
CS 4510 Automata and Complexity April 17, 2024

Lecture 24: Karp-Lipton Theorems (Draft)

Lecturer: Abrahim Ladha Scribe(s): Michael Wechsler

Last lecture, we simply defined the polynomial hierarchy as an infinite set of dual classes
which looks like this.

PICTURE
Today we will discuss how to actually put the polynomial hierarchy to use.

1 Natural Problems up the Hierarchy

[TBD, minimum formulas and other problems]

Theorem 1. For each i, Πi, Σi have complete problems, complete for only that level.

Proof. Recall the definition of a complete problem. For Ak some Σk-complete problem, we
know that Ak ∈ Σk and ∀L ∈ Σk that L ≤p Ak. We prove that for each i that Πi and
Σi have such complete problems. The complete problem will simply be a generalization of
SAT. Define QSATi as

QSATi = ∃x1∀x2∃x3∀x4∃x5 . . .︸ ︷︷ ︸
i

[Φ]

where Φ is some CNF, and each xi is just some polynomial number of variables. The
language QSATi consists of true quantified boolean formula, whose quantifiers are alter-
nating, the first one is existential, and there are no more than i quantifiers. Observe that
QSAT1 is simply SAT and is NP-complete.

We will prove QSATi is Σi-complete by showing it is in Σi and is Σi-hard.
First we prove that QSATi is Σi-hard. Let L ∈ Σi. Then there exists a Σi machine to

decide L. This machine M takes on the form

w ∈ L ⇐⇒ ∃x1∀x2...QxiM(w, x1, ..., xi) accepts

We may simply apply the Cook-Levin style construction to this machine to output a
polynomial sized CNF ΦM . The polynomial sized string input xi to M corresponds to the
polynomial amount of variables to the CNF defined to be xi.

To prove that QSATi ∈ Σi, we simply may give a Σi machine. It quantifies appropriately
over the variables and checks the CNF.

2 Collapse

We proved the polynomial hierarchy has this infinite containment, but is it actually infinite?
Are the containments strict? There are two possible models. One is that the polynomial
hierarchy is actually infinite, and the containments are strict. This is the most believed and

24: Karp-Lipton Theorems (Draft)-1

accepted structure. The other is that the polynomial hierarchy collapses. After some level
k that Σk+1 = Σk. Everything above this level is equivalent in power to this last level.

[TBD why shouldn’t the hierarchy collapse]
It turns out the polynomial hierarchy is quite delicate, and any peturbance to its struc-

ture will collapse it. We prove this in a few ways.

Theorem 2. If for any i that Σi = Πi then PH ⊆ Σi. If there is a level of the polyno-
mial hierarchy closed under complement then the polynomial hierarchy is not infinite, and
collapses to that level.

Each Πi, Σi behave like a struct or pillar, supporting the levels above them. Were it
the case that two distinct pillars were the same, our tower collapses.

Proof. Suppose that for some i that Σi = Πi. Then consider the next level, Σi+1

Σi+1 = ∃Πi = ∃Σi = Σi

Lets expand on these steps.

• (Σi+1 = ∃Πi) This follows from the definition given previously.

• (∃Πi = ∃Σi) Although we are assuming that Πi = Σi, what we are really doing here
is this. We know the logical definition of ∃Πi is

w ∈ L ⇐⇒ ∃x1∀x2...QxiM(w, x1, ..., xi) accepts

Note that the computation on x2, ..., xi is a Πi computation. We may replace it by
an equivalent Σi one since we are assuming that Σi = Πi.

∃x1∀x2...QxiM(w, x1, ..., xi) accepts ⇐⇒ ∃x1∃x2...QxiM
′(w, x1, ..., xi) accepts

• (∃Σi = Σi) We perform a quantifier compression, the same way we proved ∃∃P =
∃P = NP.

We showed that the next level Σi+1 = Σi, a single level collapse. Why does this imply that
all of PH collapses? Observe that for k > i

Σk = ∃∀...∀∃∀︸ ︷︷ ︸
k−i

Σi = ∃∀...∀∃ ∀Πi︸︷︷︸
Πi

= ∃∀...∀∃︸ ︷︷ ︸
k−i−1

Πi = ∃∀...∀ ∃Σi︸︷︷︸
Σi

= ∃∀...∀︸ ︷︷ ︸
k−i−2

Σi = ... = Σi

Repeatedly swap Σi with Πi, compress a quantifier, then swap back.

Theorem 3. If any two levels of PH are equal then PH collapses to that level.

The main motivating study of the polynomial hierarchy was to ask, if P = NP, then
what else is in P? We prove a less general, but more informative idea.

Corollary 4. If P = NP, then PH ⊆ P.

Proof. Suppose that P = NP. Then since P is closed under complement, we know that
P = coNP as well, so NP = coNP, or that Π1 = Σ1. We may apply the previous result to
solve then that PH collapses to Σ1.

Note that this proof also works for when P ̸= NP but NP = coNP.

24: Karp-Lipton Theorems (Draft)-2

3 Implications

We are interested in the relationships between PH, and its the other more algorithmically
defined complexity classes.

Theorem 5. PH collapses if and only if there is a PH-complete problem. Here, we mean
complete for the entire class.

Proof. Suppose that there was a PH-complete problem A. It would be the case that A ∈ PH
and ∀L ∈ PH that L ≤p A. Since this complete problem is in PH, it resides at some level of
PH, suppose then A ∈ Σk. Since PH is closed under polytime reduction, this would imply
that PH ⊆ Σk.

To prove the other way, suppose that the polynomial hierarchy collapses to some Σk.
We know that each level has a complete problem QSATk, which now serves as a complete
problem for all of PH.

You may observe that since PH ⊆ AP = PSPACE that PH ⊆ PSPACE. You may even
conjecture that PH = PSPACE. In some sense this stretches PH upward. But ironically,
this weakens it as then PH collapses.

Corollary 6. PH = PSPACE =⇒ PH collapses to some level.

Proof. Since PSPACE has a complete problem, namely TQBF, then this would also be a
complete problem for PH. We may apply the previous theorem to infer a collapse.

It is then believed that PH ⊊ PSPACE.

Theorem 7. If PH is infinite then P ̸= PSPACE

We can prove it with something even weaker than if the polynomial hierarchy is infinite,
we need to only suppose there exists any two levels which are strictly not equal Σi ⊊ Σj

Proof.
P ⊆ Σi ⊊ Σj ⊆ PSPACE =⇒ P ̸= PSPACE

4 Karp-Lipton Theorems

We show relationship among uniform and non-uniform complexity classes. Since we may
hope that PH is infinite, demonstration of its collapse leads to the negation of the assumption
being plausible.

Theorem 8 (Karp-Lipton).

NP ⊆ P/poly =⇒ PH ⊆ Π2 ∪ Σ2

If SAT has a polynomial sized circuit family, then the polynomial hierarchy collapses to its
second level.

24: Karp-Lipton Theorems (Draft)-3

Originally Karp and Lipton proved it by a collapse to the third level, but Sipser improved
it to the second level. The proof idea is to show Π2 ⊆ Σ2. Conversion of any ∀∃-sentence to
a ∃∀-sentence means for any sentence higher in the hierarchy, we can repeatedly alternate
and compress quantifiers until a sentence with many quantifiers is left with only two.

Proof. Let NP ⊆ P/poly, then SAT has a polynomial sized circuit family, {C0, C1, . . .}.
Each polynomial sized circuit Cn takes as input an n-variable formula and outputs a single
bit for yes/no if the input formula was satisfiable. By a decision-to-search transformation,
there exists a circuit family {C ′

0, C
′
1, . . .}. Where each C ′

n outputs n bits for not just if it was
satisfiable or not, but the satisfying assignment itself. Since each Cn is polynomially-sized,
so is each C ′

n. This decision-to-search transformation should be believable, but to give you
an example suppose we had a circuit to say if some formula Φ was satisfiable or not. If x1
is the first variable of Φ, then Φ ∧ x1 is a formula which is satisfiable if and only if Φ was
satisfiable, with x1 = 1. We can play a hotter/colder1 game with the circuit families to
infer not just if a formula was satisfiable, but what the actual satisfying assignment was.
This decision-to-search transformation will incur only a polynomial overhead.

Let L ∈ Π2. Then
w ∈ L ⇐⇒ ∀x∃yM(w, x, y) accepts

We may convert M to a CNF ΦM using a Cook-Levin style construction. Note since M
runs in a polynomial number of steps, ΦM is polynomially sized, and its construction takes
polynomial time. Now, notice there is a k such that C ′

k(ΦM , w, x) = y. The CNF ΦM

takes on several input variables which correspond to w, x, y. Since SAT has a polynomial
sized circuit family, there exists a polysized circuit to search for this witness y instead of
quantifying over it. By conversion of our machine into a CNF, we may use the polynomial
sized circuit family to compute the witness which would bring the machine to accept! We
can replace the existential quantification of x2 with a computation of C ′

k. So our definition
of L has an equivalent statement:

∀x∃yM(w, x, y) accepts ⇐⇒ ∀xM(w, x,C ′
k(φM , w, x)) accepts (1)

Now how do we determine C ′
k? Since it is polynomial sized, we simply may quantify

over it. Use existential quantification to guess the C ′
k circuit. This circuit must exist by

assumption that SAT ∈ P/poly.

∀x∃yM(w, x, y) accepts ⇐⇒ ∃C ′
k∀x1M(w, x,C ′

k(φM , w, x)) accepts (2)

Note that this is an equivalent Σ2 statement. We converted a Π2 sentence into a Σ2

one! L ∈ Π2 ⇒ L ∈ Σ2 ⇒ Π2 ⊆ Σ2. We observe that if NP ⊆ P/poly, then the polynomial
hierarchy does collapse to its second level.

The technique developed here is called self-reducibility. In the case you may solve SAT
efficiently, you can use this as a primitive to perform witness extraction. There are more
applications of it.

1hotter/colder aka binary search over the 2n possible assignments

24: Karp-Lipton Theorems (Draft)-4

Theorem 9 (Meyer).
EXP ⊆ P/poly =⇒ EXP ⊆ Σ2

If EXP has polynomial sized circuits then EXP is contained in the second level of the
polynomial hierarchy.

Proof. Let L ∈ EXP. Then there is a machine to decide L which runs in 2n
k
time for

some k. Let the configurations of this exponential time machine be z0, ..., z2nk Note that
w ∈ L ⇐⇒ ∀i zi can satisfy some easily checkable conditions. For example, z0 is initial,
z
2nk is accepting, and so on. Let T be some machine which checks the configurations
syntatically. Then

w ∈ L ⇐⇒ T (w, z0, ..., z2nk) accepts

If EXP ⊆ P/poly then there exists a polynomial sized circuit family to compute zi given
i. Let this circuit family be denoted by C. We may replace zi with C(i). Then replace the
sequence of configurations by quantifying over every i.

w ∈ L ⇐⇒ ∀iT ′(w,C(i)) accepts

How do we determine the circuit family C then? Since it is polynomially sized, we again
may simply quantify over it.

w ∈ L ⇐⇒ ∃C∀iT ′(w,C(i)) accepts

This is a Σ2 statement so we see that EXP collapses to Σ2.

Meyer’s theorem is a good demonstration of when upper bounds can imply lower bounds.

Theorem 10. If P ̸= NP then EXP ̸= P/poly

Proof. Suppose P = NP. Then we know that PH = NP = P. If EXP ⊆ P/poly then
EXP ⊆ Σ2 ⊆ P , or that EXP = P, contradicting the time hierarchy theorem.

5 Kannan’s Theorem

Theorem 11 (Kannan). There is a language

Lk ∈ Σ2 \ SIZE(nk)

First, this does not say that Σ2 ̸∈ P/poly. It constructs a different language Lk for each
polynomial nk. Our proof of the weak time hierarchy theorem proved that TIME(nk) ⊊
TIME(nk+1) but this doesn’t show P ̸= P. PH ̸= P/poly is an open question that this does
not resolve. Although it does prove L1 ̸∈ SIZE(n), L2 ̸∈ SIZE(n2), ..., this does not rule out
that it could be the case that Lk ∈ SIZE(n2k) for example.

First we prove a related statement two steps up the hierarchy.

Theorem 12 (Also Kannan). There is a language

Lk ∈ Σ4 \ SIZE(nk)

24: Karp-Lipton Theorems (Draft)-5

Proof. We proceed by diagonalization. We construct a Σ4 alternating machine which uses
no more than four alternating quantifiers. These quantifiers will diagonalize against every
O(nk) sized circuit family to ensure none of them are correct. By construction, the language
decided by this machine will be in Σ4.

Algorithm 1 Σ4 machine for Lk

on input w, let n = |w|
∃ C∗ circuit of size ≤ n2k+5

∀ C ′ circuits of size ≤ nk+1

∃ y a string of length n
C∗(y) ̸= C ′(y)

∀ C circuits of size ≤ nk+1

∃ C0 circuit of size ≤ nk+1

∀ z a string of length n
C0(z) = C(z)

The size C∗ is quantified over is n2k+5 because this is sufficiently larger than nk+1. Just
enough to guarantee it can decide a language not decided by nk+1 sized circuits. The first
line ensures it is decided by a circuit family of size n2k+5. The second, third, and fourth
lines ensure it cannot be decided by a circuit family of size nk+1. This is the diagonalization
step. Lines 5-8 ensure that our Σ4 machine is forced to simulate C∗ on every input of length
n. Let the language decided by this machine be Lk. Since this is a ∃∀∃∀ computation, we
see Lk ∈ Σ4. Since this computation diagonalizes against every circuit family of size nk+1,
we see that Lk ̸∈ SIZE(nk). Therefore, Lk ∈ Σ4 \ SIZE(nk).

Lets make some observations on this proof. Notice how the diagonalization occured, it
was not by construction of a table. Second is how powerful a few quantifiers can be. If you
consider NP to be an unreasonable class, I wonder what you may think of Σ4.

It is unlikely this diagonalization could be done with fewer quantifiers, but we can finish
Kannan’s theorem nonconstructively.

Proof. We prove that there exists L ∈ Σ2 \ SIZE(nk). We proceed nonconstructively. We
have two cases:

• SAT ̸∈ P/poly. Then SAT ̸∈ SIZE(nk), so L = SAT

• SAT ∈ P/poly. By the Karp-Lipton theorem, Σ4 ⊆ Σ2, so Lk ∈ Σ2 \ SIZE(nk) so
L = Lk

L = SAT or L = Lk. Which one? We don’t know! But its one of them! Either way, we
have established that such a language must exist.

[graph isomorphism]

24: Karp-Lipton Theorems (Draft)-6

6 Further Study

I want to conclude with some advice on how to self study complexity theory. Your journey
doesn’t have to end here if you don’t want it to. First, finish the Sipser book. It does not
contain everything, but it does contain the best proofs of what it does cover. I wish it had
a second volume. It’s coverage of randomness, interaction, cryptography, and more may
surprise you. Before you go further, you should definitely finish Sipser. After you finish
Sipser, go through the first six chapters of the Arora-Barak book. All the other chapters
(7+) cover an incredible breadth of material, and good pointers to other sources. These
may include communication complexity, quantum complexity, the complexity of counting,
and so on. Each of these chapters deserves (and has) their own books, but it’s an intro-
duction to these theories. You need to know what the things you don’t know are called in
order to google and learn them. Then go through Goldreich’s and Papadimitriou’s books.
Goldreich has 400 pages of incredible notes. Finally, I recommend the books The Nature
of Computation and Wigderson’s Mathematics and Computation. Both of these are light
on proofs, as a tradeoff for coming with incredible wisdom. If you want a proof, use the
other books. If you want to what a proof means, use Wigderson’s book. Of course, you
may use me as a resource. If you have any questions, or come across anything in your own
independent study, I would be happy to help and answer. Thank you for taking my class,
I had a lot of fun.

• Introduction to the Theory of Computation, Michael Sipser 2012

• Computational Complexity: A Modern Approach, Sanjeev Arora and Boaz Barak,
2009

• Computational Complexity: A Conceptual Perspective, Oded Goldreich, 2008

• Computational Complexity, Christos Papadimitriou, 1994

• Mathematics and Computation, Avi Wigderson, 2019

• Goldreich’s encyclopedic lecture notes. 375 pages across two semesters. An invaluable
resource from 1999.
http://gen.lib.rus.ec/book/index.php?md5=fbb240574e6f5059fccdce95fab0ff38

• Hatami’s notes from 2022, also insanely useful.
https://www.cs.mcgill.ca/~hatami/comp531-F2022/files/Lectures.pdf

Each level is defined only using finitely many quantifiers, so it would appear that PH ⊆
PSPACE since TQBF is a PSPACE-complete problem. If that containment is strict, it is also
a an open problem. We would hope to show it is since P ⊆ PH ⊊ PSPACE ⇒ P ̸= PSPACE.

24: Karp-Lipton Theorems (Draft)-7

