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9. The extent of the computable numbers.

No attempt has yet been made to show that the «“computable ’ numbers
include all numbers which would naturally be regarded as computable. All
arguments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is < What are the possible processes which can he
carried out in computing a number?”

The arguments which I shall use are of three kinds.

(@) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(¢) Giving examples of large classes of numbers which are
computable.

Once it is granted that computable numbers are all ““computable .
several other propositions of the same character follow. In particular, 1t
follows that, if there is a general process for determining whether a formula
of the Hilbert function calculus is provable, then the determination can he
carried out by a machine.

I. [Type (a)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbois on paper. We
may suppose this paperis divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, ¢z.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extentt. The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as

t If we regard a symbol as literally printed on a square we may suppose that the square
is0<ae<], 0<y<1. The symbol is defined as a set of points in this square, viz. the
set occupied by printer’s ink. If these sets are restricted to be measurable, we can define
the ¢distance ” between two symbols as the cost of transforming one symbol into the
other if the cost of moving unit area of printer’s ink unit distance is unity, and there is an
infinite supply of ink at x = 2, y = 0. 'With this topology the symbols formn a condition-
ally compact space.
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17 or 999999999999999 is normally treated as a single symbol. Similarly
in any European language words are treated as single symbols (Chinese,
however, attempts to have an enumerable infinity of symbols). The
differences from our point of view between the single and compound symbols.
is that the compound symbols, if they are too lengthy, cannot be observed
at one glance. This is in accordance with experience. We cannot tell at
a glance whether 9999999999999999 and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his ¢ state of mind’ at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number of states of mind which need be taken into account is finite.
The reasons for this are of the same character as those which restrict the
number of symbols. If we admitted an infinity of states of mind, some of
them will be ‘“ arbitrarily close ”’ and will be confused. Again, therestriction
is not one which seriously affects computation, since the use of more compli-
cated states of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up
into ‘“simple operations’’ which are so elementary that it is not easy to
imagine them further divided. Everysuch operation consists of some change
of the physical system consisting of the computer and his tape. We know
the state of the system if we know the sequence of symbols on the tape,
which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer. We may suppose that in a
simple operation not more than one symbol is altered. Any other changes

can be split up into simple changes of this kind. The situation in regard to
the squares whose symbols may be altered in this way is the same as in

regard to the observed squares. We may, therefore, without loss of
generality, assume that the squares whose symbols are changed are always
“observed” squares.

Besides these changes of symbols, the simple operations must include
changes of distribution of observed squares. The new observed squares
must be immediately recognisable by the computer. I thinkitisreasonable
to suppose that they can only be squares whose distance from the closest
of the immediately previously observed squares does not exceed a certain
fixed amount. Let us say that each of the new observed squares is within
L squares of an immediately previously observed square.

In connection with “immediate recognisability”’, it may be thought
that there are other kinds of square which are immediately recognisable.
In particular, squares marked by special symbols might be taken as imme-
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diately recognisable. Now if these squares are marked only by single
symbols there can be only a finite number of them, and we should not upset
our theory by adjoining these marked squares to the observed squares. If,
on the other hand, they are marked by a sequence of symbols, we
cannot regard the process of recognition as a simple process. This is a
fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers
do not go beyond (say) 1000. It is, therefore, possible to recognise a
theorem at a glance by its number. But if the paper was very long, we
might reach Theorem 157767733443477 ; then, further on in the paper, we
might find ... hence (applying Theorem 157767733443477) we have ..."".
In order to make sure which was the relevant theorem we should have to
compare the two numbers figure by figure, possibly ticking the figures off
in pencil to make sure of their not being counted twice. If in spite of this
it is still thought that there are other ‘‘immediately recognisable’ squares.
it does not upset my contention so long as these squares can be found by
some process of which my type of machine is capable. This idea is
developed in III below.
The simple operations must therefore include:

(@) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square
within L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of
state of mind. The most general single operation must therefore be taken
to be one of the following:

(4) A possible change (a) of symbol together with a possible
change of state of mind.

(B) A possible change (b) of observed squares, together with a
possible change of state of mind.

The operation actually performed is determined, as has been suggested
on p. 250, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after the
operation is carried out.

We may now construct a machine to do the work of this computer. To
each state of mind of the computer corresponds an ‘“m-configuration” of
the machine. The machine scans B squares corresponding to the B squares
observed by the computer. Inany move the machine can change a symbol
on a scanned square or can change any one of the scanned squares to another
square distant not more than L squares from one of the other scanned
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squares. The move which is done, and the succeeding configuration, are
determined by the scanned symbol and the m-configuration. The
machines just described do not differ very essentially from computing
machines as defined in § 2, and corresponding to any machine of this type
a computing machine can be constructed to compute the same sequence,
that is to say the sequence computed by the computer.

IT. [Type (b)].

If the notation of the Hilbert functional calculust is modified so as to
be systematic, and so as to involve only a finite number of symbols, it
becomes possible to construct an automatic machine ¥, which will find
all the provable formulae of the calculus§.

Now let o be a sequence, and let us denote by ¢, (z) the proposition
“The 2-th figure of a is 1 7, so that” — G, (x) means ¢ The z-th figure of a
is 0. Suppose further that we can find a set of properties which define
the sequence a and which can be expressed in terms of G,(x) and of the
propositional functions N (x) meaning ‘“z is a non-negative integer” and
F(z, y) meaning “y=2a-+1". When we join all these formulae together
conjunctively, we shall have a formula, ¥ say, which defines a. The terms
of A must include the necessary parts of the Peano axioms, viz.,

(30) N () & (2) (N (@)~ (39) F(w, 9)) & (F (@, ) >N (),

which we will abbreviate to P.

When we say “U defines a”’, we mean that — is not a provable
formula, and also that, for each %, one of the following formulae (4,) or
(B,,) is provable.

>

A& o Gu (u(n))’ (‘I'Xn)qT
A& F('n)_> ( - Ga(u<7l)) ) s (Bn):

where ' stands for F(u, v') & F(u', u") & ... F(u®D, um),

t The expression the functional calculus” is used throughout to mean the restricted
Hilbert functional calculus.

1 It is most natural to construct first a choice machine (§2) to do this. But it is
then easy to construct the required automatic machine. We can suppose that the choices
are always choices between two possibilities 0 and 1. Each proof will then be determined
by a sequence of choices 1,, 2y, ..., 4, (3, =0 or 1, 4,=0 or 1, ..., ¢, = 0 or 1), and hence
the number 2”44, 2¢=14-4, 2n=2 . {4, completely determines the proof. The automatic
machine carries out successively proof 1, proof 2, proof 3, ....

§ The author has found a description of such a machine.

Il The negation sign is written before an expression and not over it.

4 A sequence of r primes is denoted by .



