
CS 4510 Automata and Complexity March 11th 2024

Lecture 16: Post’s Correspondence Problem and Rice’s Theorem

Lecturer: Abrahim Ladha Scribe(s): Samina Shiraj Mulani

1 Introduction

Last time we proved HALT,ATM , ETM , EQTM are undecidable. You may notice these are
all problems which are just variations of language acceptance problems. You should be
asking the following two questions:

• Are all language acceptance problems undecidable for Turing machines?

• Are the only useful unsolvable problems variations of language acceptance problems?

The answer to the first question is yes, and the second question is no. That is the goal
of today’s lecture. properties

2 Rice’s Theorem

Definition 2.1 (Non-trivial Property). A property is non-trivial if there exists at least one
machine with and one without the property. Not every machine has or hasn’t the property.

An example of a trivial property could be like P = {⟨M⟩ | M is a Turing machine}, or
P = {⟨M⟩ | |L(M)| ≥ 0}. Every machine has these properties, so they are also trivially
decidable.

Definition 2.2 (Semantic Property). A property is semantic if it is about the languages
and not the machines. Such a definition may be hard to formalize, given the diversity of
possible behaviors a machine can or cannot do. We may attempt to formalize this as if
L(M1) = L(M2), then either both ⟨M1⟩ , ⟨M2⟩ ∈ P or both ⟨M1⟩ , ⟨M2⟩ ̸∈ P .

A syntactic property is about the encoding of the machine. For example, “M has 17
states”. Easily decidable, count the states. A semantic property might be “M recognizes a
language which has some (perhaps different) Turing machine to recognize the same language
with 17 states”. Syntactic properties are about the encodings. Semantic properties are
about the languages. Intuitively, a semantic property requires somehow knowing something
about the execution of the machine without simulating it. It requires you to turn it on.
This can only be an informal definition.

Theorem 1 (Rice’s Theorem). Let P be a non-trivial semantic property of Turing ma-
chines. The language

P = {⟨M⟩ | L(M) has “the property”}

is undecidable.

16: Post’s Correspondence Problem and Rice’s Theorem-1

Rice’s theorem states that all non-trivial semantic properties of Turing machines are
undecidable. This is not really a theorem about Turing machines, rather it is about the
recognizable languages. But we can really only study these languages through the lens of
Turing machines.

Proof. Let P be a non-trivial semantic property of Turing machines. Since P is non-trivial,
there exists machine M1,M0 such that M1 ∈ P and M0 ̸∈ P . Without loss of generality,
suppose that ∅ is a language that hasn’t the property (otherwise, repeat the proof showing
P instead). Assume to the contrary that P is decidable. We give a decider for ATM .

Algorithm 1 decider for ATM

on input ⟨M,w⟩
build M ′ hardcoded from M,w,M1

if M ′ ∈ P then
accept

else
reject

Algorithm 2 M ′ hardcoded from M,w,M1

on input x
M = ...
w = ...
M1 = ...
Simulate M on w
if M accepts w then

Simulate M1 on x
if M1 accepts x then

accept

Note that:

M ′ ∈ P ⇐⇒ L(M ′) = L(M1) ⇐⇒ M accepts w ⇐⇒ ⟨M,w⟩ ∈ ATM .

M ′ ̸∈ P ⇐⇒ L(M ′) = ∅ ⇐⇒ M rejects or loops on w ⇐⇒ ⟨M,w⟩ ̸∈ ATM

We see that f(⟨M,w⟩) = ⟨M ′⟩ is such a reduction so ATM ≤m P and so P is undecidable.

We may attempt to inject a philosophical meaning into the theorem. The semantic
properties appear to be dependent upon behavior some point in the future. Many of these
languages are undecidable, yet recognizable. The recognizers simply simulate it until the
event occurs. We may determine the future only when it becomes the past.

You should also take great care in applying the theorem. Student’s often misapply it,
in an attempt to show a language is undecidable. It may be simpler to do a reduction in
some cases. It is a powerful theorem, and should come with the required warning labels.

16: Post’s Correspondence Problem and Rice’s Theorem-2

3 An Unsolvable Puzzle

The answer to the second question is no. There do exist undecidable problems that have
nothing to do with Turing machines, and there do exist unprovable statements in logic
which have nothing to do with provability or self reference.

We describe such a problem in logic, the Continuum Hypothesis. Formally it states:

CH : ¬∃C[|N| < |C| < |P(N)|]

There is no set whos cardinality lies strictly between a countable and uncountable set. In
1940, Gödel showed that you could not disprove it. In 1963, Paul Cohen showed you could
not prove it. Cohen had to invent the technique of forcing, for which he won a Fields medal,
the only one ever awarded for logic. By the fact CH can niether be proved or disproved, it
is a statement which is independent. It gives no positive answer one way or the other if it is
true or false. You may take it or its negation as an axiom without any consequence to the
consistency of the system. Note that the statement appears to have nothing to do with any
meta problem, not self-reference, or provability or anything. This is unlike Gödel’s sentence
which states “I am not provable”.

We show an analogous problem. The point of today’s lecture is only to show you that
there exists an unsolvable puzzle. The problem statement has nothing to do with Turing
machines. The existence of algorithmically unsolvable problems is not as conditional as it
feels on the Church-Turing Thesis. There do exist unsolvable problems with nothing to do
with language theory. Here, we give a puzzle with no algorithmic solution. It is provably
unsolvable.

4 Post’s Correspondence Problem

Let a “domino” or “tile” be a pair of strings, consisting of an upper and lower portion. For
example, a set of tiles could be{[

b

ca

]
,
[a

ab

]
,
[ca
a

]
,

[
abc

c

]}
We say a set has a “match”, if given unlimited copies of each tile, there exists a sequence
(possibly with repetition) where the concatenations of the top equal the concatentations of
the bottom. For example, given the previous set of tiles, consider the sequence 2,1,3,2,4.[a

ab

] [b

ca

] [ca
a

] [a

ab

] [abc
c

]
• The top elements concatenated are a · b · ca · a · abc = abcaaabc

• The bottom elements concatenated = ab · ca · a · ab · c = abcaaabc

So this set has a match.
Post’s correspondence problem is algorithmically unsolvable. There is no algorithm

given a set of tiles to determine if there is a match or not. Restated as decidability of a
language:

16: Post’s Correspondence Problem and Rice’s Theorem-3

Theorem 2.

PCP = { ⟨P ⟩ | P is a set of tiles with a match } is undecidable.

The proof idea is simple but has lots of small details. First, lets explore its universality
in some way.

5 Proof Idea

5.1 Forcing a Start

First note we can set up a set of tiles such that we can force any decision making procedure
to temper its behavior a certain way. For example, for the following set of tiles, the first
(and last) choices are fixed. Any procedure is tempered into picking the first tile first.{[

#b

#

]
,
[a
b

]
,

[
$

a$

]}
It is the only tile where the top and bottom begin with the same symbol. Similarly the

last tile for any match of this set (if it exists) is also forced.

5.2 Forcing a Next Tile With Deficiency

For any decision making procedure, we can force it so that the next tile has to begin the
way we want it. Note that a decision making procedure need not make selections of tiles
sequentially. There is a lot of creative things algorithms can do. But if a certain tile set has
a match, then the nth tile must have the desired property we will force. Consider the set{[

#a

#

]
,
[a
a

]}
Suppose it was forced to choose the first tile.1 Now the “working strings” of the top and
the bottom are #a and a respectively. Since the top is longer than the bottom, the next
tile is forced to have its bottom begin with an a. That means we can only choose tiles of
the form ...

a... .
Also notice this deficiency is never satisfied. A decision making procedure will be forced

to choose tiles ad infinitum. The working strings will always be #ak+1 and #ak. This idea,
intuitively can encode a Turing machine which loops.

Using these ideas, we can encode the transition function of a Turing machine into a set
of tiles. With the right setup, we can ensure that the tile instance only has a match if M
accepts w. We will force the first tile, then force each of the next tiles to behave according
to our Turing machine transition function. Then we will ensure there is a “cap piece” to
match the deficiency if only if M accepts w.

1Forget for a moment that the second tile by itself is a match for this set. We will show a way around
this later.

16: Post’s Correspondence Problem and Rice’s Theorem-4

6 Proof of Unsolvability

6.1 Computation History

A computation history is a sequence of configurations in some string encoding made useful.
Here, we will construct a set of tiles such that its only string match is this computation
history. for example, the following is a computation history for the following machine.

q0start qh

0 → 1,R

1 → 0,R

→ ,L

#q010#0q00#01q0 #0qh1 #

We may define an accepting computation history to be a computation history, where
the last configuration is an accepting one. Notice that an accepting computation history is
just a string which only exists if M accepts w. If M loops on w, such a computation history
would be infinite in length, and then not a string. If M rejected w, such a computation
history would end with a rejecting configuration instead of an accepting one. This is the
heart of the method of accepting computation histories. We will use the fact that this string
only exists if M accepts w, and we will create a set of tiles such that the only match is
the accepting computation history. Then the set of tiles only has a match if there exists an
accepting computation history, which only exists if M accepts w.

6.2 Construction

Proof. We construct a set of tiles f(⟨M,w⟩) = ⟨P ⟩ such that M accepts w if and only if P
has a match. We begin our tile with this starting one.

[
#

#q0w1w2...wn#

]
Notice that the next tile is forced to begin with q0 at the top. We will only add three2 such
tiles, where the tops of the tiles are q0a, q0b, q0 so that only one gets picked to match to
q0w1.

qistart qj
a → b,R Given a right transition in our machine, our

configurations would change like qia → bqi.
So we emulate this in our tiles. We add one
tile per right move transition. If we have
transition δ(qi, a) = (qj , b, R), we add tile[
qia

bqj

]
2Technically |Γ| for a well defined transition function

16: Post’s Correspondence Problem and Rice’s Theorem-5

qistart qj
a → b,L Of course, we must also simulate left moves,

so if δ(qi, a) = (qj , b, L), our configurations
would change looking like cqia → qicb. We
add one domino per selection of c. Suppose
Γ = {a, b, }. We need one for each pos-
sible left move of our machine. Note that
we added one tile per right move, but three
tiles per left move. This imbalance is just
an artifact of the way we encode a snap-
shot of the state of the machine as a string.[
aqia

qjab

]
,

[
bqia

qjbb

]
,

[
qia

qj b

]
I hope you see the pattern here. We have created a set of tiles such that the decisions

made to create a match are forced to simulate the Turing machine according to its transition
function. The first tile creates a deficiency on the top. As the next sequence of tiles are
forced fix this deficiency. As they do, they compute the next configuration and append it to
the bottom! We need some more tiles to ensure the rest of the simulation is set up correctly.[a

a

]
,

[
b

b

]
,
[]

We add one singleton tile (shown on the left)
∀a ∈ Γ to make copies of the rest of the tape
for us. Recall in a sequence of configurations,
only a small local part of each sequential con-
figuration changes. Most of the tape remains
unchanged. These tiles are for performing
this copying for us. Adding these tiles triv-
ially adds a match but we show how to fix
this later.[

#

#

]
,

[
#

#

]
We also need a cap between configurations
and a way to use more space. Recall a config-
uration can have more blanks () like leading
zeroes because the tape is infinite. We only
choose to write as many as necessary, one. If
we want more, it will have to be done for the
next configuration.[

aqa
qa

]
,

[
bqa
qa

]
,

[
qa
qa

]
The accept state being qa, we add the fol-
lowing tiles. This basically has the qa “eat”
the rest of the tape. This is so our cap fits
nicely. Recall that on halting, the tape head
may end where ever. This creates a slight
amount of complexity for us, so we use this
to simplify. We do not need to have the qa
eat right if we modify the machine to loop all
the way to the right just before accepting.

16: Post’s Correspondence Problem and Rice’s Theorem-6

[
qa##

#

]
Once you reach the accept state in a Tur-
ing machine, you halt. However, our match
will keep going to clean up the tape only so
we can insert nice end cap. This completes
the match. Note we have no end cap for re-
jection. This cap can only be placed if M
accepts w.

You may have noticed we add tiles to not enforce the rule of a single start, like
[a
a

]
or[

#

#

]
. We now modify all our tiles to enforce the start we want is the actual start. Given a

set of dominoes we modify them in the following way. For u = u1...un, let

•u = •u1 • u2 • ... • un
u • = u1 • u2 • ... • un•
•u• = •u1 • u2 • ... • un•

Let

[
ts
bs

]
be the start tile,

[
te
be

]
be the end tile.

Given our set of tiles -

{[
ts
bs

] [
t1
b1

]
...

[
tk
bk

] [
te
be

]}

We modify them like -

{[
•ts
•bs•

] [
•t1
b1•

]
...

[
•tk
bk•

] [
•te•
be•

]}

This can be generalized to make our reduction more like

ATM ≤m MPCP ≤m PCP

but this correctly makes the start and end tiles for out match exactly the ones we want. It
does come at the cost of using more symbols, and our match being twice as long. It is as if
we skipped over every other cell of the tape. Our final set of tiles is then[

•#
•# • q0 • w1 • w2 • ... • wn •#•

]
One start tile

16: Post’s Correspondence Problem and Rice’s Theorem-7

[
•qi • a
b • qj•

]
For each right move transition like δ(qi, a) =
(qj , b, L) we add one tile[

•a • qi • a
qj • a • b•

]
,

[
•b • qi • a
qj • b • b•

]
,

[
• • qi • a
qj • • b•

]
For each left move transition like δ(qi, a) =
(qj , b, L), we add |Γ| tiles

[•a
a•

]
,

[
•b
b•

]
,
[•

•

] |Γ| tiles for copying

[
•#
#•

]
,

[
•#
•#•

]
two extra tiles to help between configurations

[
•a • qa

qa•

]
,

[
•b • qa

qa•

]
,

[
• • qa

qa•

]
either |Γ| or 2|Γ| tiles for eating

[
•qa •# •# •

#•

]
One end tile

Lets stress why the computation is correct. We begin with:

[
#

#C0

]
Then we are forced to add tiles in which the
tops match C0. By doing so, we have chosen
the bottom to compute and place C1[

#C0#

#C0#C1

]
Now, we must repeat, matching C1 to force
us to compute and place C2.[

#C0#C1#

#C0#C1#C2

]
And so on.

The only way we can match is if we fix the deficiency, and the only way to do that is
to place the end tile. We can only place the end tile if M accepts w. The match for our
set of tiles exists if and only if there is an accepting computation of M on w. We had no
reject end tile. If the machine loops, this computation history would be infinite and so there
would be no match. We see that our construction f(⟨M,w⟩) = ⟨P ⟩ is correct. Namely

⟨M,w⟩ ∈ ATM ⇐⇒ ⟨P ⟩ ∈ PCP

So we conclude PCP is undecidable.

For any kind of structure, we can note if there are enough degrees of freedom for us to
simulate the transition function of a Turing machine, but perhaps not too many to make
its problems too easy, any such structure will have unsolvable questions. This goes far be-
yond computational questions. There are unsolvable problems in combinatorics, geometry,
topology, and more. Now that we have shown a simple combinatorial problem which is
unsolvable, we can use this in further reductions.

16: Post’s Correspondence Problem and Rice’s Theorem-8

7 Baba is You

Now we show Baba is You is undecidable. If we suppose that BABA was solvable, that is,
given any Baba is You level, there exists an algorithm to determine if it is winnable or not,
we claim then you could solve PCP , a problem we just proved unsolvable. Our reduction
would be added on like

ATM ≤m MPCP ≤m PCP ≤m BABA

The proof idea is given a set of tiles, to construct a Baba is You level which is winnable if
and only if the tile set has a match. A reappearing theme is that the intuition is clear, even
if the necessary gadgets are very complex.

• The paper: https://arxiv.org/abs/2205.00127

• The videos: https://www.youtube.com/playlist?list=PLE75TLHOnaOKrQsrhCUgOmuAX7l7dI66N

• The Baba is You level editor has online play where you can play other custom levels.
https://hempuli.itch.io/baba-is-you-level-editor-beta

16: Post’s Correspondence Problem and Rice’s Theorem-9

https://arxiv.org/abs/2205.00127
https://www.youtube.com/playlist?list=PLE75TLHOnaOKrQsrhCUgOmuAX7l7dI66N
https://hempuli.itch.io/baba-is-you-level-editor-beta

	Introduction
	Rice's Theorem
	An Unsolvable Puzzle
	Post's Correspondence Problem
	Proof Idea
	Forcing a Start
	Forcing a Next Tile With Deficiency

	Proof of Unsolvability
	Computation History
	Construction

	Baba is You

