

2
, which means that 2z + x =

x(y − 1) + x = xy. The running time of the algorithm can be analyzed without the
use of the master theorem. Notice that each recursive call shifts y by 1 bit (recall that
shifting the bits left/right is the same as multiplying/dividing by powers of two). Since
there are n bits, there will be n recursive calls. In the worst case, each call performs
an n bit addition. Therefore, with n calls, each taking O(n) time, the overall running
time is O(n2) This running time isn’t any better than that of the previous algorithm!
Is it possible to do better than this? Lets try a divide and conquer approach.

3. Divide and Conquer Multiplication Algorithm:
Input: Two n-bit numbers: x, y
Output: The product xy

Here, we will represent x and y slightly differently, by representing them with an upper
and lower half (left and right half).

x = xL xR = (2n/2)xL + xR
y = yL yR = (2n/2)yL + yR

Note that it is quite easy to compute xL and xR given x and vice versa since we can
just shift the bits to get the desired part. If x, y each have n bits, then xL, xR, yL, yR
each have n/2 bits. With this new representation, we can rewrite the computation of

3: Arithmetic-3

xy as follows:

xy =

((2n/2)xL + xR)((2
n/2)yL + yR) =

= 2nxLyL + 2n/2xLyR + 2n/2xRyL + xRyR =

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Thus, we have broken down the computation of xy into a few smaller subproblems.
Four multiplications, each of numbers of size n/2. We can now translate this equation
into an algorithm

Pseudocode :

def mult(x, y):
compute n
Base case:
if n == 1: return x * y
xL = x >> (n/2)
xR = x % (2^(n/2)) #Note , more than one way to do this
yL = y >> (n/2)1
yR = y % (2^(n/2))
LL = mult(xL, yL)
LR = mult(xL, yR)
RL = mult(xR, yL)
RR = mult(xR, yR)
return (LL << n) + ((LR + RL) << (n/2)) + RR

Each component here is drawn directly from the equation above. Since this is a divide
and conquer algorithm, we can use the master theorem to derive the runtime. To do
this, we need to write out the recurrence: T (n) = aT (n/b)+O(nd). In this case, a = 4
since there are 4 recursive calls to mult, b = 2 since the size of the input to each call of
mult is halving, and d = 1 since we are doing a linear amount of work per call. This
gives us the following recurrence: T (n) = 4T (n/2) + O(n). Now, we can compare d
with logb a: 1 < log2 4 which means that the time complexity is O(nlog2 4) = O(n2).

4. We got the same time complexity again! At this point, after three attempts, one
might think that we cannot do better than O(n2). Kolmogorov conjectured that
that multiplication has a lower bound of Ω(n2), and set out to prove this at a large
conference. Then Karatsuba came along and realized he could reduce the number of
subproblems that result from xy. He did this by noticing that:

xLyR + xRyL = (xL + xR)(yL + yR)− xLyL − xRyR

At first glance, this may seem like an increase in the number of multiplications, but
recall that we have already computed xLyL and xRyR since they are used in other
parts of the computation for xy. Now, using this revised component, we can create a

3: Arithmetic-4

https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Anatoly_Karatsuba

new algorithm with less recursive calls!

Karatsuba Algorithm (A Smarter Divide and Conquer Multiplication Algorithm):
Pseudocode :

def mult(x, y):
compute n
Base case:
if n == 1: return x * y
xL = x >> (n/2)
xR = x % (2^(n/2))
yL = y >> (n/2)
yR = y % (2^(n/2))
LL = mult(xL, yL)
RR = mult(xR, yR)
MM = mult(xL + xR, yL + yR)
return (LL << n) + ((MM - LL - RR)<< (n/2)) + RR

Once again, we can use the master theorem to do an analysis of the runtime, similar
to the previous section. In this case, a = 3 since there are 3 recursive calls to mult,
b = 2 since the size of the input to each call of mult is halving, and d = 1 since we
are doing a linear amount of work per call. Note that the work done per call also
includes computing the parameters for the recursive calls. This gives us the following
recurrence: T (n) = 3T (n/2) + O(n). Now, we can compare d with logb a: 1 < log2 3
which means that the time complexity is O(nlog2 3) = O(n1.59).

If you generalize this Karatsuba style divconquer, you get the Toom-Cook algorithm.
We’ve successfully broken the quadratic lower bound! We are unaware of any nontrivial
lower bounds on multiplication. It is conjectured to be Ω(n log n). Only recently (2020)
was there an O(n log n) algorithm found.

4 Algorithms for Exponentiation

Let’s consider two algorithms for exponentiation.

Suppose we want to compute Ax where A could be a matrix or a number and x is a
number. If we consider the bits of x as x = xn...x1, then

Ax = A2n−1xn+2n−2xn−1+...+A21x2+A20x1
=

A2n−1xnA2n−2xn−1 ...A21x2A20x1

For example, A17 = A16+1 = A16A, where A16 can be calculated by repeatedly
squaring. This leads us into the following algorithm:Basic Exponentiation Algorithm:
Pseudocode :

3: Arithmetic-5

1. def exp(A, x):
ans = 1
temp = A
for i in [1...n]:

if x_i == 1:
ans *= temp

temp *= temp
return ans

There are only n multiplications, however, repeated squaring of A grows very fast.
We would like the multiplication to be of n-bit numbers, and not something growing
large. Computing the run time of modular exponentiation is easier. Here, lets restrict
ourselves to assuming A is a number.

2. Modular Exponentiation Algorithm:
input: A, x,N where N is the modulus.
output: Ax mod N

Pseudocode :

def modexp(A, x, N):
if x == 0: return 1
z = modexp(A, floor(x/2), N)
if x is even:

return z*z mod N
else:

return A * z*z mod N

Let us now prove the correctness of this algorithm: First, the base case is good because
anything to the power 0 is 1. Next, if x is even, then (Ax/2)2 = Ax, as desired.
Otherwise, if x is odd, then (A(x−1)/2)2A = Ax−1A = Ax. The running time of the
algorithm can be analyzed without the use of the master theorem. Notice that each
recursive call shifts x by 1 bit (recall that shifting the bits left/right is the same as
multiplying/dividing by powers of two). Since there are n bits of x, there will be n
recursive calls. Each call performs an n bit multiplication in the worst case. Therefore,
with n calls, each taking O(n2) time, the overall running time is O(n3). You can of
course use Karatsuba multiplication to get a better bound of O(n2.59) but that doesn’t
make the O(n3) wrong, just worse.

5 Algorithms for Matrix Multiplication

Let’s conclude with algorithms for matrix multiplication. Here, we want to compute C =
AB, where A and B are both matrices of size n × n. In this model, we assume that
multiplications and additions take unit time, and we are concerned more with the number
of operations. The matricies may have n2 elements each, but we parametrize the problem
by their dimension, as a function of just n.

1.

3: Arithmetic-6

2. Basic Matrix Multiplication Algorithm:
Input: Two n× n matrices, A and B
Output: C, where C = AB
The classic way to compute a matrix multiplication is by computing, for every element
Ci,j of C,

Ci,j =
n∑

k=0

Ai,kBk,j

The computation for each element of C takes a linear number of steps, and there n2

elements, so this gives us a total runtime of O(n3). Lets try a different approach.

3. Basic Divide and Conquer Matrix Multiplication Algorithm:

Consider splitting A and B into smaller submatrices:

A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]

Then

C = AB =

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]

We can see that computing C takes can be done with 8 subproblems, where the
matrices in each call are of size n/2 by n/2. Once again, we can use the master
theorem to do an analysis of the runtime. In this case, a = 8 since there are 8
recursive calls, b = 2 since the size of the input to each recursive call is halving, and
d = 2 since there are multiple n2 sized additions happening during the combination
step. Each addition takes unit time, but there are additions for each element of the
matrix, giving quadratically many additions. This gives us the following recurrence:
T (n) = 8T (n/2) + O(n2). Using the master theorem, we can tell that the time
complexity is O(nlog2 8) = O(n3). However, we can definitely definitely improve upon
this runtime by being clever.

4. Better Divide and Conquer Matrix Multiplication Algorithm:
We will employ the same idea that was used to improve the first divide and conquer
algorithm for multiplication: reduce the number of subproblems!

3: Arithmetic-7

M1 = (A11 +A22)(B11 +B22)

M2 = (A21 +A22)(B11)

M3 = (A11)(B12 −B22)

M4 = (A22)(B21 −B11)

M5 = (A11 +A12)(B22)

M6 = (A21 −A11)(B11 +B12)

M7 = (A12 −A22)(B21 +B22)

Then

C = AB =

[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

]

Using the master theorem, the runtime of this new approach is O(nlog2 7) which is
approximately O(n2.81). The current best known algorithm for matrix multiplication
has a runtime of O(n2.37286). It is an open problem, and an active area of research to
improve on this.

3: Arithmetic-8

	Representations of Numbers
	Algorithms for Addition
	Algorithms for Multiplication
	Algorithms for Exponentiation
	Algorithms for Matrix Multiplication

