CS 3510 Algorithms 2/27/2024

Lecture 11: Chain Matrix Multiplication
Lecturer: Abrahim Ladha Scribe(s): Tejas Pradeep

1 Problem Statement

Suppose we are given a sequence of matrix dimensions, we want to compute the product of
the matrices. We are not given the matrices, but the dimensions. We want to determine
which order to multiply the matrices in to minimize the number of operations. So say you
have the following matrices, A = (50 x 20), B = (20 x 1), C' = (1 x 10), D = (10 x 100).
Suppose we want to compute the product ABCD. Note that we can do this for rectangular
matricies since the dimension of the rows of A is the dimension of the column of B and so on.
Matrix multiplication is associative, but not communitive. It is true that (AB)C = A(BC),
but not true that AB = BA.

Given two matricies of dimensions (dyp x dj) and (d; x dg2), we may ballpark the cost
of multiplying these two matricies together as dpdids fixed point operations. We are not
concerned with actually multiplying the matricies together, just computing which order to
best multiply them according to this cost function. In the previous example, consider the
following parantheticalizations

e (A((BC)D))=20-1-10+20-10-100 + 50 - 20 - 100 = 120200
e ((A(BC))D)=20-1-10+50-20-10+ 50 - 10 - 100 = 60200
e ((AB)(CD))=50-20-1+1-10-100+ 50 -1-100 = 7000

This difference allows us to try and optimize. The number of possible associations grows
exponentially, making the search space non trivial. The number of parantheticalizations
follows the Catalan numbers, which grows Q(4™/n3/2). If we greedily split through the
one, we get the smallest cost set of associations, but the greedy approach doesn’t actually
yield the best associations in other series. We will approach the problem with dynamic
programming.

2 Algorithm

We can trivially create trees for these associations where the children are the left and right
terms and the parent is the expression.

11: Chain Matrix Multiplication-1

Figure 1: A tree representing an association for the matrices; each sub tree represents a
multiplication.

We can not however choose one binary tree from an algorithm; instead we need to
consider all binary trees. If you’ve noticed though, each binary tree is made of other binary
trees, meaning if we could store these in our dynamic programming structure, we can
compute a solution by combining its minimal subproblems.

We’ll define a dynamic programming table of dimensions T'[1..n|[1..n] where

T, j] = minimum cost to multiply A;, Aiy1, ..., 4;

Then to find the minimum cost over the whole array, we index into the table at T'[1,n]. Our
base case also comes from this equation, ViT'[i,i| = 0 because we’re doing no multiplications
in that case.

At each level we're going to have some partition of the overall series, say A;...A;.
We're going to have to find some middle point to multiply two sub matrices at, say
(Aj...Ar)(Agt1..-A;). The cost for the overall level is the cost for the smaller two mul-
tiplications A;...A; and Ajy;...A; plus the cost for the current multiplication.

With every dynamic programming algorithm, consider all possibilities, then take the
min or the max or the sum over those. For some given subproblem? What is our last
operation?

(A1) (AyA3Ay.. Ay)
(A1A2)(AsAy... Ay)
(A1 AgAs)(Ay... Ay)
(A1 AgAsAy) (... Ap)

(A1 A3A3A4...)(Ay)

The very last step is where we split the sequence of matricies into two products to be
computed separately and then combined. Of course we’re looking for the minimum here,
so we need to take the minimum k over all the costs, we do this by making the table

Tli,j] = min T[i, k] + Tk +1,j] + di—1dkd;
i<k<j

The k for which this is minimum corresponds to the costs to compute (A;...Ay), (Ak+t1, ..., 4j),
plus the cost to multiply those together.

11: Chain Matrix Multiplication-2

3

Pseudocode

We’re going to end up ignoring half the table because the recurrence only fills in the top

half

since ¢ < j. This effects which cells in the table make sense, but also where we’ll find

our solution.

def

chainmatrix(d_0, d_1, ..., d_n):
intialize dp table of size n, n to all zeroes O
for i in 1..n:

dpli,i] = 0

for s in 1..n
for i in 1..n-s
j =1+ s
dpli, jl = min_{i <= k < j} {dpl[i, k] + dplk + 1,
jl + d_{i - 1}d_kd_j}?}

Figure 2: Algorithm to find the optimal way to multiply a sequence of matrices.

We have weird loops because we need to fill in the table in a specific way.

s is the size of the series at some level and i is the starting index of the partition.

Runtime: In the algorithm, we fill in n?/2 cells, each taking n time, so O(n?) time. This
may seem slow but is much better than the brute force approach, which takes O(4™) time.

4

Example

Our original set of matrices had sizes [50, 20, 1, 10,100]. We can fill in our base case below
where the indices are equal to each other.

ol-T-7-
_lol - 1=
“T-70
“T-T-To

We'll do T'[1,2] = momime = 1000, T[2,3] = mimoms = 200, T'[3,4] = mamsmy =

1000. This makes our table the following

01000 | - -
"0 [200] -
-1 0 [1000
N ~ [0

11: Chain Matrix Multiplication-3

Now we can do T'[1,3] = min(7[1,1] + T'[2,3] + momimg = 1500,T[1,2] + T[3,3] +
momoms = 1500) = 1500, T'[2,4] = min(T[2,2] + T'[3,4] + mimomy = 3000,7T2,3] +
T[4, 4] + mimgma = 3000) = 20200) = 3000

0 [1000 | 1500 | -
0 [200 [3000
N 0 | 1000
N - 0

Now for our final recurrence we’ll be doing the whole array.

dp[1,1] + dp[2,4] + memimy, f k=1
dp[l,4] = min < dp[l,2] + dp[3, 4] + momama, if k=2
dp[l, 3] + dp[4, 4] + momasmy, if k=3

0+ 3000 + 100000, ifk=1
dp[1,4] = min ¢ 1000 + 1000 + 5000, if k=2 » = 7000
1500 + 0 + 50000, ifk=3

Finally this would make our table the following, and we can get the cost for the whole
series by looking at the cell in the top right.

0 | 1000 | 1500 | 7000
- 0 200 | 3000
- - 0 1000
- 0

We haven’t stored enough information to actually find the associations though; instead
we only have the cost. If you wanted this information, you would store the indices where
you split (the ks), and reconstruct the answer using those.

11: Chain Matrix Multiplication-4

	Problem Statement
	Algorithm
	Pseudocode
	Example

