
CS 4510 Automata and Complexity 03/13/2024

Lecture 17: Kolmogorov Complexity

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

1 Introduction

Consider the following three strings:

1111111111111111111 1111101111111111101 1011011111100001010

Lets understand our own intuition first about what objects appear simple or complex.
The first string can be described simply. It has a relatively short description of just its
length. The second string is less simple. Maybe we couldn’t call it complex, necessarily,
but it is certainly less simple. If you were to describe it, your description would also have to
include information about the location of the two zeroes. The third string, at a first glance
appears complex. But it is actually the trailing decimal of e = 2.718... Although it may
appear complex, this is actually a simple description of it.

Definition 1.1 (measure). Intuitively, a measure is a function µ : {things} → R+ (or N),
where µ(x) = 0 =⇒ x has nothing, or none of “it”. If µ(x) > µ(y), then x has more of
“it” than y.

Examples of measures include length, area, volume, for their respective objects. Cardi-
nality is a measure on sets. Every probability distribution is a measure, where the measure
of the whole space is 1. Entropy and temperature can also be considered measures.

2 Definition

We want to construct a measure on strings for their “algorithmic complexity.” Given a
string, how hard is it to describe? Is it simple or complex? How much information does
the string communicate? Can we even measure this? We want to create a formal definition
which captures the intuition of what it means for a finite sized object to appear random or
not. What is a “description” anyway? Lets follow our intuition towards a formalization. A
program is a description! This leads us to an intuitive definition.

Definition 2.1. Let K : Σ∗ → N to be the Kolmogorov Complexity of a string.

K(x) = the length of the shortest program to print x and halt.

Mathematically, this could be represented as

K(x) = min
p∈Π

(
|p| : U(p, ε) = x

)
(1)

17: Kolmogorov Complexity-1

x : the string
p : a program
Π : set of all programs
|p| : length of program (as a string)

U : universal simulator (runs p on ε)
p : program
ε : takes no input
x : prints x and halts; output x

We will explore why our intuition of when a string appears complex or simple corresponds
to the lengths of programs to print those strings. Simple strings should have short programs
to print them.

2.1 Invariance of the Definition

Why did we say a program and not a Turing machine? It is like asymptotic analysis in the
theory of algorithms. Our complexity measure is independent of the language it is written
in. Unlike the theory of algorithms, rather than rely on our intuition, we can prove this
independence.

Theorem 1. For any programming language l, Suppose we have a language specific function
Kl(x) which is the length of the shortest program in l to print x and halt. We prove that
K(x) ≤ Kl(x) for some constant c. Choice of language can only matter by at most, a
constant.

Proof. We prove that two language specific measures may differ from each other by at most
a constant. Suppose we have language specific definitions for Python and Rust, denoted as
Kpy and Krust respectively. By the Church-Turing Thesis, since Rust is Turing-complete,
we can certainly write a Python interpreter in Rust. Let this program written in Rust to
interpret Python be called πpyinrust. Now, given any Python program, combined with this
interpreter in Rust, we just have a Rust program. It might look something roughly like

fn interpret(python_code: &str) {

...

}

fn main() {

let pyprog: &str = "#!/usr/bin/python3\ndef f()\n\t...";

interpret(pyprog)

}

Suppose there is a python program p.py with |p.py| = Kpy(x). This minimal Python
program can be used to create a Rust program, as seen above. We observe:

Krust(x) ≤ Kpy(x) + |πpyinrust| (2)

We can only say ≤ and not = since we do not know if there exists a smaller Rust program.
But the existence of this Rust program which prints x upper bounds Krust(x). Notice, by
the Church-Turing Thesis, that Python is also Turing-Complete. Thus, we can also write

17: Kolmogorov Complexity-2

a Rust interpreter in Python.1 By a symmetrical argument, there exists a Rust interpreter
in Python named πrustinpy and we observe:

Kpy(x) ≤ Krust(x) + |πrustinpy| (3)

Notice that our interpreters are independent of anything about x, like its complexity or
length. These interpreters are of constant size. You could have a python program of a
billion gigabytes, and the code to interpret the python program would remain the same
size. Next, notice our two inequalities are symmetric. For any two a, b ∈ N, if a ≤ b+O(1)
and b ≤ a + O(1), then |a − b| ≤ O(1). We combine our inequalities this way to get that
there exists a constant c such that

∀x |Kpy(x)−Krust(x)| ≤ c (4)

So, the difference between our two algorithmic complexities only differs by some constant.
This can obviously be generalized for all Turing-complete programming languages. We

may drop the subscript and just consider K(x) rightfully as a universal definition.

Another small anecdote: This proof relied on a piece of evidence from the Church-Turing
thesis. We took two Turing-complete programming languages and had them simulate each
other.

3 Examples

Here are some examples to understand Kolmogorov complexity better. We can compute an
upper bound on K(x) for any x by simply giving a program to take no input and print x.

3.1 K(x)

Notice that for any x ∈ Σ∗, there exists a program to print it. Somewhat obviously, just
have the program contain the string hardcoded. Such a program may look like.

def f():

x = ’.......................’

print(x)

This program takes no input and prints x, for any x ∈ Σ∗. So we observe that

∀x K(x) ≤ |x|+ c (5)

where c is some constant independent of the input. For example, |“print()”| = 7, so c ≥ 7.
It is independent of the string x, but dependent on the programming language, which we
don’t care about.

1A Rust interpreter in Python seems far less useful than a Python interpreter in Rust. Yet, you should
imagine that someone could write such a program. For computability, we do not care about the difference
between compiled and interpreted. A compiled language is really a translation into the language of machine
instructions, which is then arguably just interpreted by the CPU. There do exist interpreters for traditionally
compiled languages, like C. This distinction is unimportant. Arbitrary.

17: Kolmogorov Complexity-3

3.2 K(xx)

What about the Kolmogorov Complexity of some string concatenated with itself. What is
K(xx) in terms of x? A bad idea is to hardcode xx.

def badidea():

xx = ’...’

print(xx)

Rather than an upper bound of K(xx) ≤ |xx| + c = 2|x| + c, we can construct a program
to only store x instead of xx and then compute xx from x.

def goodidea():

x = ’..........................’

print(x.append(x))

This gives us a better upper bound of K(xx) ≤ |x|+ c′. Note that c′ > c since our program
needs the logic to compute xx from x. It’s still a constant though. For future reference, all
constants are not necessarily equal, but all are independent of the input. Programs need
not only store information, but they may compute it as well.

3.3 K(xn)

What about many concatenations, like K(xn) for some n?

def f():

x = ’..........................’

n =

ans = ’’

for i in range(n): ans.append(x)

print(ans)

The size of our program as a function of the input is |x| and |n| = log n. So

K(xn) ≤ |x|+ log n+ c (6)

Conventionally, the size of a string x is its length |x|, but the size of a number n is the
number of bits of its description, log n. Before, we didn’t need a log n term as it was only
constantly many concatenations. Now we must keep a counter. Also notice we need not
hardcode x. What if there was a much shorter way to compute x? Let g be some minimal
program which takes no input and returns2 x. Maybe its size is much smaller than the size
of x (|g| << |x|).

def f():

x = g()

n =

2the difference between returning and printing is an engineering issue, and we don’t care about the
difference enough. Obviously if there is a program to return a string, there is a similarly sized program to
print the string.

17: Kolmogorov Complexity-4

ans = ’’

for i in range(n): ans.append(x)

print(ans)

Thus, K(xn) ≤ K(x)+log n+c. We replaced the hardcoded x with a computation of x.
We could even do the same for n if there is a shorter description than its hardcoded log n
bits. This would give us an upper bound of K(xn) ≤ K(x) +K(n) + c.

3.4 K(xR)

What about xR, the reversal of string x? What is K(xR) in relation to K(x)? If some
program p prints x, we can create a program q to print xR. Note q is like p. It computes x,
but instead of immediately printing it, it computes x, reverses it, then prints it. We observe
this reversal operation is independent of the input, so |q| = |p|+c. Thus, |K(x)−K(xR)| ≤ c
for some constant c. This also underlines our intuition of K being a measure of natural
descriptive complexity. If a string is complex or simple, its reversal should remain complex
or simple. Our intuition on simple or complex strings is invariant to reversing.

4 Compression

Which strings have short descriptions and which ones have long ones? Let’s get back to some
intuition about randomness. Some strings appear to have very short, simple descriptions,
like 12

n
. A program to print this string needs to only really contain information about n,

which is much smaller than the length of the string. Others strings appear to have long
descriptions, or at least no short descriptions. We may say a string is incompressible if
K(x) ≥ |x| − c for some c. The shortest description of an incompressible string isn’t much
shorter than the string itself. We may say a string is compressible if it is not incompressible.
Which strings are compressible and which ones are incompressible?

Lets ask a simpler question. How many strings of length n are compressible by 2 or
more bits? Just two bits. Let’s compute it as a ratio:

strings of length n compressible by two bits

all strings of length n
=

|{x ∈ Σn | K(x) ≤ |x| − 2}|
|Σn|

≤ (7)

|{p ∈ Π | p a program with |p| ≤ n− 2}|
2n

≤
|
⋃n−2

i=0 Σi|
2n

≤
∑n−2

i=0 2i

2n
=

2n−1

2n
=

1

2
(8)

Only half of the strings of length n are compressible by 2 bits. This generalizes so only
1
4 are compressible by 3 bits and 1

2d−1 are compressible by d bits. This is a very lazy
upper bound. It’s much larger than actual amount. We were extremely generous with
our overestimation and still concluded a very small upper bound. From this, we may
conclude that overwhelmingly most strings are incompressible. Less than 1

1000 strings are
incompressible by 11 bits. Note this is independent of n.

The stress is on “most” strings. We have found a deep connection between randomness
and information content. A uniformly random string has overwhelming probability to be
incompressible. The compressible strings are the lucky ones. If you had all possible files of
size 100GB, only 0.1% of them could be compressed by more than a byte.

17: Kolmogorov Complexity-5

Why does file compression work in practice? Consider some fixed setting, like images
of fixed dimension. By most we mean in a uniformly random sense, the color of each pixel
being drawn according to a coin, you will generate an image which looks like garbage. In
a uniformly random sense, ”most” images look like TV static. In contrast, most of the
useful images generated by humans are full of patterns for our pattern matching brain. A
picture of a parrot may have a large splotch of red. Lossy encodings like JPEG and lossless
algorithms like Lempel-Ziv exploit these patterns to generate short descriptions.

Back in the world of strings, the compressible strings are the lucky ones. If you were
to generate the bits of a string by a random coin flip, its going to have overwhelming
probability of having near equal number of zeroes and ones. With negligible, insignificant
probability would it have any exploitable pattern or structure. How likely is the string xx
or 1n as an output of this part of this random process? Most strings are incompressible
because most strings do not have any pattern.

Heres a deep remark. Although since we believe P ̸= NP, we are unable to compu-
tationally distinguish random strings from those produced by a pseudo-random generator.
Yet if an arbitrarily long random string is incompressible, arbitrarily long pseudo-random
strings all have short descriptions. Those descriptions being simply the algorithm of the
pseudo-random generator, the seed, and the string’s length.

5 Graph of K(x)

Lets try to plot K(x), but instead of K : Σ∗ → N, consider K : N → N. We witness the
following behavior of K.

• K(x) grows unbounded. ∄c ∀x K(x) < c. To prove this, consider n such that
K(1n) > c. Note that n can get really big, but c cannot. The function must be
growing.

• K(x) “hugs” log x. We proved most strings are incrompressible, so the graph should
hover near log x for most x.

• K(x) dips infinitely often. A small program for one string implies an infinite family
of small programs for an infinite family of strings. We showed that K(x) ≈ K(xR).
A description of a string being simple or complex does not depend on the direction
we read it. This same intuition can be used to see that K(x) ≈ K(2x) ≈ K(3x) ≈
K(2x) ≈ K(22

x
) ≈ K(x+

√
x) and so on.

• K(x) has continuous properties. Recall the definition of continuity of a real valued
function. We say f is continuous if when x, x+ ε are close, so are f(x), f(x+ ε). This
means |x− x0| < c1 =⇒ |f(x)− f(x0)| < c2. In terms of K(x),

∀x, |K(x)−K(x± 1)| < c

Take the program that prints x. Modify it to add 1, now you have a program to print
x+1. Note that K(x) cannot actually be continuous, as it is discretely valued, but it
may not have a sporadic behavior

A plot of K(x) with the following properties might look like the figure.

17: Kolmogorov Complexity-6

6 K(x) is not computable

We have a imagined3 graph of K(x), but we never gave an algorithm. That’s because there
is none.

Theorem 2. K(x) is not a computable function.

Proof. We will proceed by diagonalization. Assume to the contraryK(x) is computable, and
there is a program which may compute it. Then we may construct the following algorithm.
This program is build around an assumed program to compute K(x) It searches for the

Algorithm 1 M

for x ∈ Σ∗ lexographically do
if K(x) > | ⟨M⟩ | then

print x
halt

end if
end for

smallest lexographic string with Kolmogorov Complexity greater than the length of the
code of the program. The for loop iterates like x ∈ {ε, 0, 1, 00, 01, . . .}. As the algorithm
proceeds, M will search for some smallest string x such that K(x) > | ⟨M⟩ | and print
it. But since M itself prints this x, we see that K(x) ≤ | ⟨M⟩ |. A contradiction. It is
impossible for both a > b and a ≤ b to both be true. Thus, K(x) is not computable.

The diagonalization occurs in the way we somehow were able to encode the size of a
program within the program itself! This should surprise you. Diagonalization is a negated
self-reference. The self reference occurs by encoding a program with its own size, and the
negation occurs purely quantitatively. Can’t draw a table here. If you were to write the
rest of the program first, then compute | ⟨M⟩ |, and try to insert it, you would change the
size of the program. With a little math, this is avoidable. You could also replace | ⟨M⟩ |
with a constant c which over estimates | ⟨M⟩ | significantly, and still derive a contradiction.
There also exists something called Kleene’s recursion theorem, which allows a program to
obtain a copy of its own description, and compute with it.

3I traced this from the Li Vitanyi book

17: Kolmogorov Complexity-7

7 The Method of Incompressibility

This is a useful proof technique derived from Kolmogorov Complexity. Like how the pi-
geonhole principle shows existence of an object with some desired property, the method of
incompressibility shows most objects have some desired property. Here, we mean “most”,
truly in a Kolmogorov-random sense. It is one of the strongest techniques we have for
average case and worst case lower bounds. The proofs usually follow some similar struc-
ture. You assume something to the contrary, and then show that this implies some succinct
description of an incompressible object.

7.1 Infinitude of the Primes

There is a classic proof due to Euclid you may know. There are many other proofs of this
result as well. Here, we will prove it using the method of incompressibility.

Theorem 3. There are infinitely many primes.

Proof. Suppose there are only finitely many primes, p1, . . . , pk. Then ∀n ∈ N, ∃e1, . . . , ek
such that n = pe11 · · · pekk . Thus, the prime powers ⟨e1, . . . , ek⟩ are a description of n. The
program to print n would have hardcoded e1, ..., ek. It would bruteforce recompute all the
primes, and then compute n = p1

e1 · ... ·pekk and print it. Note that each ei can be described
in log ei bits, so K(n) ≤ log e1 + · · ·+ log ek + c. What is the size of any ei? A worst case
is that n is a prime power, so if n = peii for some i, then ei = logpi n. It follows then that
each ei ≤ log n.

K(n) ≤ log e1 + · · ·+ log ek + c ≤ log log n+ · · · log logn+ c ≤ k log logn+ c (9)

where k is the finite number of primes and independent of the input. So,

∀n, K(n) ≤ k log logn+ c

For any large enough incompressible n, we have a contradiction.

We showed that if there were finitely many primes, then every number could be de-
scribed succinctly by its prime powers. But we know most numbers are incompressible. We
concluded that ∀n, K(n) ≤ k log log n , but we know for most n that K(n) > log n− c.

7.2 Proving non-regularity of languages

There is a generalized lemma in the Li-Vitanyi book, but here we only prove one example,
as a demonstration.

Theorem 4. {anbn | n ∈ N} is not regular.

Proof. Assume to the contrary that it was regular. Then there exists a DFA D to decide
this language. Consider the execution of the machine on some input anbn. Suppose you
pause the execution right after the a’s and before the b’s. You will be paused on some
(not accepting) state qi. If you were to resume execution from this state qi, after reading
in exactly bn, the DFA will be brought to an accept state. The first accept state that D

17: Kolmogorov Complexity-8

reaches from qi will only come after reading bn. We may use this fact to give a succinct
description of n. Take the DFA D, run it from qi on b’s until you reach an accept state,
and then print the number of b’s it took. The program may look like

def f():

D = ’..........................’

q = q_i

counter = 0

while True

if q is accepting

print counter and halt

q = delta(q,b)

counter+=1

print(ans)

We observe that K(n) ≤ |D| + |qi| + c. Since D, qi are of constant size we see that
K(n) < c, a contradiction for large enough incompressible n.

Much easier than the pumping lemma! You can generalize this, like the pumping lemma,
to give a generic proof template to show many non-regular languages are not regular.

8 A Hint Towards Computational Learning Theory

Suppose we loosened our definition of K(x) so that the programs to print x need not be
perfect, only approximate. Recall, our definition that

K(x) = “the length of the shortest program to print string x”

Suppose the following synonym substitutions were made:

• length → size

• shortest → simplest

• program → description

• prints → approximates

• string → dataset

Now, we have

K(x) = “the size of the simplest description which approximates dataset x”

That sounds a lot like Occam’s Razor. Following this logic, you could formalize Occam’s
Razor under PAC4 learning. In practice, since K(x) is not computable, there is much more
success with computable restrictions, such as

Kt(x) = min
p∈Π

{|p| : U(p, ε) = x and halts in t(|x|) steps} (10)

4Probably Approximate Correct

17: Kolmogorov Complexity-9

9 Further Reading

You have to look at the Li Vitanyi book. Chapter two may guide you towards under-
standing more about the complexity itself. Chapter six will give you may applications of
the method of incompressibility. These include Turing machine simulation lower bounds,
average case complexity of heapsort, Hastad’s switching lemma for circuit lower bounds,
and much more. Chapter eight has some connections between Kolmogorov complexity and
information theory. I also recommend you read 6.4 of the Sipser book and maybe this old
worksheet of mine https://ladha.me/files/sectionX/kolmogorov.pdf

17: Kolmogorov Complexity-10

https://ladha.me/files/sectionX/kolmogorov.pdf

	Introduction
	Definition
	Invariance of the Definition

	Examples
	K(x)
	K(xx)
	K(xn)
	K(xR)

	Compression
	Graph of K(x)
	K(x) is not computable
	The Method of Incompressibility
	Infinitude of the Primes
	Proving non-regularity of languages

	A Hint Towards Computational Learning Theory
	Further Reading

