
CS 4510 Automata and Complexity April 15, 2024

Lecture 23: The Polynomial Hierarchy (Draft)

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

1 coNP

Before we understand the polynomial hierarchy, we should understand coNP, so lets quickly
review NP. NP is a class of languages with many characterizations. We may say L ∈ NP if:

• For a nondeterministic Turing machine which on input w ∈ L, there exists an accepting
computation branch.

• For a polynomial time deterministic verifier V (w, c), there exists a witness, or certifi-
cate c to convince the verifier to accept the input.

• L ≤p SAT where Φ ∈ SAT if there exists a satisfying assignment to ϕ.

Note the emphasis. These characterizations of NP all seem to involve existentiality (∃).

Definition 1.1. We let coNP be the class of languages such that L ∈ coNP ⇐⇒ L ∈ NP.

We can characterize coNP analogously as we did NP. We care more about acceptance
into L ∈ coNP than rejection from L ∈ NP. We may say L ∈ coNP if:

• We say a co-nondeterministic machine is one which accepts an input if all branches ac-
cept and and rejects an input if there exists a rejecting branch. For a co-nondeterministic
Turing machine which on input w ∈ L, all branches must lead to an accept state.

• For a polynomial time deterministic machine M(w, c), for all possible “witnesses”, or
certificates c, each one convinces the machine M to accept w.

• Both SAT and TAUT are coNP-complete. Φ ∈ TAUT if every assignment of Φ is
satisfying. Similarly, Φ ∈ SAT if every assignment of ϕ is unsatisfying.

Note the emphasis. These characterizations of coNP all seem to involve universality (∀).
We believe that the relationship between P,NP, coNP looks like this.
PICTURE
We do not think that NP = coNP. To verify SAT is quite easy, as the witness is

simply a satisfying assignment. How could you verify SAT? Every assignment needs to
be unsatisfying, so how could you convince a verifier no assignment is satifying? It doesn’t
seem like there is a short witness you could provide for this. You could provide every
assignment, but there 2n of them, and a polytime verifier cannot read them all. We think
SAT ̸∈ coNP for similar reasons that we think SAT ̸∈ NP.

We know that P is closed under complement, and by definition, NP∩coNP is also closed
under complement. But we do not know if P = coNP ∩ NP.

23: The Polynomial Hierarchy (Draft)-1

2 A Logical Definition of the Polynomial Hierarchy

The characterization of NP by ∃ and coNP by ∀ motivates this definition.

Definition 2.1. For any class C, define the class ∃C such that if M was a C-machine with
a definition like

M(w) accepts ⇐⇒ w ∈ L ∈ C

then M ′ is a ∃C machine such that

∃xM ′(w, x) accepts ⇐⇒ w ∈ L ∈ ∃C

We naturally augment these deciders to take on witnesses1. We similarly define the class
∀C as

∀xM ′(w, x) accepts ⇐⇒ w ∈ L ∈ ∀C

What is ∃P?
∃P := ∃xM(w, x) accepts ⇐⇒ w ∈ L

and M runs in polytime. M is just a polytime verifier! So ∃P = classes of languages
verifiable in polytime. Thus ∃P = NP. Note that |x| must also be a polynomial. Similarly
what is ∀P? Well notice that L ∈ ∀P if L ∈ ∃P, so ∀P by definition is just coNP. The logical
complement of the definition is the set complement of the language. Let us write out co∃P:

w ̸∈ L ⇐⇒ w ∈ L ⇐⇒ ¬∃xM(w, x) accepts ⇐⇒ ∀xM(w, x) accepts = ∀P

2

What is ∃∃P?

∃∃P := ∃x1∃x2M(w, x1, x2) accepts ⇐⇒ w ∈ L

and M is polytime? That’s just two witnesses. It just complicates things. Each witness can
be at most a polynomial number of bits anyway, so two witnesses is just a constant larger
so ∃∃P = ∃P = NP. The intuition is there but lets try to prove it a little more rigorously

Theorem 1. ∃∃P = ∃P

Proof. We first prove ∃P ⊆ ∃∃P . Take our ∃P machine, and modify its arguments to take
on another witness which it simply does not read at all. This is now a ∃∃P machine.

To show ∃∃P ⊆ ∃P, take a ∃∃P machine and create an ∃P machine. The witness to
the ∃P machine will be an encoding of the two witnesses to the ∃∃P machine. It splits its
witness into two and then simulates the ∃∃P machine.

def EP(w,[x_1,x_2]):

simulate EEP(w,x1,x2)

1Although these auxilliary inputs maybe universally quantified and therefore not “witnessing” anything,
we will still call them witnesses.

2This should actually say ∀xM(w, x) rejects but we care about acceptance into L rather than rejection
from L

23: The Polynomial Hierarchy (Draft)-2

Similarly, ∀∀P = ∀P = coNP. Anytime we have a finite of the same quantifier adjacent
to each other, we may compress them to into one.

∃∃...∃P = ∃P = NP

What about ∃∀P and ∀∃P? Now things are getting interesting. First note that order
matters, and in general, quantifiers may not commute. If you consider ∀∃P

∀x1∃x2M(w, x1, x2) accepts ⇐⇒ w ∈ L ∈ ∀∃P

This says for every x1, there is an x2 to make M accept. For each x1 there may be a
different x2 but some x2 must exist for each x1. What is the relationship between P,∀P, ∃P
and ∀∃P, ∃∀P?

Note that we may add an ∃ quantifier to a ∀P machine which it ignores to show ∀P ⊆
∃∀P. We convert a ∀P machine to a ∃∀P machine which ignores this witness. Adding an
ignored parameter changes nothing of the program structure, so our machine still decides
the same language. Since we can perform this surgery, ∀P ⊆ ∃∀P. Similar logic can be used
to show ∀P ⊆ ∀∃P and ∃P ⊆ ∀∃P and ∃P ⊆ ∃∀P. Observe that ∀∃P and ∃∀P appear to be
larger than ∃P and ∀P. So does ∃∀P = ∀∃P? We don’t know! ∃∀P and ∀∃P appear to have
the same duality and dance that NP and coNP have.

What about Note that ∃∃∀P = ∃∀P, so we really only want to study the classes which
have alternating quantifiers. We are now ready to give a formal definition of the polynomial
hierarchy. We define the levels of the polynomial hierarchy through a double induction.

23: The Polynomial Hierarchy (Draft)-3

Definition 2.2. Let Π0 = Σ0 = P and inductively define

Σi = ∃Πi−1 = ∃∀∃∀∃ . . .︸ ︷︷ ︸
i

P

Πi = ∀Σi−1 = ∀∃∀∃∀ . . .︸ ︷︷ ︸
i

P

It is important that the first quantifier of Σi is existential and the first quantifier of Πi

is universal. We define the polynomial hierarchy to be the class

PH =

∞⋃
i=0

Σi =

∞⋃
i=0

Πi

We define a “level” of the polynomial hierarchy to be Πi ∪ Σi for some i.

Π0 = P = Σ0

NP = Π1 Σ1 = coNP

Π2 Σ2

Π3 Σ3

Π4 Σ4

· · · · · ·

23: The Polynomial Hierarchy (Draft)-4

We prove that the polynomial hierarchy looks like this by proving the following rela-
tionships:

Theorem 2.

∀i Πi ⊆ Πi+1

∀i Σi ⊆ Σi+1

∀i Σi ⊆ Πi+1

∀i Πi ⊆ Σi+1

Proof. We simply generalize the argument we gave for why ∀∃P contains ∀P and ∃P. Given
a Σi+1 machine, it is defined like ∃∀∃∀∃...P. Simply consider the machine which ignores its
first universal quantifier. We may then compress the first and third quantifiers. This is a Σi

machine so Σi ⊆ Σi+1. Consider the machine which ignores its first existential quantifier.
This is a Πi machine so Πi ⊆ Σi+1. The proof follows identically to show Πi+1 contains Πi

and Σi.

Whether or not these levels are strict is an open problem. This is truly a beautiful class
with beautiful structure of mostly theoretical interest. We will discuss its connections and
implications next time.

3 An Oracle Definition of the Polynomial Hierarchy

There exists an oracle characterization of the polynomial hierarchy as well.

Σ0 = P, Σ1 = NP, Σ2 = NPNP, Σ3 = NPNPNP

, Σi = NPNP...NP︸ ︷︷ ︸
i

, Πi = coΣi

Definition 3.1 (Polynomial Time Hierarchy). Let Σ0 = Π0 = P. Then inductively define
the level Σi and Γi with an oracle to previous level.

Σi = NPΣi−1

Πi = coNPΣi−1

This is a definition but we should prove its equivalence.

Proof. We proceed by induction. The base case holds. Let Σi be defined using the logical
definition. We prove that Σi = NPΣi−1 .

Let L ∈ Σi. So there is a ∃∀∃∀...QiP machine to decide L. We give a NPΣi−1 machine
to simulate it. Our logical definition of L is that there is a machine such that

∃x1∀x2∃x3...M(w, x1, x2, .., xi) accepts ⇐⇒ w ∈ L

.
Suppose you didn’t quantify over x1 and it was simply fixed, hardcoded. The definition

would look like

23: The Polynomial Hierarchy (Draft)-5

∀x2∃x3...M ′(w, x2, .., xi) accepts ⇐⇒ w ∈ L

.
This would actually be the negation of an Σi−1 statement, a Πi−1 statement. We can

bring back in x1 by nondeterministically guessing it! Our NPΣi−1 machine to decide L will
work as follows. On input w first it nondeterministically guesses x1. Then it queries its Σi−1

with M(w, x2, ..., xi) with hardcoded x1. If the oracle prophesizes no, then our machine will
accept. If the query is not in Σi−1, it must be in Πi−1, so our NPΣi−1 machine correctly
simulates this ∃Πi−1 = Σi machine.

Next we prove NPΣi−1 ⊆ Σi. This proof is TBD. Similar to the reason NP = NPv.

4 An Alternation Definition of the Polynomial Hierarchy

The final characterization uses a generalized non-deterministic Turing Machine called an
alternating Turing machine.

Definition 4.1 (Alternation). While a nondeterministic Turing machine accepts if just one
branch accepts, an alternating Turing machine may pick from two transition functions at
any step if it wants to require all branches to accept or just one.

∃

∃

NTM

∀

∃

∃

ATM

23: The Polynomial Hierarchy (Draft)-6

Definition 4.2. Let AP be the class of languages which are decidable by an alternating
Turing machine which halts within a polynomial number of steps.

Theorem 3. AP = PSPACE

Proof. First we prove AP ⊆ PSPACE. We can simulate an AP machine with only polynomial
space with a similar space-reusing divide and conquer approach that we did for the proof
that TQBF ∈ PSPACE.

Next we prove PSPACE ⊆ AP by showing TQBF ∈ AP. If there is a ∃ quantifier, or a ∀
quantifier, our AP machine branches appropriately. Just like how SAT ∈ NP by guessing the
assignment, here we show TQBF ∈ AP by by using the alternation super power to “guess”
the correct answer.

AP is a class where the machines run in alternating polytime, but are allowed to perform
as many alternating moves as they want. What if they were only allowed to perform a finite
amount of moves?

Definition 4.3. We say a Σi−machine is an alternating machine in which the first branch
is at an existential one, and there are at most i existential or universal branching steps. We
similarly define a Πi−machine as an ATM which the first branching is a universal one, and
there at most i universal or existential branching steps to depth i. Similarly Σi−TIME(f(n))
is the class of language decidable by an alternating machine to depth i beginning with an
∃ step which uses at most f(n) steps. The class ∀i − TIME(f(n)) is defined similarly.

Theorem 4. NP = Σ1TIME(poly)

Proof. Σ1TIME(poly) ⊆ NP obviously, so we focus on the reverse containment.
The whole difficulty in understanding computation is that future steps may be dependent

on all those that come previously. An NP machine is allowed to make many guesses, and
perhaps future guesses are dependent on guesses made in the past. Or are they? I claim
that any NP machine can be converted to one that makes at most a single nondeterministic
choice. Simply nondeterminisitically guess the future guesses! Rather than make a sequence
of nondeterministic guesses, just make one bigger one. Why make two sequential coin flips
when you can roll a four sided die.

≡

This is analogous to our quantifier compression from the logical definition.

We may generalize to give our final characterization of the polynomial hierarchy in terms
of alternation.

Definition 4.4. For each i, let

Σi =
∞⋃
k=0

ΣiTIME(nk)

Πi =

∞⋃
k=0

ΠiTIME(nk)

23: The Polynomial Hierarchy (Draft)-7

Let us prove it is equivalent to our previous definitions

Proof. We proceed by induction. Notice that Σ0TIME(poly) is an alternating machine
which can make no alternating moves. Thats just a polytime Turing machine, so we see
that Σ0 = Π0 = P and the base case holds.

Remaining proof TBD.

Although the polynomial hierarchy may seem of a flamboyant, inapplicable interest,
like other part of complexity, there are deep connections and ties. Three independent
definitions3 means it is not an imagined class, but a serious one. It may also be used to
separate the complexity classes worth studying. Also most importantly, it looks cool.

3A fourth exists, using uniform circuit families

23: The Polynomial Hierarchy (Draft)-8

