
CS 3510 Algorithms 2/06/2024

Lecture 7: Kruskal’s Algorithm for Minimum Spanning Trees

Lecturer: Abrahim Ladha Scribe(s): Aditya Kumaran

1 Greedy Algorithms

We’re going to talk about a class of algorithms which is very intuitive for people: when you
have an optimization problem, pick the local best, and then solve the rest of the problem
without that piece. The obvious issue though is that picking the local maximums might
not lead to a global maximum.

As an example, say you’re trying to pack the most amount of luggage into a given
amount of space. Say you have suitcases of size 35, 40, 40, and 70, but you only have 100
units of space. If you picked the largest piece of luggage, you’d pick 70, even though you
could pick the two 40s to get 80 units of luggage packed. A greedy algorithm could also try
picking the smallest suitcases first, but would again, miss the optimal solution.

This is an unlucky case, and is very close to a more interesting problem we’ll look at
later. However it’s not the rule - in fact, in many situations, Greedy Algorithm’s work well.
Two examples are Huffman Coding for compression and Kruskal’s algorithm for computing
minimum spanning trees. These algorithms and most other greedy algorithms are simple,
but that ease comes with the challenge of proving that greed will lead to the best outcome.

2 Minimum Spanning Tree

What is the minimum spanning tree (MST) problem though? To put it succinctly, given
a weighted undirected graph, give a graph which is still connected but with the smallest
weights. An MST T ⊂ G is a set of edges such that it is

• Minimum, the sum of the edge weights is less than or equal to any other MST

• Spanning, each v ∈ V is an endpoint of atleast one edge in the MST

• Tree, there are exactly |V | − 1 edges and no cycle.

This problem has many real world applications, in fact this algorithm and many other
interesting graph problems came out of Bell Labs. If you think about laying out phone lines
between towns, the cost of the phone lines, could be the distance between the towns, and
you want to spend the least wire possible (and therefore, money) while connecting them.

7: Kruskal’s Algorithm for Minimum Spanning Trees-1

7

12

20

9

8
14

23

11
9

16

6 4

7 9

8

9

6 4

Figure 1: A weighted graph and it’s MST.

Of course, in that scenario, you might want more connections for redundancy but, for
simply finding the minimum spanning tree, we don’t care. Although this exercise reveals a
couple interesting properties about minimum spanning trees. There will be no cycles in the
resulting MST because if there were a cycle, we could remove the highest value edge and
get a smaller spanning tree. Also as the problem requires, the graph must be as small as
possible while being connected, so it will have |V | − 1 edges.

Trees are graphs with special properties, and come up often in computer science. They
have many equivalent characterizations. Trees are acyclic, have n − 1 edges and n nodes,
and for any two vertices u, v in the tree, there exists a unique path from u to v. (If there
were two or more paths, compose them to make a cycle and now its not a tree anymore).

3 Kruskal’s Algorithm

Since it’s so simple, we’ll present Kruskal’s algorithm now, and then prove it’s correctness
later. Kruskal’s algorithm is rather simple and what you might come up with by thinking
about this problem: at each step, add the smallest edge to a set which does not
form a cycle with edges within that set.

Of course, checking for cycles is easier said than done; although we humans can do
it quickly, the best algorithm we’ve discussed talks linear time, meaning this would take
quadratic time (good, but not great).

7: Kruskal’s Algorithm for Minimum Spanning Trees-2

def kruskals(G, w):

for all v in V:

makeset(v)

X = {}

sort E by weight

for all (u, v) in E

if find (u) is not find(v):

x = x + {(u, v)}

union (find(u), find(v))

Figure 2: Explore routine on a graph and node.

To check for cycles, this algorithm relies on a unique data structure: union find. Now,
this data structure isn’t terribly important for the class, but it’s very important for under-
standing this algorithm. It operates on sets, and does two things: set union, and finding
the set an element is within. Both operations are logarithmic. 1

A B

C D

E

7

3

2

9

4

2

7
11

Figure 3: A simple weighted graph.

Let’s walk through how this algorithm works. If we sort the edges in this graph we get
[2, 2, 3, 4, 7, 7, 9, 11]. As we iterate over this list we get the following results.

1The proof of these runtimes is in the book. It’s fairly interesting, but not important for today. If you’re
interested in learning more refer to 5.1.4.

7: Kruskal’s Algorithm for Minimum Spanning Trees-3

{A}, {B}, {C}, {D}, {E}
2 {A, D}, {B}, {C}, {E}
2 {A, D, C}, {B}, {E}
3 find(A) equals find(C)
4 {A, D, C}, {B, E}
7 find(A) equals find(C)
7 {A, D, C, B, E}
9 find(B) equals find(D)
11 find(D) equals find(E)

Figure 4: The sets created by Kruskal’s algorithm while iterating over edges.

Now let’s analyze the runtime of this algorithm. Making the sets for union find will
take O(|V |) time. Sorting E by weight will be O(|E| log |E|). There will be |E| itera-
tions over the sorted edges, each doing log |V |. Adding these together we’ll get O(|V | +
|E| log |E|+ |E| log |V |). Note that we know O(log |E|) = O(log |V |), so the overall runtime
is O(|E| log |E|).

4 Proof and The Cut Property

Even though we have an intuitive algorithm, we need to show it is correct. How would
we do this? Contradiction is one good option: we can assume a greedy approach does not
give the optimal solution and show why the greedy approach would have chosen this other
solution instead, creating a contradiction. In this proof, we’ll use this form with induction
layered on top.

Say we have some edges already chosen X which a part of some MST T (X ⊂ T).
We want to show that the next e chosen by the algorithm will also be part of an MST
(X + e ⊂ T ′). 2 It’s important to note here that T is some MST, but no where in our proof
do we try to show that T will be a certain MST.

2There can be multiple MSTs in a graph; if you’re not sure why this would be look at one of the graphs
above, with the change that all edges are of equal weight.

7: Kruskal’s Algorithm for Minimum Spanning Trees-4

e′

e

S V − S

Figure 5: A cut creating two parts of a graph with edges e and e′ going through the cut.

An important of this proof is the Cut Property which states that if you have have a set
of edges X, a set of vertices S such that no edge in X crosses S to V − S, and e be the
lightest edge across the partition, then e will be part of an MST. Intuitively we know that
one edge across the cut must be part of all spanning trees. If a spanning tree consisted of
none of the edges of a cut, it would not be spanning. However why must the lightest edge
be part of some MST? Say edges X are part of some MST T ; if e is also part of T there is
nothing to prove. However say e is not part of T , we’ll build a new MST T ′.

e′

e

S V − S

Figure 6: An MST crossing a cut with edge e′, and another edge crossing the cut e.

Say we have the possible MST, T in red above, and we add edge e to this MST; we have
now formed a cycle. This cycle has some other edge across the cut e′, and if we remove this
edge, we get the MST T ′ = X + e − e′. T ′ is also a tree because it both spans the graph

7: Kruskal’s Algorithm for Minimum Spanning Trees-5

and has |V | − 1 edges. However we must also show it is the minimum spanning tree as we
will do.

We can calculate the weight of the new tree T ′, as the weight of the old tree T minus the
removed edge e′ plus the additional edge e: w(T ′) = w(T)−w(e′) +w(e). We know that e
is the lightest edge by definition, meaning w(e) ≤ w(e′). Then we know that w(T ′) ≤ w(T),
but since T is an MST, w(T) is minimal. It must be the case that they are of equal weight.
3

Now the justification of Kruskal’s algorithm is rather simple. At each step, we have a
partial solution X and the lightest edge e which hasn’t yet been considered. We check that
e does not form a cycle, implying that it would be the lightest edge in some cut because it is
the first edge considered crossing said cut. Now, we know that it satisfies the cut property,
making the algorithm find an MST.

3Notice here what must be true about the ordering of w(e′) and w(e) if w(T) = w(T ′). Consider how
this might effect the number of MSTs, and how the number of MSTs might change if all edge weights were
unique.

7: Kruskal’s Algorithm for Minimum Spanning Trees-6

	Greedy Algorithms
	Minimum Spanning Tree
	Kruskal's Algorithm
	Proof and The Cut Property

