
Contents

Contents 1

0 Notations 1
0.1 Whats this all about? . 1

1 Regular Languages 3
1.1 Deterministic Finite Automata . 4
1.2 Regular Languages . 8
1.3 The Generalization of Nondeterminism . 11
1.4 Formal Definition . 12
1.5 Coping with Nondeterminism . 13
1.6 Examples . 13
1.7 Comparison with DFAs . 15
1.8 The Limitation of DFAs . 20
1.9 The Pumping Lemma . 20
1.10 Formula . 21
1.11 Examples . 22
1.12 A note on choosing a bad s . 25

1

Notations

0.1 Whats this all about?

CS 4510: Automata & Complexity Theory. This course is primarily the study of two questions:

1. What are the limits of computation? (Computability Theory: Approx. 70% of course)

2. What makes some problems easy and others hard? (Complexity Theory: Approx. 30% of
course)

Fundamentally about theoretical computer science—what is a computer and how can we effectively
describe its limits and capacities? Automata are tools that we can use to reason about more
powerful versions.

Formal Language Theory

The entire subject is formalized upon the notation used in formal language theory

Definition 0.1 (Alphabet). An alphabet is a finite non-empty set of distinct symbols/glyphs/characters.

We most commonly will denote an alphabet with Σ. Some common alphabets can include
{a, b}, {1}, {0, 1}, {a, . . . , z, A . . . , Z}. Let Σ = {a, b} and consider the cartesian product Σ2 =
Σ × Σ. It is conventionally has its elements represented in tuple form, such as (a, a). Here, we
will drop the cumbersome paranthesi and commas and let Σ2 = {aa, ab, ba, bb}. These are called
strings or words.

Definition 0.2 (String, word). A string or word is a finite sequence of letters from some alphabet.
The length of the string is the number of symbols it contains.

Generalizing the previous example, Σn is all possible strings of length n. The set Σ0 is defined
as Σ0 = {ε}, where ε is a special string of length zero called the empty string, ε = “”. It is different
from the empty set ∅. It is analogous to the difference between an array of no elements, and a
string of no length. They are of different types.

more string math

Definition 0.3 (Language). A language is a selection of words L ⊆ Σ∗

Here are some examples of languages

• L = {aa, bb, abab, aaa, b}

• L = {w ∈ Σ∗ | w begins with a}

• L = {w ∈ Σ∗ | #a(w) is even}

• L = {an | n is even}

• L = {w ∈ Σ∗ | #a(w) ≡ 3, 4 (mod 7)}

1

Chapter 0. Notations 0.1. WHATS THIS ALL ABOUT?

• L = {w ∈ Σ∗ | w is an encoding of a prime number}

Its important you understand which way “the infiniteness” of an infinite language can go. There
are no infinite length strings, each string must eventually terminate and have a specific length. But
an infinite language has infinitely many words, and the length of words can be increasing, but each
word is itself finite. It is analogous to how N is infinite, yet each number itself may be written with
only finitely many digits. Convince yourself a language is infinite if and only if it has no longest
word.

Automata

An automata is a hypothetical model of a computer. We may study the limitations of certain
automata, or contrast them to one another. We do not really care about the automata themselves,
but what they can tell us about the kinds of problems they can solve.

We need the ability to first discuss what it means to solve a problem, and here we borrow tools
from formal language theory. A decision problem is a distinguishing, a partition of Σ∗ into the
“good” and the “bad”. We give an automata a word, and it will either accept the string or reject
it. We say that an automata M decides a language L if:

M on input w accepts ⇐⇒ w ∈ L

M on input w rejects ⇐⇒ w /∈ L

We are concerned with what kinds of automata can decide what kinds of languages.
There are two perspectives. First fix the machine, and note that each machine must define some

language. Every machine has some behavior. Next is to fix the language and consider all possible
machines which may decide it correctly. We are more concerned with the second perspective than
the first.

Definition 0.4 (Decision Problem). A Decision problem is a computational problem which can
be phrased as a yes or no question

Phrasing everything as decision problems simplifies the mechanics immensely, and lets us fully
use the power of set theory. A decision problem can easily be formalized in set theory, since for
any set, a word is either in the set, or not in the set. This is a binary relationship. Consider the
language {w ∈ Σ∗ | w is an encoding of a prime number} A machine to decide this language would
take on input a word and simply have to accept or reject. We could then remark that this kind of
automata would have the power of understanding prime numbers. A more cumbersome way would
be to try to use search problems, which could be phrased like on input n, output the nth prime. If
such a machine could perform such a task, we could remark that it too could comprehend prime
numbers. But there is a diversity of ways different machines could output the nth prime number.
By restricting the output of automata to be a simple boolean, we only need to ensure they have
two small wired lights. This will help us compare and contrast them effectively.

2

Regular Languages

3

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

1.1 Deterministic Finite Automata

Many systems and processes can be represented as a finite collection of modes or steps or “states
of mind”. Even processes which are assumed continuous can be arbitrarily discretized, such as the
phases of the moon. Lets consider an example. My rabbit has exactly two braincells, and they
have to take turns. The first braincell, she uses when she eats, and the second braincell, she uses
when she sleeps. We may represent these two states of mind as two labelled nodes. We may then
define transitions between those states of mind as outgoing arrows, on which a transition is acted
upon sensory input. There is either food, or no food. She will sense food, wake up, and continue
eating until there is none. We could represent the relationship between her states of mind with the
following state diagram.

eat sleep
��Q

Q

Q ��Q

Many complex systems could be primitively modeled this way, such as the water cycle, the
economy, and carbohydrate metabolism. Our first automata is motivated by this simple design.

Definition 1.1. A Deterministic Finite Automata (DFA) is a 5-tuple (Q,Σ, δ, q0, F):

• Q = {q0, . . . , qk} is a non-empty finite set of states

• Σ is the non-empty finite alphabet, usually Σ = {a, b} or {0, 1}

• δ : Q × Σ → Q is the transition function. It is a well-defined finite function. Every state
symbol pair in the input has a single output.

• q0 ∈ Q is the designated start state. We have to start somewhere.

• F ⊆ Q is the set of acceptance, or final states. If a state is not final, we may say it is rejecting.

We define a computation of a DFA on a word to be a repeated sequence of applications of the
transition function, one per letter in the word sequentially. We say the DFA accepts the word if
the computation terminates on a final state, and the DFA rejects if the computation terminates on
a non-final state.

Lets do several examples.

Example 1.1. L1 = {w ∈ Σ∗ | w begins with a}

4

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

q0

q1

q2

a

b

a,b

a,b

Before discussion of this specific DFA, we note the notation of DFAs in general. The previous
formal definition can be cumbersome, so it is better to give a state diagram. A state diagram is
what you see above, sort of like a graphical programming language. We denote the start state as
q0 and with a tiny arrow from nothing. We denote an accepting states as those with a double
circles, and rejecting as exactly those without. Note that our transition function is the edges, and
the function is well-defined when each state has exactly |Σ| outgoing transitions, one per symbol.
This diagram clearly communicates all five parts of the tuple, but if we were to state it explicitly,
it would look like

• Q = {q0, q1, q2}

• Σ = {a, b}

• The start state will always be q0.

• The transition function δ can be encoded as the following table:

Q Σ Q

q0 a q1
q0 b q2
q1 a q1
q1 b q1
q2 a q2
q2 b q2

• F = {q1}

The state diagram communicates all five parts more effectively, but know we may delegate to
the formal tuple definition during proofs.

Consider a computation of this DFA on any word. It branches to two different states on the
first letter. Once you enter states q1 or q2, you may not leave. Once you enter either of these two
purgatories, the rest of the letters of the word are ignored. We denote q1 as the good purgatory by
making it a final state, and q2 as the bad purgatory by making it a rejecting state.

5

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

Example 1.2. L2 = {w ∈ Σ∗ | #a(w) is even}

q0 q1

a

a

b

b

Here we have transitions to keep track modulo two the number of a’s we have seen. Any computation
of ε on a DFA will end on the start state. Therefore, a DFA accepts the empty string if and only if
its start state is also a final state. We have self loops for the b’s because we want to ignore them.
What if we wanted to reject whenever we saw any b’s, and not ignore them?

Example 1.3. L = {(aa)n | n ∈ N}

q0 q1

q2

a

a

b
b

a,b

Now as soon as we see a b, we immediately enter purgatory and can never leave.

Example 1.4. L = {w ∈ Σ∗ | #a(w) ≡ 3, 4 (mod 7)}

q0 q1 q2 q3 q4 q5 q6
a a a a a a

a

b b b b b b b

There is nothing too special about the number two. We may generalize the previous example to
keep track of residues modulo any other number. Create one state per equivalence class, and simply
transition between them on seeing an a, and ignore all b’s. Going from one state to the next means
you have seen an additional a. Going around the clock means you have seen a seven times.

6

Chapter 1. Regular Languages 1.1. DETERMINISTIC FINITE AUTOMATA

Example 1.5. L = {w ∈ Σ∗ | w ends with b}

q0 q1

b

a

a

b

The DFA does not have any ability to rewind its input, jump around, or do any post processing.
It halts exactly when it runs out of symbols to read, but it doesn’t know when that will happen.
Like death, it must be vigilant and prepared for it at any moment. In this DFA, if we see a b, we
transition to an accept state, but if we see an a, we must transition away.

Example 1.6. L = {w ∈ Σ∗ | w has atleast two a’s and atleast two b’s}

q0 q1 q2

q3 q4 q5

q6 q7 q8

a a

a a

a a

b

b

b

b

b

b

a

a

b b a,b

To each state, we may correspond a semantic meaning. Here, there are several paths to the accept
state. The rows keep track of how many a’s you have seen, and the columns keep track of how
many b’s you have seen. In fact, the unique paths to the accept state correspond to in which order
you saw your required two a’s and two b’s. The fact that the shortest path to the accept state is
of length four can also tell us that the shortest strings in this language must be of length four.

Programming Advice

A DFA is essentially a very limited kind of finite space program. There are only finitely many
things it can keep track of at once, and it can also only interact with its input in a “read once only”
way. When designing DFAs, it is helpful to think that each state has assigned to it a semantic
meaning, and that a state can only be reached by certain strings which satisfy certain properties.
For example, suppose we have a portion of a DFA which looks like the following

7

Chapter 1. Regular Languages 1.2. REGULAR LANGUAGES

q0 q1 q2

a a

You know you may only enter q1 upon seeing an a. You know you may only enter q2 not only upon
seeing an a, but seeing an a from q1, which you could only enter upon seeing an a. So q2 may
be entered only upon seeing aa. Each state corresponds this way like a line of code. You know a
certain line of code may be hit by the control flow only if certain conditions are met. Our portion
of a DFA could correspond to a portion of a program as:

if w[i] == ’a’:

if w[i+1] == ’a’:

*

You know the line with the ∗ will only be executed if certain conditions are met. Analogously, q2
can only be entered by a string if a prefix of it meets certain conditions.

1.2 Regular Languages

What kinds of languages can DFAs decide? We don’t yet know the problems they are capable of
solving or not solving. We say a language is regular if and only if it is decided by a DFA.

Definition 1.2. We write the class of languages decidable by a DFA as L (DFA). These are called
the regular languages.

Note that a word is a finite sequence of symbols, a language is a (possibily infinite) set of words,
and a class is a (possibily infinite) set of languages. A class is a set of sets of strings. We want to
study the regular languages, and the only way for us to do so is by studying DFAs. What properties
to the regular languages have?

Theorem 1.1. If L ∈ L (DFA), then L ∈ L (DFA). The regular languages are closed under
complement.

A DFA is a machine to tell you exactly what strings to accept, but by doing so, it also tells you
exactly what strings to reject.

Proof. Let L be a regular language, then there exists a DFA (Q,Σ, q0, δ, F) to decide L. Consider
the DFA (Q,Σ, q0, δ, Q \F). It is identical to the first DFA, except that every previously accepting
state is now rejecting, and every previously rejecting state is now accepting. If w ∈ L then the first
DFA will accept w, so the second DFA will reject w. If w ̸∈ L, then the first DFA will reject w, so
the second DFA will accept w. Therefore, the second DFA will except exactly and only the strings
not in L, which is the complement L. Since the second DFA is one which decides L, then L has a
DFA to decide it, and is therefore, regular.

Often times, the core idea of such proofs are a construction of an automata of some sort. For
some complex constructions, a proof of correctness would be done by induction on the length
of the input. The correctness of the automata is often obvious, and such a wordy proof is often
unnecessary. Analogously, many primitive algorithms also have omitted proofs of correctness, when
the algorithm is simple enough that it is obvious. We don’t really understand theorems until we

8

Chapter 1. Regular Languages 1.2. REGULAR LANGUAGES

understand their proofs, but computation is such a natural, human cognitive process, an example
is almost as instructive.

Suppose we wanted to create a DFA for the language

{w ∈ Σ∗ | wdoes not contain the substring aba}

Rather than try to find some kind of positive characterization of strings with this property, lets
just check if the string does contain aba as a substring. We reject those strings, and then accept
everything else.

q0 q1 q2 q3

a b aa

b

a,bb a

Theorem 1.2. Let L1, L2 ∈ L (DFA). Then L1 ∩ L2 ∈ L (DFA). The regular languages are
closed under intersection.

We may use one DFA to simulate two other DFAs simultaneously, and have our DFA accept only
if the two DFAs it is simulating accept. Consider how DFAs are analogous to a very limited kind
of program. Among its other limitations, it only uses constant memory. We may combine two
constant memory programs into one (bigger) constant memory program. This is the intuition.
Each state of our new DFA will correspond to a pair of possible states in two different DFAs.
Computation on our DFA will correspond to computation on two other DFAs in parallel. We shall
make our DFA accept only if the two DFAs it is simulating accept. For simplicity, suppose they
have the same fixed input alphabet.

Proof. Let L1 be decided by DFA (Q1,Σ, q
1
0, δ1, F1) and L2 be decided by DFA (Q2,Σ, q

2
0, δ2, F2).

We program a DFA called the cartesian product DFA (Q,Σ, q0, δ, F) to decide L1 ∩ L2 as follows:

1. Q = Q1 ×Q2

2. Σ is the same

3. δ : (Q1 ×Q2)× Σ → (Q1 ×Q2) such that

δ((qi, qj), a) = (δ1(qi, a), δ2(qj , a))

for qi ∈ Q1 and qj ∈ Q2. The first DFA is simulated in the first coordinate, and the second
DFA in the second coordinate.

4. q0 = (q10, q
2
0)

5. F = F1 × F2

Let w ∈ L1 ∩ L2, then w ∈ L1 and w ∈ L2. So both DFAs will accept w. Then the computation
of this DFA on w will end on some state (qi, qj) where qi is accepting in the first DFA, and qj
is accepting in the second DFA. By definition, this is an accepting state of the cartesian product
DFA, and thus the DFA accepts w. Similarly, if w ̸∈ L1 ∩L2, then the cartesian product DFA will
not reach an accept state on w, and it will reject it. Thus, this DFA decides L1 ∩ L2.

9

Chapter 1. Regular Languages 1.2. REGULAR LANGUAGES

To demonstrate this constructionLets proceed with an example.

L1 = {w ∈ Σ∗ | w ends with a b}
L2 = {w ∈ Σ∗ | #b(w) is even}

Lets make two DFAs for these languages.

q0 q1

b

a

a

b

q2 q3

b

b
a

a

Out cartesian product DFA then looks like the following:

(q0, q2) (q0, q3)

(q1, q2) (q1, q3)

b

b
a

b

a

b

a a

We may assign meaning to the states. State (q1, q2) means being in state q1 in the first DFA and
state q2 in the second DFA simultaneously. You may only end on state q1 if your string ends with
a b, and you may only end on state q2 if you have seen an even number of b’s at that point. So
strings which end on state (q1, q2) are those which both end with b and have seen an even number
of b’s. If a string lands on states (q0, q2) or (q1, q3), then it is accepted by one DFA but not the
other. What if you wanted the simulator DFA to accept if either DFA accepted?

Theorem 1.3. Let L1, L2 ∈ L (DFA). Then L1 ∪ L2 ∈ L (DFA). The regular languages are
closed under union.

Proof. Simply modify the construction from the previous proof, where the only difference is that
the final states are constructed as F = (Q1 × F2) ∪ (F1 × Q2). Then our cartesian product DFA
would accept if any of its two simulated two DFA accepted, and it would reject if both DFAs
rejected.

In the previous example, our accepting states would then be F = (q0, q2), (q1, q2), (q1, q3).

10

Chapter 1. Regular Languages 1.3. THE GENERALIZATION OF NONDETERMINISM

1.3 The Generalization of Nondeterminism

We noted that DFAs are weak. Let’s try to generalize them. Recall that a DFA can be represented
as a tuple (Q,Σ, δ, q0, F). Given this definition, we wish to modify it to hopefully extend its power.
The only useful thing we can extend is the way in which states interact with each other; the
transition function δ. The rest of the device is static. We extend δ in the following three ways:

Implicit Rejection We allow transitions to be undefined, and it is understood that undefined
transitions implicitly reject. As an example, recall the following DFA which decides the language
{w ∈ Σ∗ | w begins with a}.

0

1

2

a

b

a,b

a,b

With implicit rejection, we could represent equivalently as

q0 q1
a

a,b

If we are at q0 and we see b we would reject. This can be helpful for programming. Consider how
well-defined a DFA is. Its like it has every edge case covered with all that try-catch nonsense.
Implicit rejection allows us to lazily construct only the parts that we care about. Then “undefined
behavior” results in immediate rejection. We can have an “if” without having to have a matching
“else”. Note that when we perform a complement of the accept states in a DFA that decides a
language L, we get the complement of the language. The same does not hold here due to implicit
rejection.

Nondeterministic Transitions We allow transitions of more than one of the same type. This
means that you can have multiple outgoing transitions with the same input. For example

11

Chapter 1. Regular Languages 1.4. FORMAL DEFINITION

q0

q1

q2

a

a

Consider the computation on a word beginning with an a. Which state are you in? q1? q2?
You are in both! We define a nondeterministic computation to accept if there exists an accepting
computation. For all possible states you could end up in, if at least one of them is accepting, then
the NFA accepts the string. An NFA rejects a string if it doesn’t accept, and this happens if for
all computations, none are accepting. We shall expand on nondeterminism soon.

Epsilon Transitions We define “ε-transitions”, which can be taken for free. For example

q0 q1
ε, a

b

a, ab, abb are some strings which are accepted. But now that we allow ε-transitions, b, bb, ε are also
accepted. While normally, each transition “costs” the next letter of the input, an ε-transition costs
nothing. You may take it for free. It is important to know that the choice to take it is not forced.
A nondeterministic computation may choose not to take it. For example

q0 q1

q2

q3

q4 q5

a ε

ε

ε

ε

a

On input of ε, this NFA will end on state q0 and q2 simultaneously. On input of a, it will end on
states q1, q3, q4, q5. On input of aa, it would implicitly reject.

1.4 Formal Definition

Definition 1.3. A Nondeterminisitic Finte Automata (NFA) can be represented by a 5-tuple
(Σ, Q, q0, δ, F) where:

• Q = {q0, . . . , qk} is a non-empty finite set of states

• Σ is the non-empty finite alphabet, usually Σ = {a, b} or {0, 1}

12

Chapter 1. Regular Languages 1.5. COPING WITH NONDETERMINISM

• δ : Q× (Σ∪ {ε} → P(Q) is the transition function. It is a well-defined finite function. Every
state symbol pair in the input has a single output.

• q0 ∈ Q is the designated start state. We have to start somewhere.

• F ⊆ Q is the set of acceptance, or final states. If a state is not final, we may say it is rejecting.

1.5 Coping with Nondeterminism

With these three new relaxations, we have defined a new kind of automata, the nondeterministic
finite automata (NFA). On input a word, there may be multiple different possible computations,
and we say an NFA accepts some string if there exists atleast one computation to an accepting
state. It does not matter how many more rejecting computations there are.

Its important to understand nondeterminism and not just have deterministic coping strategies.
Nondeterminism isn’t real. You could not build a nondeterministic computer, but it doesn’t matter.
We may still study this unrealizable machine as a purely theoretical device. The following analogies
may help in visualizing this power.

1. Graph Search An NFA or DFA can just be thought of as a graph, and a word computed
by an NFA or DFA can be thought of as a path in the graph. You could easily determine
if a DFA accepts a word by using the word as instructions on which path to take in the
DFA, but to determine if an NFA accepts a word, you may have to employ a graph search
algorithm, such as breadth first search or depth first search. Coming to a fork in the road,
you explore down both paths until you find an accept state. Under this view, the power of
nondeterminism is only how time is measured. The DFA on computation of a word of length
n takes exactly n steps. An NFA also takes exactly n steps, but epsilon transitions take no
time, and certain paths of the same depth are computed “in parallel”, and their time is not
double counted. You and I are deterministic. In order to determine if an NFA accepts a
word, using pen and paper, necessarily may take more than n steps.

2. Lucky Coin During your computation you come to a nondeterministic transition. Imagine
you flip a lucky coin that tells you exactly which path to take. Through a purely imaginary
way, you have divine information on which path will correctly lead you to an accept state.
You have faith in the coin, so you follow it. Somehow, you have the precognition to know
where the answer is.

3. Alternate Timelines1 For each nondeterministic action, create multiple timelines. Each
timeline consists of the what-if for each possible choice. As long as in one timeline you reach
an accept state, then the computation is accepting.

1.6 Examples

Lets show a few examples

Example 1.7. L1 = {w ∈ Σ∗ | w ends with aaaa}

1Different science fictions have different rules for how time travel works. I am going off of the episode Remedial
Chaos Theory from Community.

13

Chapter 1. Regular Languages 1.6. EXAMPLES

q0 q1 q2 q3 q4
a a a a

a, b

Consider the computation of this machine on input aaaaaaaaa. If you are at q0 and you read an a,
you may choose to either stay at q0 or move on to q1. Note that this word is accepted by the NFA
because it may correctly guess exactly when it is four a’s from the end and then choose to leave q0.
Another way is to consider all possible guesses of when to go to q1 on seeing an a. If we guess too
late, we will terminate on one of q0, q1, q2, q3 and not accept. If we guess too early, we will reach q4,
but then have more input to read, and must implicitly reject since q4 has no outgoing transitions.
Most of the computations will be rejecting but it doesn’t matter, as there is atleast one accepting
computation, one correct guess.

Let the delimiter symbolize when you non deterministically guess to go from q0 to q1. Consider
the following computations

|a a a a a a a too early, implicit rejection from q4
a |a a a a a a too early, implicit rejection from q4
a a |a a a a a too early, implicit rejection from q4
a a a |a a a a accepts
a a a a |a a a too late, rejects from q3
a a a a a |a a too late, rejects from q2
a a a a a a |a too late, rejects on q1
a a a a a a a too late, rejects on q0

Example 1.8. L = {a3n+2 | n ∈ N}
Lengths of the strings in this language form an arithmetic progression. You non deterministically
choose how many times you would go around the loop, determined by every time you reach q0, do
you choose to go to q1 or q4.

q0

q1

q2

q3

q4 q5

a

aa

a

a a

Example 1.9. L = {w ∈ Σ∗ | w begins with a or ends with b}

14

Chapter 1. Regular Languages 1.7. COMPARISON WITH DFAS

q0

q1 q2

q3 q4

ε

ε

b

a, b

a, b

a

We need to accept strings if they accept any of two conditions. We will nondeterministically
guess which condition to check. If the string begins with a, then there is a computation on the
above branch which accepts. If the string ends with b, then there is a computation on the below
branch which accepts, where the prefix of the string is nondeterministically guessed.

1.7 Comparison with DFAs

We don’t really care about comparing the automata themselves, but comparing their power. Let
L (NFA) represent the class of languages which are decidable by an NFA. We don’t care to
compare NFAs and DFAs, but L (DFA),⊆ L (NFA). What is the pow

Theorem 1.4. L (DFA) ⊆ L (NFA)

Every DFA is an NFA. An NFA has all these super powers, but there is no requirement to use
them. Though it may be obvious just from the generalization that is nondeterminism, for exercise,
we prove L (DFA) ⊆ L (NFA).

Proof. Let L ∈ L (DFA). Then there exists a DFA to decide L. Note that this DFA is also an NFA,
so there exists an NFA to decide L. Then L ∈ L (NFA). Since this is true for all L ∈ L (DFA),
we see that L (DFA) ⊆ L (NFA).

Theorem 1.5. L (NFA) ⊆ L (DFA)

This should surprise you! We gave a normal computation device all this unrealistic unrealizable
power. Yet, this power can be simulated using realizable methods. For any NFA, we will show how
to simulate it on a DFA. This means that L (NFA) ⊆ L (DFA). Combining the aforementioned
point, we get L (DFA) = L (NFA) We simulate an NFA on a DFA. Although an NFA may be in
many states at once, it can only be in finitely many. This is the key idea behind the simulation.
To each possible set of state the NFA could be in, we assign one state of our DFA to represent each
subset of the NFA. Then the NFA going between subsets of states can be simulated by our DFA
going from just one state to another. This is called the powerset construction. Proven by Michael
O. Rabin and Dana Scott in 1959, this work earned them the Turing award in 1976. There is also
a small comment on economy. NFAs can be smaller. There are languages which have NFAs of n
states, but require DFAs of 2n states. We do not care about the efficienty, rather if these structures
exist at all to decide. The simulation of an NFA by a DFA works since 2 to the power of a finite

15

Chapter 1. Regular Languages 1.7. COMPARISON WITH DFAS

number is still a finite number. There is exponentially more to keep track of, but that is still only
a finite amount.

There is also the issue of these epsilon transitions. We define the concept of reach.

reach(qi) = {qi and any state reachable from qi by ε-transitions}

For example

q0 q1 q2
ε ε

Then reach(q0) = {q0, q1, q2}.

Proof. Let N be any NFA with N = (Σ, Q, q0, δ, F). We construct an equivalent DFA D =
(Σ

′
, Q

′
, q0

′, δ′, F ′) so that L(N) = L(D).

• Q′ = P(Q) For each possible subset of the states of the NFA, we creat one state of our DFA.

• Σ′ = Σ

• q0
′ = reach(q0) If there is an ε-transition from the start state of the NFA, then the compu-

tation need not necessarily begin at q0 if this ε-transition is taken first. Then the start state
of our DFA corresponds to the set of possible states in which the computation could begin in
the NFA, which is those states reachable from q0 in the NFA.

• For S ⊆ Q any subset of states of the NFA and a ∈ Σ, we define

δ
′
(S, a) =

⋃
q∈S

reach(δ(q, a))

For S a state of the DFA, its outgoing transitions are defined to be the state corresponding
exactly and only to the set of states of the NFA which you can go to on viewing the same
symbol.

• F ′ = {S ⊆ Q | S ∩ F ̸= ∅} Recall than an NFA accepts if there exists a computation which
reaches an accept state. After computation on a word, you may be in several states at once,
but if atleast one is accepting, the machine accepts. We set the accepting states of the DFA
to be those which contain any accept state of the NFA.

Example

L2 = {w ∈ Σ∗ | w ends with aa}

q0 q1 q2
a a

a, b

By following the above process, we get the corresponding DFA

16

Chapter 1. Regular Languages 1.7. COMPARISON WITH DFAS

q0 q01 q012

q02

q12q2q1

q∅

a a

b

b a

a

a
a

b
a,b

b

b

a,b

b

We observe that there are unreachable states like q02 and an entire disconnected component. This
process does not guarantee to give a minimal DFA, just an equivalent one. On cleaning up these
unreachable states, we get the following DFA

q0 q01 q012
a a

b

b ab

Each state represents a superposition of the states in the NFA. A state being unreachable in the
DFA could be interpreted to mean that its exact combination of states in the original NFA was
unachievable. You cannot be in q2 in the NFA without also being in q0 and q1.

Lets do another example. L = {w ∈ Σ∗ | w has an a as the fourth symbol from the right.}.
We could easily constrict the NFA similar as

q0 q1 q2 q3 q4
a a, b a, b a, b

a, b

Following the powerset construction, we get the following DFA.

17

Chapter 1. Regular Languages 1.7. COMPARISON WITH DFAS

0
bbbb

01
bbba

012
bbaa

02
bbab

0123
baaa

023
baab

013
baba

03
babb

01234
aaaa

0234
aaab

0134
aaba

034
aabb

0124
abaa

024
abab

014
abba

04
abbb

a

b

a

b

b

a

a

b

a

b

a

b

a

b

a

b

a

b

a

ba

b

a

b

a

b

a

b

a

ba

b

Additional information has been given in this state diagram. For clarity, b transitions are shaded
differently. Each state is not only given a sequence corresponding to the subset of states (023
corresponds to {q0, q2, q3}), but also a word from Σ4. Each string corresponds to the last four seen
symbols. This is the semantic meaning we assign to each state. A DFA has a memory worse than
a goldfish, and can only keep track of where it currently is. Upon a computation of “what symbol
did I see three letters ago?”, you end up needing one state for every possible word of length four,

18

Chapter 1. Regular Languages 1.7. COMPARISON WITH DFAS

of which there are |Σ|4 = 16. This DFA is quite large and messy, and you can prove this language
cannot be equivalently decided by a smaller DFA.

19

Chapter 1. Regular Languages 1.8. THE LIMITATION OF DFAS

1.8 The Limitation of DFAs

We previously mentioned that we have some intuition on the limitations of DFAs. Although they
seem quite powerful, there are languages which have no DFA to decide them. The goal of today is
to prove that.

Consider the language {anbn | n ∈ N}. A DFA has a finite amount of states, and is only able
to read the string left to right. It cannot do any pre or post processing. It cannot read symbols it
has previously. As it reads left to right, it somehow is tasked with memorizing an arbitrarily large
amount of information, the number of a’s, in order to match them to the number of b’s. Note how
different this is than (ab)∗, or a∗b∗, which can be computed using only a finite number of states.
A DFA of say, 20 states may correctly decide if a string has the form a20b20, but this DFA must
fail on a string of a large enough size, say a100b100.

These nonregularity arguments will all follow from a vary simple reason: The pigeonhole prin-
ciple.

Definition 1.4 (Pigeonhole Principle). If m pigeons are assigned to n holes with m > n then some
hole must have more than one pigeon.

If a DFA accepts an infinite language, then there are strings of arbitrarily long length that it
must accept, yet it must do so only with finitely many states. The strings the DFA is tasked to
accept are much much longer than the size of the DFA itself. The pigeonhole principle will apply
to the computation on DFAs, which will show that regular languages have an interesting property.
The contrapositive will help us prove a language is not regular.

1.9 The Pumping Lemma

Suppose we have a DFA, D, made up of p states. On input a word w, each letter of the word, will
visit a new state. So if |w| = n then on the computation of n, there will be a visited sequence of
n+ 1 states. Consider a word w with |w| = p. When we simulate D on input w, it will visit p+ 1
states. By the pigeonhole principle, some state is repeated twice. our computation path through
the DFA must contain a cycle.

Note each letter of our word takes not one state, but one transition. If we have p states, and
compute on a word of length ≥ p, then some state is visited twice in our computation path. We
may not know where this loop is or how long it is, but we know that it must exist by the pigeonhole
principle. The DFA is such a simple stupid device, if it accepts a long enough string, it must also

20

Chapter 1. Regular Languages 1.10. FORMULA

accept if you were to take that string and repeat a substring of it arbitrarily many times. The
Pumping Lemma is a formalization of this intuitive idea.

Definition 1.5 (Pumping). We say a language can be pumped if there exists a number p for every
w ∈ L with |w| ≥ p, there exists a partition of w = xyz such that:

• |xy| ≤ p

• |y| > 0

• ∀i ∈ N(xyiz ∈ L)

Theorem 1.6. Let L be an infinite regular language. Then L can be pumped.

Proof. Let L be a regular language. Then there exists a DFA D = (Q,Σ, q0, δ, F) to decide L. Let
|Q| = p and let w ∈ L be any word with length |w| = n ≥ p with w = w1w2...wn. Consider the
sequence of states visited during the computation of D on w, and let these states be enumerated
as s1, s2, ..., sn+1 with δ(si, wi) = si+1 for i ≤ 1 ≤ n. Since n+ 1 > p, by the pigeonhole principle,
among the first p + 1 visited states s1, ..., sp+1, there must exist a state which has been visited
twice. Let the first of these visits be si and the second of these visits be sj . Consider the partition
of w = xyz into x = w1...wi−1, y = wi...wj−1, z = wj ...wn. We demonstrate these choices of x, y, z
satisfy our three conditions which require L to be pumpable.

• By the pigeonhole principle, we know the repeition must occur in the first p+1 visited states,
so j ≤ p+ 1 and since |xy| = j − 1 then |xy| ≤ p.

• Since i ̸= j, we know y is never the empty string, thus |y| > 0.

• The string x will take D from q0 to our repeated state q, y will take D from q back to q, and
z will take D from q to an accept state, qa. We may compose these paths and notice that
∀i xyiz will take D from q0 to qa. What is a path from the start state to an accept state if
not exactly an accepted word, thus we see that ∀i xyiz ∈ L

You should think of i here as the number of times you may traverse the loop. Traversing it one
time is the original string xyz. You may also traverse it zero times, so xyz ∈ L =⇒ xz ∈ L. You
may traverse it twice, so xyz ∈ L =⇒ xyyz ∈ L, and so on.

The pumping lemma is not itself useful to proving that a language is regular. Instead, we take
its contrapositive: If an infinite language cannot be pumped, then it is not regular. Note that this
is not an if and only if and there do exist some nonregular languages which can be pumped.

1.10 Formula

The pumping lemma has many moving pieces and can be tricky to apply. There are alternating
existential and universal quantifications through out2. Of the proof techniques available to you, it
certainly is the most cumbersome, and is surprisingly common to make a mistake on what you can
or cannot choose. I suggest you use this proof template. Suppose that L is the language we want
to prove is not regular.

2∃p∀w∃x, y, z∀i(...), thats four alternating quantifiers!

21

Chapter 1. Regular Languages 1.11. EXAMPLES

1. Assume to the contrary, L is regular with pumping length p

2. Choose some s ∈ L such that |s| ≥ p

3. For all cases s = xyz such that |xy| ≤ p and |y| > 0

4. Choose i ̸= 1 and demonstrate that xyiz ̸∈ L

5. Conclude that L cannot be pumped, and therefore L is not regular

Lets go through the importance of each step.

• First, by assuming to the contrary that L is regular with pumping length p, we are supposing
that there exists a DFA of p states. When we reach a contradiction, then no such DFA of p
states can exist. Since p is general, this means that no such DFA can exist at all. We cannot
fix p. If we did a pumping lemma proof with p = 5, this would conclude that there is no DFA
of five states. It does not imply there is no DFA at all, as there may exist a DFA with more
than five states to decide the language.

• We choose to pump some string in the language. By choosing s ∈ L, we know s brings our
assumed DFA to an accept state, like a path in a graph. By requiring |s| ≥ p, we are enabled
to apply the pigeonhole principle, and we know that this computation contains a repeated
state. It is not uncommon for us to choose strings with length much much larger than p. The
only requirement is that its length is greater than or equal to. Choosing a good s will effect
the proof greatly. A poor choice of s may make the proof very long, or even impossible. We
will expand upon this later.

• In the computation of s on our assumed to the contrary to exist DFA, we are guaranteed
that there exists a loop somewhere by chosing |s| ≥ p, but we don’t know where. So we have
to consider all possible cases of where this loop could be. We model this as considering all
ways to break up s into the three parts s = xyz subject to our two conditions on each case.
Firstly that |xy| ≤ p. This ensures that the occurance of a repeated state occurs somewhere
before the end of what we denote as y. The second condition |y| > 0 ensures that this cycle
is actually occuring. Note that |y| = 0 trivially ensures we could never reach a contradiction.

• For each case, you only need to choose an i ̸= 1 so that xyiz ∈ L. Most of the time i = 2
works, we will show many examples where it doesn’t.

• Since we took a long enough string in the language, showed it was impossible to pump, then
there cannot exist a DFA to decide L, and we must conclude that L must not be regular.

1.11 Examples

We apply the five step formula as previously described.

A = {0n1n | n ∈ N}

Proof. Assume to the contrary, A is regular with pumping length p. Let s = 0p1p and notice that
s ∈ A and |s| = 2p ≥ p. There is only one case since the first p characters in the string are all
zeroes. x = 0a, y = 0b, z = 0p−a−b1p subject to |xy| = a + b ≤ p and |y| = b > 0. Choose i = 2.
Then

xyiz = xy2z = xyyz = 0a0b0b0p−a−b1p = 0p+b1p

22

Chapter 1. Regular Languages 1.11. EXAMPLES

We know that b > 0, so the number of 0s does not equal the number of 1s since p+ b > p. Thus,
A cannot be pumped, and as a result, is not regular.

Lets annotate this proof. The language 0n1n is the canonical example of a non-regular language.
We choose s as a function of p so that |s| ≥ p is obvious. By choosing a good s, we can ensure
that we reduce the number of cases required. The number of cases is technically a function of p,
the number of ways a+ b ≤ p subject to those conditions. We group these all into one case as the
contradiction is identical. Note that then the substrings x, y, z also end up being a function of p.
We only need to to show that one i ̸= 1 gives a contradiction, so we choose a smallest and simplest
one, that i = 2.

Theorem 1.7. B = {wwR | w ∈ Σ∗} is not regular.

Note that by wR, we denote the reveral of the string w. This language, wwR then consists of
the even length palindromes.

Proof. Assume to the contrary, L2 is regular with pumping length p Let s = 0p−1110p−1 (We are
choosing a poor s on purpose). Confirm that s ∈ L2 and |s| = 2p ≥ p. The first p characters in the
string are different, meaning there are several cases:

Case 1, y contains no 1s. Then let x = 0a, y = 0b, z = 0p−1−a−b110p−1 subject to |xy| = a + b ≤ p
and |y| = b > 0. Choose i = 2. Then xy2z = xyyz = 0a0b0b0p−1−a−b110p−1 = 0p−1+b110p−1.
Since b > 0, we know that p− 1+ b ̸= p− 1. Therefore, the two sections of 0s are unequal. If
b makes xyyz of odd length then we are done, so suppose xyyz is of even length. If we were
to split the string in half, the first half contains no 1s, and the second half contains two 1s,
implying that this is not a palindrome.

Case 2, y contains a single 1. Then let x = 0a, y = 0p−1−a1, z = 10p−1 subject to |xy| = p ≤ p and
|y| = p− 1− a+1 > 0. Choose i = 0. Then xy0z = xz = 0a10p−1 Since there is only a single
1, this is never an even-length palindrome.

For both cases, the language could not be pumped. Therefore, L2 is not regular.

Lets annotate this proof as well. We chose a poor s on purpose, resulting in more cases. There
were two cases, whether or not xy contained a 1 or not. Had we increased the string length so that
the initial block of 0’s exceeded p, we would only have one case. For case b, we chose i = 0. We
call this “pumping down”. We could have chosen a worse s as s = 0p0p. Note that this is a simple
even length palindrome, but it is too simple. It can be easily pumped. You want a string so that it
is barely in the language, at the extremal conditions. Any small peturbation results in it no longer
being in the language. Lets do another example with a better chosen s.

Theorem 1.8. C = { ww | w ∈ Σ∗} is not regular

This language consists of words which are themselves concatenated twice. It is not Σ∗Σ∗, but
it contains strings like abab, abaaba, aabbaa and so on.

Proof. Assume to the contrary, L3 is regular with pumping length p. Let s = 0p10p1 and notice
that s ∈ L3 and |s| = 2p+ 2 ≥ p. There is only 1 case since the first p characters in the string are
all 0s, so let x = 0a, y = 0b, z = 0p−a−b10p1 subject to |xy| = a+ b ≤ p and |y| = b > 0. Consider
i = 2 so

xyiz = xy2z = xyyz = 0a0b0b0p−a−b10p1 = 0p+b10p1

23

Chapter 1. Regular Languages 1.11. EXAMPLES

If xyyz is of odd length we are done, so suppose it is of even length. Let xy2z = w1w2 with
|w1| = |w2|. Notice that w1 ends with a 0, but w2 ends with a 1, therefore, w1 ̸= w2 and xyyz ̸∈ L.
Thus, L3 cannot be pumped and is not regular.

Lets do some unary examples.

Theorem 1.9. L5 = {1n2 | n ∈ N}

Proof. Assume to the contrary, L5 is regular with pumping length p. Let s = 1p
2
and observe that

s ∈ L5 and |s| = p2 ≥ p There is only 1 case since the first p characters in the string are all 1s. Let
x = 1a, y = 1b, z = 1p

2−a−b subject to |xy| = a+ b ≤ p and |y| = b > 0. Consider i = 2

xy2z = xyyz = 1a1b1b1p
2−a−b = 1p

2+b

Since b > 0, p2 < p2 + b, thus |1p2 | < |1p2+b|. Since a+ b ≤ p, b ≤ p, thus

p2 + b ≤ p2 + p < p2 + p+ (p+ 1) = p2 + 2p+ 1 = (p+ 1)2

Together, we see that

|1p2 | < |1p2+b| < |1(p+1)2 |

Our pumped string xy2z falls between two squares by length in L5. Therefore, its length is not
some perfect square and is not in L5. Thus, L5 cannot be pumped and is not regular.

Theorem 1.10. L6 = {1q | q is prime} is not regular.

Proof. Assume to the contrary, L6 is regular with pumping length p. Let s = 1q where q is the
next largest prime greater than p. By this definition, s ∈ L and |s| = q > p. There is only 1 case
since the first p characters in the string are all 1s. Let x = 1a, y = 1b, z = 1q−a−b subject to
|xy| = a+ b ≤ p and |y| = b > 0. Consider at i = q + 1. Then

xyq+1z = 1a1b(q+1)1q−a−b = 1q+qb = 1q(1+b)

Since b > 0, the length q(1 + b) is a product of two numbers. Since it is composite, it is not prime,
so we see that xyq+1z ̸∈ L6 and thus, L6 cannot be regular.

For this example, how did we know to choose i = q + 1? I worked it out before hand, solving
for i which would lead to a contradiction. Each pumping lemma proof should be done twice. Once
to know the structure of the proof, and the second time formally.

Theorem 1.11. {0n1m | n ̸= m} is not regular.

Proof. Assume to the contrary F is regular with pumping length p. Consider s = 0p1p+p!. Observe
that s ∈ F and |s| = p + p! > p. We have one case, so let x = 0a, y = 0b, z = 0p−a−b1p+p! subject
to a + b ≤ p and b > 0. Consider i = p!/b + 1. Since a + b ≤ p, we know b ≤ p, and this implies
that i is always a natural number. Then

xyiz = xyp!/b+1z = 0a+b(p!/b+1)+p−a−b1p+p! = 0p+p!+b−b1p+p! = 0p+p!1p+p!

which is clearly not in F , and therefore, F is not regular.

24

Chapter 1. Regular Languages 1.12. A NOTE ON CHOOSING A BAD s

1.12 A note on choosing a bad s

You may observe the condition that |xy| ≤ p is not actually necessary, and this is correct. On the
computation of a word, there could be may repetitions, loops on loops on loops. But we have this
condition to restrict ourselves to the first appearance of such a repetition. This condition will be
less general, but more useful.

Consider the language {0n1n2n | n ∈ N}. It is not regular for similar reasons to anbn. A good
choice of s is s = 0p1p2p, there is only one case. Suppose we either didn’t have the condition |xy| ≤ p
or didn’t choose a good s. What happens if we chose a bad s like s = 0⌊p/3⌋+11⌊p/3⌋+12⌊p/3⌋+1? We
would actually end up with six possible messy cases. Note that your proof would be incorrect if
you miss enumeration of a case.

By choosing a larger s so that the first block of 0s is length p instead of length ⌊p/3⌋+ 1, we can
use the condition |xy| ≤ p to eliminate the cases 2− 6 where y may contain symbols other than 0.

The pumping lemma is not the only way to prove a language is not regular. You may apply
closure properties of the regular languages.

Definition 1.6 (Dyck Language). Let the language Dyck be over the alphabet Σ = {(,)} which
consists of strings of valid, balanced parenthesis.

Some strings in this language include (), ()(), ((())()), ε, ((()())())(())(), and some strings not in
this language include ((), ()(,)(, (((((.

Theorem 1.12. The Dyck language is not regular.

Proof. Assume to the contrary the Dyck language D was regular. Since the regular languages are
closed under intersection, then D ∩ (∗)∗ = {(n)n | n ∈ N} would also be. However, we previously
proved this language is not regular, contradiction.

25

