
CS 4510 Automata and Complexity March 6th 2024

Lecture 15: Undecidability by Reduction

Lecturer: Abrahim Ladha Scribe(s): Abrahim Ladha

Today we are going to solidify our understanding of what we can know about the unknown.
Recall last time we discussed the work of Russell, Gödel, and Turing. We showed there
exist unanswerable questions in two ways

• There exist unprovable truths

• There exist unsolvable problems

We proved these using a specialization of the diagonalization technique. Note that nothing
is preventing us from defining these unsolvable problems or unprovable statements, only
proving or solving them. Today we expand on Turing’s work. Our first known undecidable
language is

HALT = { ⟨M,w⟩ | M halts on w}

1 Some Closure

Recall the definition of decidable and recognizable languages.

Definition 1.1 (Decidable Language). We say a language L is decidable (L ∈ LD(TM))
if there exists a Turing machine M such that

• w ∈ L ⇐⇒ M accepts w

• w ̸∈ L ⇐⇒ M rejects w

Definition 1.2 (Recognizable Language). We say a L language is recognizable (L ∈
LR(TM)1) if there exists a Turing machine M such that

• w ∈ L ⇐⇒ M accepts w

• w ̸∈ L ⇐⇒ M rejects or loops on w

Notice that by definition, LD(TM) ⊊ LR(TM). We showed that HALT ̸∈ LD(TM)
but it turns out that HALT is recognizable! Lets give a recognizer. Notice this correctly
recognizes HALT . If ⟨M,w⟩ ∈ HALT then we know M halts on w, so if we simulate it we
halt and correctly accept. But if ⟨M,w⟩ ̸∈ HALT , then M loops on w and so do we. The
step of simulating M on w does not terminate and we do not reach the conditional. This
is then a correct recognizer for HALT . Since HALT is recognizable but not decidable, our
containment is strict. So Turing proved that not every language is decidable. But is every
language recognizable? By a similar counting argument, we know that there are uncountably
many languages and only countably many recognizable languages, so most languages are
unrecognizable. Is there a notable unrecognizable language, in the same sense that HALT
is a notable undecidable language? Lets prove two theorems about closure to show the
answer is yes.

1or when the context is clear just L (TM)

15: Undecidability by Reduction-1



Algorithm 1 Recognizer for HALT

on input ⟨M,w⟩
simulate M on w
if M accepts or rejects w then

accept
end if

1.1 A First Theorem

First we show that the decidable languages are closed under complement. That L ∈
LD(TM) ⇐⇒ L ∈ LD(TM). This one is easy. If a language is decidable, then there
exists a decider M for it. Since its a decider, it halts on all inputs. Construct a new Turing
machine M which is just M but we swapped its accept and reject state. Since M was a
decider, so is M , and we see that it decides L, so it is decidable. We may represent this
visually using the following diagram for M .

1.2 A Second Theorem

Now lets prove that if L,L ∈ LR(TM) =⇒ L ∈ LD(TM). If a language and its
complement are both recognizable, then the language is decidable.

Proof. Suppose that L,L are recognizable with recognizers R,R. We give a decider for L as
follows. A recognizer is not guaranteed to halt on all inputs, but it is guaranteed to halt on
the good ones. Let us argue correctness, and why our construction is a decider. If w ∈ L,
then by definition R halts and accepts on w, so our machine will halt and accept if w ∈ L.
If w ̸∈ L, then by definition R halts and accepts, so our machine will halt and reject if
w ̸∈ L. Then for all w, it correctly and exactly decides L so we see that L is decidable.

We also now give the equivalent circuit diagram. Of independent interest, this proof
shows you how to run two simulations “in parallel”. They aren’t really in parallel, but
rather dovetailed together one at a time. This is necessary. For example, if w ∈ L, this may
make R loop on w. But R will eventually halt on w. We could not run these simulations
sequentially.

15: Undecidability by Reduction-2



Algorithm 2 Decider for L

on input w
R = ...
R = ...
while True do

Simulate R on w for one step
Simulate R on w for one step
if R accepts then

accept
end if
if R accepts then

reject
end if

end while

15: Undecidability by Reduction-3



2 Relating Unsolvable Problems

2.1 An Unrecognizable Language

We now immediately apply the theorems to find a useful unrecognizable language.

Theorem 1. HALT is unrecognizable.

Proof. Assume to the contrary that HALT is recognizable. Then since HALT is recogniz-
able, this would imply that HALT is decidable. But we proved by diagonalization HALT
is not decidable, a contradiction. Therefore, HALT cannot be recognizable.

Here we have proved existence of an unrecognizable language. Turing’s definition of al-
gorithm is the decidable languages, but even if you relax this to the recognizable2 languages,
there still exist unsolvable problems.

2.2 An Acceptance Problem

Let
ATM = { ⟨M,w⟩ | M accepts w}

This language looks close to HALT , so it shouldn’t be surprising that it is also undecidable.
We will prove it is undecidable not by diagonalization, but by reduction.

Assume to the contrary that ATM is decidable. We give a decider for HALT .

Algorithm 3 Decider for HALT given decider for ATM

on input ⟨M,w⟩
if ⟨M,w⟩ ∈ ATM then ▷ If M accepts w it certainly halts on w

accept
else ▷ If M doesn’t accept on w, it must reject or loop

build M ′ from M swapping accept and reject states qa, qr
if ⟨M ′, w⟩ ∈ ATM then ▷ M ′ accepts w ⇐⇒ M rejects w

accept ▷ If M rejects w, it certainly halts on w
else ▷ If M doesn’t accept or reject w, it must loop

reject
end if

end if ▷ Note this halts on all inputs, so it is a decider

Given that ATM was decidable, we were able to construct a decider for HALT . But
we know by diagonalization that HALT is undecidable, a contradiction. Therefore, we see
that ATM is undecidable. Note that ATM is recognizable and ATM is unrecognizable for
similar reasons to HALT and HALT .

The moral of these two examples is that we did not have to use diagonalization. Simply
by the fact we can relate problems to one another, we were able to prove this language
was also undecidable and unrecognizable. Let us generalize this idea to prove many more
languages are undecidable.

2sometimes also called semi-decidable for this reason

15: Undecidability by Reduction-4



3 Many-One Reductions

Recall that a function f : Σ∗ → Σ∗ is said to be computable (or Turing-computable) if there
exists a Turing machine M such that for every w ∈ Σ∗, M begins with w on the tape and
halts with f(w) on the tape. By the Church-Turing Thesis, in some sense, the computable
functions are the largest class of functions, exactly and only those with algorithms.

For A,B ⊆ Σ∗ languages, we say that A is many-one3 reducible to B (written as
A ≤m B) if there exists a computable function f such that w ∈ A ⇐⇒ f(w) ∈ B. Notice
that this also implies that w ∈ A ⇐⇒ f(w) ∈ B. It maps A to B and A to B. The ≤m

relation satisfies the following few properties. If A ≤m B then:

• If B is decidable, then A is decidable (B ∈ LD(TM) =⇒ A ∈ LD(TM))

• If A is undecidable, then B is undecidable (B ̸∈ LD(TM) =⇒ A ̸∈ LD(TM))

• If B is recognizable, then A is recognizable (B ∈ LR(TM) =⇒ A ∈ LR(TM))

• If A is unrecognizable, then B is unrecognizable (B ̸∈ LR(TM) =⇒ A ̸∈ LR(TM))

This about how going left is “simpler” and going right is “more unsolvable”. The relation-
ship between A,B if A ≤m B is that A lower bounds B, and B upper bounds A. The four
statements we mentioned are intuitive but require proof. We only prove the first one. The
other three are proved similarly.

Proof. Suppose that A ≤m B and B is decidable. We prove A is decidable. Since A ≤m B,
there exists a computable function f as our many-one reduction with the property that
w ∈ A ⇐⇒ f(w) ∈ B. We give a decider for A as follows. We use the decider for B and

Algorithm 4 Decider for A given f as the reduction A ≤m B and decider for B

on input w
compute f(w) ▷ This computation halts by definition of a computable function
if f(w) ∈ B then ▷ Since B is decidable, we can run its decider on f(w)

accept
else ▷ If the decider for B rejects, we reject

reject
end if ▷ Note this halts on all inputs, so it is a decider

the computable function f . In order to decide membership of w ∈ A, we compute f(w) and
decide membership of f(w) ∈ B.

4 Some Reductions

We now use the method of reduction to show even more undecidable problems.

3or mapping

15: Undecidability by Reduction-5



4.1 An Emptiness Problem

Let
ETM = { ⟨M⟩ | L(M) = ∅ }

This language consists of encodings of Turing machines which accept nothing. They either
loop or reject on all inputs. We show it is undecidable.

Theorem 2. ETM is undecidable

Proof. The reduction for this one is slightly more advanced. Assume to the contrary ETM

is decidable. We give a decider for ATM .

Algorithm 5 Decider for ATM given decider for ETM

on input ⟨M,w⟩
construct M ′ with M,w hardcoded
if ⟨M ′⟩ ∈ ETM then

reject
else

accept
end if

Algorithm 6 M ′ hardcoded from M,w

on input x
M = ...
w = ...
Simulate M on input w
if M accepts w then

M ′ accepts x
end if

Here, our decider constructs a new machine M ′ with hardcoded M,w. Now notice that
M ′ doesn’t even look at x, so M ′ either rejects everything or accepts everything, so L(M ′) =
either ∅ or Σ∗. Which one it is is conditional on M on input w. Our many-one reduction
is f(⟨M,w⟩) = ⟨M ′⟩ such that

• if ⟨M ′⟩ ∈ ETM , then L(M ′) = ∅. So w ̸∈ L(M ′) so M must have rejected or looped
on w. Either way ⟨M,w⟩ ̸∈ ATM

• if ⟨M ′⟩ ̸∈ ETM , then L(M ′) = Σ∗. This was only true if M accepted w so we see that
⟨M,w⟩ ∈ ATM .

We witness that ⟨M,w⟩ ∈ ATM ⇐⇒ ⟨M ′⟩ ̸∈ ETM ⇐⇒ ⟨M ′⟩ ∈ ETM so ATM ≤m ETM .
There exists no reduction ATM ≤m ETM

4 but we can do the reduction ATM ≤m ETM . By
showing the complement ETM is undecidable, so must be ETM .We conclude that ETM is
undecidable.

4See the exercise in the Sipser book

15: Undecidability by Reduction-6



4.2 An Equivalence Problem

The more languages we prove are undecidable, the easier the next ones become. We have
to make the educated decision on which undecidable language to reduce from, but atleast
we have the choice. Let

EQTM = { ⟨M1,M2⟩ | L(M1) = L(M2)}

This language is the set of encodings of pairs of Turing machines which recognize the same
language.

Theorem 3. EQTM is undecidable

Proof. This reduction is much simpler, and we choose to reduce from ETM to show ETM ≤m

EQTM .
Assume to the contrary EQTM is decidable. We give a decider for ETM

Algorithm 7 Decider for ETM given decider for EQTM

on input ⟨M⟩
Let M∅ be some hardcoded Turing machine to reject all strings
if ⟨M,M∅⟩ ∈ EQTM then

accept
else

reject
end if

This one is pretty simple. Its logically equivalent to def iszero(x): return x==0.
Our reduction is f(⟨M⟩) = ⟨M,M∅⟩. We observe that ⟨M⟩ ∈ ETM ⇐⇒ ⟨M,M∅⟩ ∈ EQTM

so ETM ≤m EQTM and EQTM is undecidable.

Of the languages we have shown, this one is the most applicable. Suppose you were
given some code in an old language and asked to rewrite it in a modern language. How do
you know if your rewrite is semantically equivalent? On all inputs, the programs behave
identically and equivalently. Since this language is undecidable, there is no algorithm which
could take in both pieces of code and definitively say yes or no if they are semantically
equivalent. Thats why the best you can do is a thousand unit tests and hope there is no
missing case. This can never guarantee they are equivalent, but it can guarantee they may
be close enough you couldn’t notice a difference if there was one.

Specifically for EQTM , it is a “more unsolvable” problem than the ones we have shown.
Lets prove it.

4.3 A “More Unsolvable” Problem

In general for a language L ⊆ Σ∗ and a class C ⊆ P(Σ∗), we say that L ∈ co-C if L ∈ C.
It is not true in general that C =co-C. We specifically say that a language is co-Turing
recognizable (or co-recognizable) if L ∈ LR(TM). Note that since HALT was recognizable
and not decidable, HALT is co-recognizable and not decidable. The languages which

15: Undecidability by Reduction-7



are both recognizable and co-recognizable are exactly the decidable languages. This will
elucidate our map later on. To show a language isn’t recognizable, we may combine the
following facts

• If A ≤m B, and if A isn’t recognizable, niether is B

• ATM is recognizable and not decidable, ATM is co-recognizable, unrecognizable, and
not decidable.

• A ≤m B ⇐⇒ A ≤m B

We combine these facts to prove some B is unrecognizable by showing either of the following

ATM ≤m B ⇐⇒ ATM ≤m B

We can give a reduction from ATM to the complement of a language, to show a language
is unrecognizable. We have shown many undecidable languages, but could they perhaps
be recognizable or co-recognizable. Are there any which are neither recognizable nor co-
recognizable? Yes, lets prove it. We show EQTM is neither recognizable nor co-recognizable.
In some sense, this makes it “more unsolvable” than any of the languages we have shown
so far. A recognizer for an undecidable language feels atleast half right5.

Theorem 4. EQTM is unrecognizable and not co-recognizable

Proof. First we show EQTM is unrecognizable. Sipser has a more informative reduction to
prove this. I found this shorter, cuter proof using only the calculus of reductions, but it is
less informative. Recall we proved ATM ≤m ETM . This implies ATM ≤m ETM . Also recall
we proved ETM ≤m EQTM . Many-one reducibility is a transitive relation (something you
should have to prove) so we see that

ATM ≤m ETM ≤m EQTM =⇒ ATM ≤m EQTM

Since ATM is unrecognizable, so is EQTM .
Next we show EQTM is not co-recognizable. We equivalently show EQTM is not rec-

ognizable. We would show ATM ≤m EQTM but this is equivalent to ATM ≤m EQTM .
So it suffices to give a reduction from ATM to ETM . We want a computable function
f(⟨M,w⟩) = ⟨M1,M2⟩ such that

⟨M,w⟩ ∈ ATM ⇐⇒ ⟨M1,M2⟩ ∈ EQTM

Our reduction is as follows.
Notice that L(MΣ∗) = Σ∗ obviously. So

⟨MΣ∗ ,M2⟩ ∈ EQTM ⇐⇒ L(M2) = Σ∗ ⇐⇒ M accepts w ⇐⇒ ⟨M,w⟩ ∈ ATM

We conclude that EQTM is not recognizable or even co-recognizable.

5some other books even call recognizable languages semi-decidable

15: Undecidability by Reduction-8



Algorithm 8 Reduction from ATM to EQTM

on input ⟨M,w⟩
build MΣ∗ to accept all strings
build M2 such that on input x, it runs M on w and accepts x if M accepts w
return ⟨M∗

Σ,M2⟩

4.4 Language Problems for our Other Computational Models

What is the decidability these language problems relative to our other, weaker automata?
Consider the following table. Let D mean decidable and U mean undecidable.

A E EQ ALL

DFA, NFA, REGEX D D D D
CFG, PDA D D U U

TM, and more U U U U

Lets try to give a brief summary of what is an entire chapter of Sipser. Note that if we
have proved two kinds of computational models or automata to be equivalent, they should
both be decidable or both be undecidable. Otherwise, you could transform from one to the
other, and decide it.

• ADFA is decidable, simply run the word on the DFA. Similarly by the equivalence of
DFAs, NFAs, and regular expressions, they also all have decidable acceptance problem.

• EDFA is decidable. Treat the DFA like a graph and see if an accept state is reachable
from the start state using DFS or BFS or any other graph traversal algorithm. Sim-
ilarly, ALLDFA is decidable by checking to see if a reject state is reachable from the
start state.

• EQDFA is decidable. We didn’t prove it, but there exists an algorithm to convert
DFAs into a “normal form” where they are isomorphic (in a vertex and edge colored
graph sense) if they decide the same language. A regular language cannot have two
different looking DFAs for it and both of them be in this minimal normal form. Regular
languages are also closed under symmetric difference and the symmetric difference of
two languages is empty if an only if they are equal.

• ACFG is decidable. This was the point of Chomsky normal form. There also exists
the CYK dynamic programming algorithm to decide this.

• ECFG is decidable. For each non-terminal, you mark it if it is capable of producing
strings. You repeat this until you can test if the start non-terminal is capable of
producing strings.

• EQCFG, ALLCFG are both undecidable. This should surprise you. Its certainly seems
like a hard problem. While you can tell if a CFG produces any word, or a specific word,
how can you decide if a CFG doesn’t non-deterministically skip over some word? You
can’t. Since CFLs aren’t closed under complement, ECFG, ALLCFG do not have the

15: Undecidability by Reduction-9



same duality like they do for the regular languages. The proof of this undecidability is
not beyond you, but it would simply take a lecture. It uses the method of computation
histories, which we will go into next lecture. This also implies that for two semantically
equivalent grammars, there doesn’t exist a normal or minimal form like there is for
DFAs. Chomsky normal form isn’t then really a “normal form”.

• For Turing machines, we proved that ATM , ETM , EQTM are undecidable. ALLTM is
undecidable for similar reasons. This also holds true for any Turing-complete compu-
tational model.

The takeaway here is that the more powerful a computer is, the less we can know about
the languages they decide, just from looking at their descriptions. Notice that these are all
language membership problems. All code problems are decidable. That would include things
like “This Turing machine has seventeen states”, easily checkable. We don’t care about the
computers at all. Our true love is the languages. We only use these computational models
as a tool to study the classes of languages that they characterize.

It took many lectures, but we finally have enough information to give a full and complete
world map. Note that we are quite limited. By the Church-Turing Thesis, anything beyond
the decidable languages is incomprehensible. Unfathomable. The recognizable and co-
recognizable languages are atleast half fathomable. This may look like a complete map, but
we know the world is much bigger than what we can understand. There is an edge to it.
You can palm around in the dark and feel that the world has a small lip to it. The part
we can see is only countably many of the languages. A tiny pathetic window into the vast
scale of the uncountably large universe of languages.

15: Undecidability by Reduction-10



15: Undecidability by Reduction-11


	Some Closure
	A First Theorem
	A Second Theorem

	Relating Unsolvable Problems
	An Unrecognizable Language
	An Acceptance Problem

	Many-One Reductions
	Some Reductions
	An Emptiness Problem
	An Equivalence Problem
	A ``More Unsolvable" Problem
	Language Problems for our Other Computational Models


