
CS 4510 Automata and Complexity January 17th 2024

Lecture 3: Regular Expressions

Lecturer: Abrahim Ladha Scribe(s): Yitong Li

1 Regular Expressions

You may be familiar with regular expressions as they are implemented on UNIX systems
or in programming languages. In the terminal, if we enter “ls *.pdf”, it will replace the
* by any string, outputing a list of files which end with the .pdf extension. The regular
expressions we will discuss in this lecture predate those.

A regular expression is a string representation of a regular language. You can think of
regular expressions as a kind of very limited programming language. Each regular expression
is declarative of exactly what strings it wants to accept. First we define them, and then we
will prove they correspond only to the regular languages.

Definition 1.1. We say that R is a regular expression, or regex, if R is one of the
following:

1. ∅ - empty set

2. ε - empty string

3. a ∀a ∈ Σ

4. R∗
i , RiRj or Ri ∪Rj where Ri, Rj are regular expressions.

• We have three base cases. Note that although we write ε, a, these actually correspond
to the sets {ε}, {a}. We then have three inductive operations, union, concatenation,
and the Kleene star.

• For Ri corresponding to some language Li and Rj corresponding to some language Lj .
The regular expression Ri ∪Rj corresponds to the language Li ∪ Lj . Again, Ri ∪Rj

is a string containing the “∪” symbol, while Li ∪ Lj is a language, a possibly infinite
set.

• For Ri corresponding to some language Li and Rj corresponding to some language Lj ,
the regular expression RiRj corresponds to the language LiLj . The concatenation of
languages is defined like the cartesian product of sets. LiLj = {xy | ∀x ∈ Li, ∀y ∈ Lj}

• For Ri corresponding to some language Li, the regular expression R∗
i corresponds to

the language

L∗
i =

∞⋃
k=0

Lk
i = {ε} ∪ Li ∪ L2

i ∪ L3
i ∪ ...

You should think of this as zero or more copies of strings from Li. Note that for any
language, L0 = {ε}.

3: Regular Expressions-1



We have a recursive, or inductive definition for a naturally recursive or inductive object.
Each regular expression is a string, but it corresponds to a language, a (possibly infinite)
set of strings.

2 Examples

Here are some examples of regular expressions. We often use Σ in regular expressions as a
shorthand for (a ∪ b) or whatever the alphabet is.

1. a∗ = {ai | i ∈ N} = {ε, a, aa, aaa, . . . }

2. Σ∗ We introduced this as the definition of all strings, it is actually a regular expression
for zero or more copies of any of the letters of the alphabet, which corresponds to all
strings.

3. a∗ba∗ = {aibaj | i, j ∈ N} = all strings with a single b.

4. Σ∗bΣ∗ = all strings with atleaste one b. There can be more than one, but not zero.

5. Σ∗aabΣ∗ = {all strings with aab as a substring}

6. (a ∪ b)∗aab(a ∪ b)∗

7. (ΣΣ)∗ = ((a ∪ b)(a ∪ b))∗ = ((aa ∪ ab ∪ ba ∪ bb))∗ = all strings of even length

8. (a ∪ b)(b ∪ c) = {ab, bbac, bc}

9. a∗∅ = ∅

10. ∅∗ = {ε}

3 L (REX) ⊆ L (NFA)

We now prove the regular expressions correspond exactly and only to the regular languages
by doing a double set containment. Let L (REX) correspond to the class of languages
which are produced by the regular expressions.

First we show that if a language is produced by a regular expression, then it is decided
by an NFA. To prove that L (REX) ⊆ L (NFA), we want to show that for each regular
expression, there exists an equivalent NFA. Given that regular expressions are recursively
defined, it is natural to choose to proceed by induction. Let R be a regular expression. We
start with the following base cases:

1. R = ∅.

2. R = ε.

3: Regular Expressions-2



3. R = a ∈ Σ.

Next, we continue with the inductive steps. Let Ri, Rj be regular expressions that decide
regular languages, by strong induction, we assume that there exist NFAs which decide
exactly the languages that Ri, Rj produce. We will prove R∗

i , RiRj , Ri∪Rj also have NFAs
to decide them. The proofs can be done graphically.

1. R = RiRj .

We remove final states Fi and ∀f ∈ Fi, add δ(f, ε) = qj where qj is the initial state
of Nj . Consider a computation like a path through the NFA as a graph. To reach an
accept state, you must go through the first NFA, then the second.

2. Ri ∪Rj .

3: Regular Expressions-3



add new start state q and δ(q, ε) = {qi, qj}. Here you nondeterministically choose
which NFA you wish to proceed on, so it decides the languages which reach the
accepting states of either NFA, representing the union.

3. R = R∗
i .

We add new state q′, ε-transition from q′ and all states of F to the old start state q,
mark q′ as accepting. Note we could not have just made the start state accepting, but
must add a new state. You can traverse an arbirary number of times on the internal
NFA so this corresponds to zero or more copies, which is the Kleene star operation.

3.1 Example

This proof not only shows every regular expression decides a regular language, but it gives
a process to convert a regular expression into an NFA. Consider the following examples for
(ab ∪ aab)∗ and (a ∪ b)∗aba

3: Regular Expressions-4



3: Regular Expressions-5



4 L (NFA) ⊆ L (REX)

We convert

Definition 4.1. The GNFA is defined as an NFA with the following properties:

1. The transitions have a regular expression on them.

2. The start state has no incoming transitions

3. The final state has no outgoing transitions

4. Every pair of states has a transition.

Taking a transition in a DFA is reading some single symbol of the front of the input.
Taking a transition of a GNFA is nondeterministically choosing some prefix of the input
which satisfies the regex on the transition. To convert an NFA to a regular expression, we
first add a new start and final state. Then, rip out one state at a time using the following
rules until only two states and one transition is left.

3: Regular Expressions-6



q0 q1 q2
R1

R4

R2

R3

=
q0 q2

(R1(R2)
∗R3) ∪R4

For most very connected NFAs, conversion to a regex will result in one with exponential
length. Here is a relatively simple example.

5 Set Closure

We say a set S is closed under an operation ∆ if ∀a, b ∈ S, a∆b ∈ S.

1. N is closed under +,× and not closed under −,÷.

2. Z/{0} is closed under +,−,× and not closed under ÷.

3. Q is closed under +,−,× and not closed under ÷.

4. Regular languages are closed under ∗, ◦,∪ and complement.

3: Regular Expressions-7



Although regular languages are closed under complement. Complement is not a valid oper-
ation of a regular expression. Using the operations regular languages are known to be closed
under, we can prove closure under even more operations without having to contruct messy
DFAs or NFAs. Recall we did a cartesian product of DFAs to prove that regular languages
were closed under intersection. We give a shorter proof in the syntax of set theory.

Suppose that Li, Lj are two regular languages. Then surely Li, Lj are regular, then

surely Li ∪ Lj is regular. Then so must be Li ∪ Lj . From Demorgans law, we know that

Li ∪ Lj = Li ∩ Lj .
Similarly, we can show regular languages are closed under symmetric difference, or

xor. We have a formula under composition of operators that we maintain closure under.
Li ⊕ Lj = (Li ∩ Lj) ∪ (Li ∩ Lj)

3: Regular Expressions-8


