376 COMPUTABLE FUNCTIONS

Then, for n =1, 2, 3, ...:

Tﬂ—}-l(xv ey Xy xn+1: ¢, U, 'U) ==
’
Tl(xﬂ+1: c, (T'n(xlj ey Xu g, xn; c, U, 7)))0, 'l)).
When x,, ..., %, is scanned in standard position with state Gy, and

the tape is blank elsewhere, the Gédel number of the situation i
rﬂ_(xl, e %y, 1,1, 1). When %, ..., %, x is scanned in standard Positiog
with state qg, the Gédel number of the situation is 7, @y, oo %0, %,0, 0 1)
for some % and v; and conversely. T

Now, if ¢ is the partial function of # variables computed by the given
_machine M,and x,, ..., x, is a given #-tuple, then (%, - .., x,) is defined
if and only if there exists a quadruple (z, #, %, ») of numbers such that'
Q(Tn(xl, cen X 1,1, 1),2) = 7, 4(%, ..., %, %, 0, 4, v), in which case g
is the value of ¢(x,, ..., #,). Accordingly,

(%, .., %)

(0, « ooy %y 1, 1L, 1), (B)0) = Tuga(®a, -+ oy %y D1 O, (D)gs (D5)])y
Therefore, by .Theorem XVIIT § 63, ¢ is partial recursive (or if ¢ is
completely defined, by Theorem III § 57, ¢ is general recursive)

~

Proor ¥OR />0. Say e.g. there is one assumed function ¢ of one

variable (i.e. / = m, = 1). Now, for each ¢ for which the table entry °

corresponding to q, is of the form 1q,; we replace “p, (), (®)) if
_(w)lza& (@)e=c (@ =0, ...,7)” in the definition of pzw) by “p.(w)
if Qc(?)”, where ), is the primitive recursive predicate and g, the function
primitive recursive in ¢ defined thus:

Qofw) = (EY)y <l Et) oo ED), <o [0=1(y, €, 1, )],
Pe(®) = 7o(Y, YY), d, U, V) where
Y = By <uwlBEWy <o) <o [@=71(y, €, 1, v)],
U= y‘%u<w(Ey)y<w(Ev)vqo[w:'rl(y’ ¢ u, 'v)]’ etc.

THEOREM X_XX (= Theorems XXVIII + XXIX). The following
classes of j?amal functions are coextensive, i.e. have the same members:
(a) the partial recursive functions, (b) the computable functions, (c) the 1)1

flimﬁutable functions. Stmilarly with | completely defined assumed funciions

§ 70. Turing’s thesis. Turing’s thesis that every function which
w01.11(.i naturally be regarded as computable is computable under his
definition, i.e. by one of his machines, is equivalent to Church’s thesis by
Theorem XXX, We shall now examine the part of the evidence for it

CH. Xpyy

TURING’S THESIS 377

§70

| which pertains to the machine concept, i.e. what we listed as (C) in § 62.

SWhat we must do is to convince ourselves that any acts a human com-

| uter could carry out are analyzable into successions of atomic acts of

come Turing machine.

«The behavior of the computer at any moment is determined by the
symbols which he is observing, and his ‘state of mind’ at that moment.”
“The number of symbols which he can recognize is finite. “If we were to
allow an infinity of symbols, then there would be symbols differing to

. :an arbitrarily small extent.” (Turing 1936-7 pp. 249—250.) The work

' taken into account is finite.

‘feading from the problem statement to the answer must be carried out
in some “symbol space’ (Post 1936), i.e. some systematic arrangement of
cells or boxes, each of which may bear (an occurrence of) a symbol.
“There is a finite bound to the number of occurrences of symbols (or of
boxes where a symbol may occur) which he can observe at one moment.
He can also remember symbols previously observed, by altering his state
of mind. However “the number of states of mind which need to be
... If we admitted an infinity of states of
mind, some of them will be ‘arbitrarily close’ and will be confused.”
(Turing 1936-7 p. 250.) But the computer’s action must lead from a quite
discrete object, namely the symbol array representing some natural
number (or #-tuple of natural numbers) as argument(s), to another such
object, namely the symbol array representing the corresponding function
value. The possible states of mind are fixed in advance of naming the
particular argument(s), as we are considering computation by a preas-
signed method, and do not allow mathematical invention in the midst

. of the computer’s performance. Each act he performs must constitute a

discrete change in the finite system consisting of the occurrences of
symbols in the symbol space, the distribution of observed squares in this
space, and his state of mind.

These limitations on the behavior of the human computer in computing
the value of a number-theoretic function for given arguments, by follow-
ing only preassigned rules, are of the same kind as enter in the con-
struction of a Turing machine. The tape is the symbol space for the ma-
chine, and the machine state corresponds to the computer’s state of mind.

The human computer is less restricted in behavior than the machine,
as follows: (a) He can observe more than one symbol occurrence at a
time. (b) He can perform more complicated atomic acts than the machine.

" (¢) His symbol space need not be a one-dimensional tape. (d) He can

choose some other symbolic representation of the arguments and function
values than that used in our definition of computability.



378 COMPUTABLE FUNCTIONS

'I'.

CH. Xny |

We h ll 0 . SN . e
shall examine various possibilities under (a) — (d), and see briefly = e scanned square. Corresponding to each state q, of this generalized

how each can be reduced to an equivalent in terms of Turing machineg.

We shall usually speak as though only one were being reduced, but oy |

methods would serve to reduce any combination of them successively:

Unde-r (a), we remark that e.g. 17 and 21 and 100 can each be OI}:
served in a single act. But a long sequence of symbols can only b.-
observed by a succession of acts. For example, we cannot tell at a glan, ei
whether 157767733443477 and 157767733443477 are the same; ““C;e
slllou.ld have to compare the two numbers figure by figure, po’ssibl'e”
tlc.kmg the figures off in pencil to make sure of their not being counteg
twice.” (Turing 1936-7 p. 251.) 5

If 17 and 21 and 100 are not only observed as units but manipulated
as thf)ugh each occupies a single cell of the symbol space, we need on} »
Fedefme the symbols so that each of these constitutes a single symbo{
in order to reduce the compound observation to a simple observation oéﬁ
the kind used by a Turing machine.

§70 TURING'S THESIS 379
rachine, we introduce a set of 10% states Qeeren (6, /8 2= 0, ..., 9); and
we modify the table so that upon reaching state q,, & series of Turing

machine acts is performed, consisting of inspections of the two adjacent
squares on cach side, leading to state Qe When the four squares in
éuestion are occupied by the respective digits ¢, f, g, h. Not only the
states Qeeson must be added, but also some states to be assumed during
‘the action leading from ¢, t0 Qeerun- Details are left to the reader. Now
the act the generalized machine performed from the configuration
(&8 h,q.) shall be performed from the configuration (@, Qeesen)-

| “This reduction is an illustration of the remark that one can remember

In actual computing we sometimes use certain marks (accent, check, !
td

¥novab‘1(? physical pointer, etc.), which may be placed on a given square
in addition to an ordinary symbol. If there are § of the ordinary symbols
a¥1d # of these special marks, any subset of which may be placed on a;
given square, the number of the square conditions is merely increased
from j+1 to (j4-1) - 2™ )

As another example of behavior involving compound observation
suppose that the following sequence of symbols is printed, :

...4401385789264. . .,

that the observer’s attention is centered at the figure 7 near the middle
and that he observes clearly at most five figures centered at this 7, thus'
the sequence of the five digits 85789 together with his state of ,mind
determine his next act. Some digits further off may be vaguely observed
but without affecting his act. The act shall be of one of the kinds per-:
formed by Turing machines, with each separate symbol occurrence (not
groups of five) occupying a square. For example, if the next act is 0Lq

the printing becomes .

...4401385089264. . .,

with 3_8508 observed. Such behavior' can be reduced to Turing machine
behavior as follows. Say that the symbols are the ten Arabic digits.
tfhc behavior can be considered as that of a generalized Turing machine
m which the configuration (determining the act) is (e, f, 4,8 4 qc),
where ¢, f, a, g, k are the digits occupying the five squares centered at

a finite number of previously observed symbols by having changed one’s
state of mind when they were observed.

It might be thought that the printing on still other squares may
constitute part of the observation, e.g. that on certain specially marked
squares (finite in number). If these squares are so located in the symbol
gpace that the computer can find them and return by acts of the kinds
Performcd by Turing machines (cf. the discussion of (c) to follow), this
kind of compound observation can be reduced in a similar fashion to the
preceding.

Under (b), the computer can alter other squares besides the scanned
square. The new observed square need not be adjacent to the original.
However there is a finite bound to the complexity of the act, if it is to
constitute a single act of the computer. More complicated acts will require
tenewed motivation by reference to the observed data and the state
of mind at intermediate situations between the given and resulting ones.
(Indeed it can be argued that the Turing machine act is already compound ;
and consists psychologically in a printing and change in state of mind,
followed by a motion and another change of mind. Post 1947 does thus

~ separate the Turing act into two; we have not here, primarily because it

saves space in the machine tables not to do s0.)

All simple alterations of the situation, not in the Turing machine form,
which are readily proposed, e.g. printing after motion instead of before,
are easily expressed as successions of the atomic acts of a Turing machine.
(Much more complicated operations, which could hardly be regarded as
single acts, have already been so treated in § 68.)

Turning to (c), computing is commonly performed on 2-dimensional
paper, and the 2-dimensional character of the paper is sometimes used
in elementary arithmetic. Theoretically, we must also consider the pos-
sibility of still other kinds of symbol space. The symbol space must be



380 COMPUTABLE FUNCTIONS CH. Xryy |

—

sufficiently regular in structure so that the computer will not become logt
in it during the computation.

From a given square or cell of the space, there will be a finite numbgr
m~+1 of ways of moving to the same or an adjacent cell, call thep;
M,, ..., M,, where M, is the identical motion. For example, in the plar
ruled into squares, 7 = 4 (no motion, left, up, right, down), or if diagong]
motions are also allowed, m = 8. The computer, whose act from a givey
situation must be determined by which one of a finite number of cop:
figurations is existing, could not use more. We lose no generality iy |
supposing that there are the same number of directions of motion frop,
every cell; in case there are fewer from some cells, the terminus of the rest.
of the 741 motions may be defined to be the given cell, i.e. these as wel|
as M, may be taken to be identical. !

The number of cells which can ultimately be reached is therefors
countable. The same cell may be reached by different successions of?
motions, e.g. in the plane, down and then right leads to the same square
as right and then down.

We shall suppose that an enumeration without repetitions can be
given of all the cells, such that the following is the case. To each of the
ways of moving M, (i =0, ..., m), there is a computable function y, |
such that, if x is the index in the enumeration of the given cell, then
pi(#) is the index of the cell reached by the motion M. This supposition
is realized by any readily imagined symbol space.

Using this enumeration, let the cell numbered x in the enumeration
(*x=0,1, 2, ...) correspond to the x-th square counting rightward from

a certain square (called the O-th) on a linear tape. i
Using methods from § 68, we can set up a Turing machine which will |
find the p,(x)-th square, when started on the x-th square, if a dis- |

tinguishing mark is kept on the O-th (or —I-st) square. The computation
for this purpose can be done by marking squares with accents, afterwards
erased, without interfering with the printing already on them. This
enables us to reduce computation in the given symbol space to com-
putation on the linear tape of a Turing machine.

For this reduction, we did not assume that from any cell adjacent to
a given cell one of the motions refurns us to the given cell, i.e. that every
motion in the space has an inverse. This would be the case in any or-
dinary symbol space. An exception is represented by the computer who
receives a signal at intervals by ear.

The symbol space may consist of several disconnected subspaces,
each having its own scanned cell, as e.g. in the case of a computer who

TURING'S THESIS 381

§70

simulta,neously reads a symbol on a paper by eye, reads another in braille

on a tape by hand, and receives a signal by ear. If there are # such

S .
of a cell from each of those respective subspaces.

In regard to (d), we may argue that a natural number y is given in the
original sense (§6), only if some sequence of y+41 o}?]ects, say .y—;—l
tallies, is given; and hence that a procedure for ‘computmg a functlo.n ®
from its argument(s), when both are expressed in some other notation,
would not solve the computation problem for ¢, unless the computer
can also proceed from the other notation for a number y to the sequence
¢t y+1 tallies, and vice versa. .

According to our other arguments, Turing machines could then be
puilt which, given the other notation for y would supply t}_le y+1 tallies,
and vice versa. Details can be arranged as in the definition of compu-
tation within one system of notation. Thus for decimal notation, the
first machine started in the first of the following situations would go

. .gbspaces, we can reconstrue the cells to be the 7-tuples consisting

| to the second.

Q1

TTilel TT T ITT T T I T T TT]

90
EENEENDDDNDNDNDOnnne

For the familiar systems of notation, such as the dual or decimal, the
‘existence of such a pair of machines can be established.

We have been defending Turing’s thesis for number-theoretic functions;
but Turing machines apply equally well to expressions in any language
having a finite list of symbols. By using them as just illustrated for the
case of converting one notation for a natural number into another, we
get a direct way of characterizing ‘effective’ operations on expressions
in such languages, as an alternative to requiring a corresponding number-

. theoretic function under a particular effective Gédel numbering to be

general recursive or computable (§ 61). The method extends to languages
having an enumerable infinity of symbols, whenever the symbols can
be considered effectively as composed in turn from the symbols of some

| finite list; e.g. to the formal number-theoretic symbolism, by regarding
| the variables a, b, c, . ..

asa,a,ay ... (§§ 16, 50).



