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1 Introduction

The Church-Turing Thesis cannot be proved. Most agree that it is some kind of definition
or worse, a “working hypothesis”. Here, we will give the closest thing to a proof possible.
Recall the narrative of our class. First we did regular languages, that was level one. We
pumped out of those to get some context-free languages, that was level two. Now we are on
level three, Turing machines. The Church-Turing Thesis asserts that there is no level four.
The Church-Turing Thesis has two parts:

Turing’s Thesis : The Turing Machine is equivalent in power to the Human Mind

Church’s Thesis : Any serious formalization of computation is equivalent to the Turing machine

Together, these imply that a Turing Machine, although incredibly simple, is an excellent
choice for us to reason about computation. The intuitive notion of computation corresponds
to the Turing machine, and that the intuitive notion of computation may be considered
independent of a specific formalism. Both Turing’s Thesis and Church’s Thesis are required.

A philosophical argument is unlike a proof. We want to make a convincing argument of
some statement. The way we will do so is make atomic jumps, each convincing, then argue
that the composition must be convincing.

2 The Direct Appeal to Intuition

These notes have been typeset separately: https://ladha.me/files/fancy-turing-notes.pdf

3 Church Turing Thesis

We now give our statement of the Church-Turing Thesis. For any kind of fathomable
computation model, mechanical process, decision procedure C,

∀C L (C) ⊆ L (TM)

Its useful to rephrase this as
∄C L (TM) ⊊ L (C)

In human words, the Turing machine is the ultimate computer. The entire complexity and
confusion of the mind, at least in our framework of decision problems, can be simplified to
the humble Turing machine. This pathetic three button typewriter is equivalent in power
to any realizable computer, and there is no greater. It is the supreme.

10: Church-Turing Thesis-1

https://ladha.me/files/fancy-turing-notes.pdf


Figure 1: Successive simplications of computation as made in the Direct Appeal to Intuition

4 Evidence

We will now show a more traditional argument in favor of the Church-Turing Thesis. We
will attempt to generalize the Turing machine. We will show that each generalization fails
to be strictly stronger and is just equivalent.

4.1 Turing machine with Stay

Consider Turing machines with a stay instruction. Instead of moving either left or right,
we allow the tape head to remain on the same cell. Its transition function would be defined
like:

δ : Q× Γ → Q× Γ× {L,R, S}

It is obvious that L (TM) ⊆ L (stayTM). Let’s prove L (stayTM) ⊆ L (TM). If a
Turing machine with stay has a normal L,R move, we leave it alone. If a Turing machine
with stay has a S move, we can simulate it as a sequence of L,R moves. Specifically we
will choose to move right, then back left1.

qi qj
a → b, S

qi q qj
a → b, R a → a, L; b → b, L

4.2 Turing machine with Two Way Tape

Our Turing machine’s tape is only infinite in one direction, so lets generalize it to be infinite
in two. This can be called a bidirectional, doubly infinite, or two way tape.

It is true that L (TM) ⊆ L (2wayTM), but the simulation needs an extra sentence.
We put our one way tape on the two way tape and add a special marker leftmost of our

1The only reason we don’t move left then right is the case we are on the leftmost square.

10: Church-Turing Thesis-2



tape. If we ever read it, we force ourselves right. Now lets show L (2wayTM) ⊆ L (TM).
There were many excellent simulation suggestions in class, but the elegant one is to just
fold the tape in half! Here we extend our tape alphabet to cover pairs as so.

Γ2 =

{
a

b
| a, b,∈ Γ

}
If you are in the right half of the tape, the transition function will essentially ignore the
bottom half of the symbol. If we attempt to move into the left half, we start ignoring the
tops and looking at the bottoms. We also flip every L,R move.

4.3 Multi-Tape Turing Machine

If you think about it, the negative half of a bidirectional tape is like a second tape. Lets
define a Turing machine with multiple tapes. A multi-tape Turing machine is just that. It
has k tapes it may read, right and move on all independently. Its transition function would
look like

δ : Q× Γk → Q× Γk × {L,R}k

At some state, it will read the position of its k tape heads, makes k writes, and moves each
head either left or right independently. Certainly L (TM) ⊆ L (kTM) by simply ignoring
all tapes except the first one.

We want to show L (kTM) ⊆ L (TM). In order to do so, we are going to simulate the
k tapes on a single tape. We initialize our single tape as

#ẇ1...wn#˙#˙#˙#˙#...#˙#

The dot represents the position of that tape head over its tape. As we simulate a read, write,
move of each tape head, we will scan over our tape making the appropriate adjustments.
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Figure 2: A Three tape Turing machine being simulated on a single tape, from the Sipser
book

If we need more space than allocated, we pause the simulation, enter a shifting subroutine,
insert blanks appropriately, and then continue. What was essential for this simulation was
that at any point in time, only a finite amount of space has been used. A Turing machine
cannot use the infinite nature of the tape in any useful way.

4.4 Nondeterministic Turing machine

A nondeterministic Turing machine is defined exactly as you might think. At some state
reading some symbol, there are more than one outgoing transitions which could be taken.
There exists more than one computation path. Its transition function would be defined as

δ : Q× Γ → P(Q× Γ× {L,R})

Its certainly true that L (TM) ⊆ L (NTM) as a nondeterministic Turing machine is simply
a generalization of a Turing machine. We now show the reverse way, that L (NTM) ⊆
L (TM).

We can view a nondeterministic computation like a rooted tree. Each node in this
computation tree can be represented by a configuration, with the initial configuration rep-
resenting the root, q0w1...wn. Our deterministic simulator is going to attempt to search
this tree for an accepting computation, if one exists. If our nondeterministic machine has
some accepting configuration in this tree, then there exists an accepting computation path
and this computation path halts. Our deterministic simulator will find this accepting con-
figuration, and also halt. If our nondeterministic machine has no accepting configuration
in this tree, then on all computation paths it either rejects or loops. So our tree may go on
forever. Similarly, our deterministic simulator will halt or search the tree forever.

Recall the many tree traversal algorithms. An initial idea is to use DFS: Depth first
search. This is not a good idea. If the first computation path we find is some infinite
loop, we may miss an easy accepting configuration. The next idea is then to use BFS:
Breadth first search. Our deterministic simulator is going to implicitly perform BFS on the
computation tree.
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Recall how BFS works with a queue. We pop an element off the queue and push its
children. It has the unique property that no grandchild is visited before every child is
visited.

We are going to use the tape kind of like a queue. We will pop (read, then erase) a
configuration off the front of the tape, compute the possible next configurations, and push
(write) them to the end of the tape. For example if our nondeterministic machine had the
following structure:

Then our tape would transform like:

# q0 w1 w2 .... wn # ∞ →

... # a q1 w2 ... wn # b q2 w2 ... wn # ∞ →

The configuration q0w1...wn yields two configurations nondeterministically, those being
aq1w2...wn, bq2w2...wn. We would read the initial configuration on the tape, compute its
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two next configurations, and append those on our tape. We would then erase the initial
configuration. We would then next look at the first configuration on the tape and repeat.
While we are doing this, we check if a configuration contains an accept state, and if it does,
we accept. If it contains a reject state, we toss the configuration and continue searching
the others. Its worth noting the Sipser book does a slightly different more detailed simula-
tion, still using BFS but with three tapes. I recommend you read it. We have shown that
nondeterministic Turing machines are no more powerful than Turing machines. Keep this

simulation in mind when we discuss the resource bounded variant of the question: P
?
= NP.

We have now constructed several obvious generalizations of the simple Turing machine,
yet each of them failed to be strictly more powerful. We were able to simulate each of them
on our humble device, implying that it perhaps as more power than at first class. I will say
it again. The Turing machine is such an interesting device, the entire rest of the course will
be dedicated to its study.
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