CS 3510 Algorithms 2/29/2024

Lecture 12: Knapsack

Lecturer: Abrahim Ladha Scribe(s): Adam Zamlynny

Knapsack is a core problem to Dynamic Programming, and it’s pretty easy to under-
stand. Knapsack is a hard problem though; we don’t have or believe there is a polynomial
time solution. It’s also a good segway into the next unit because there are many problems
like it.

1 Problem

Suppose you are given n items (v;, w;) where v; is the value of item 7 and w; is the weight
of item 7. You have a capacity W. Your goal is steal a subset of the items to maximize the
value subject to having the sum of the weights be less than or equal to the capacity.

As an example consider if you have W = 6,w; = (1,2,3,4),v; = (12,17,18,25). E] If
you picked one and two, you’d have a value of 29. If you picked two and three, you’d have
a value of 35 which is better than if you’d picked one and two. If you picked using a greedy
strategy, you’d choose four and two which would give you 42. The optimal solution to this
is picking one two and three which will give you 47. You could also brute force this by
analyzing all 2" subsets.

2 Solution

Let’s start with a two dimensional solution. 7T7i, j| needs to be an intermediary version
of some capacity and some item, so that at the end we could index at T[W,n] giving us
the maximum value for the weight and considering all items. Then let’s define our table
Ti,j] where TV[i,j] is the maximum profit with a capacity 4, and only considering items
1...7. In this variant of knapsack, there is only one copy of an item. Steal or no steal. Then
iteratively we can build up the smaller cells in the table to the bigger items.

For our recurrence, let’s consider what the last possible step is in the process. You
choose or don’t choose the nth item. If you don’t pick the item, the solution is same as if
you had never considered the item. Your value will be the element of the table with the
same capacity except for the item (T'[W,n] = T[W,n — 1]). If you do pick the item, your
capacity goes up by the value of w,,, so your capacity before this should be W — w,,, then
your new value is T[W, n] = T[W — wy,n — 1] 4+ v,. This is essentially saying your solution
to the optimal value at some weight is the optimal solution with the capacity minus the
weight of some new item plus the value of that item, or the weight ignoring that item.

riig = { Tl =1, if w; > i
= max(T[, 5 — 1), Tl — wy, 5 — 1] +v;), ifw; <1

'The weights are just indices here, but that’s not always true.

12: Knapsack-1



If you notice, in the chain matrix, we have a minimum over some things, but here we
have the maximum over some things. Similarly, we’re not going to end up finding the items
we’ve used using this table, but like in chain matrix, all it requires is storing pointers to
which choices you made. This variant of knapsack is also called 0-1 Knapsack since you can
only choose 0 or 1 amounts of any item.

Algorithm 1 Knapsack No Repeat

T < table indexed from 0 to W and 0 to n > Create the table
while j in 0..n do > Setup base cases T'[0, j] =0
end while

while ¢ in 0..W do T'[;,0] =0

end while

while j in 1..n do > Fill in the table

while ¢ in 1..W do
if w; <i then
T[i,j] = max(T[i,j — 1], T[i — wj,j — 1] +v;)
else
end if
end while
end while
return T[W, n]

The space of this is O(nW). If you look at this though, you might see that the runtime
is dependent on the capacity which is a number. The size of the capacity is dependent on
the size of the bits, making the runtime exponential in terms in the bits. W is given as
input as k bits, so in terms of the size of the input the complexity is really O(2Fn). Of
course this seems like an easy problem, but there is currently no known solution to this
problem which takes polynomial time with respect to the size of the input.

3 Example

Suppose we have the weights we had at the beginning. We’d create the following table, and
we’d fill in our base cases.

ST W N~ O

OO O OO O oo
o=
N
Ol W
O~

12: Knapsack-2



—_

2 3 4
0 0 O
12 12 12 12
12 17 17 17
1229 29 29
1229 30 30
12 29 35 37
12 29 47 47

[en}

O O OO OO OO

O Tl W N~ O

For the first item, we can’t fit it in with capacity zero, but we can fit it in with any
capacity more than one so our table becomes the following. Then for item two with capacity
two, it can’t be fit in with one capacity so 12 comes over. At capacity two, it can be fit so
only item two is optimal because it has a greater value; then after capacity three, both are
picked. We can then continue filling out the table to get the following. Let’s quickly zoom
in on two decisions.

0 1 2 3 4 0 1 2 3 4
o/lo [o] o o o 0[0 0O 0O 0 0
10 12 12 1o 12 12 12 12
210 [12] [17] 210 12 17 [17] 17
310 12 3/0 12 29 29 29
410 12 410 12 29 30 30
500 12 500 12 29 35 37
60 12 60 12 29 [47] [47]

Figure 1: On the left, picking from item two at capacity two; the algorithm compares 0+ 17
and 12 and finds that 17 is larger. On the right, picking from 47 and 17 4 25, finding that
47 is larger.

4 Repetition

Now, we allow ourselves to repeat items, so our problem is the same, and our table is the
same. The only difference is that our recurrence is now done allowing for repetition, making
7 —1in the original equation j. The base cases will also be the same with similar reasoning.

1, 7] = max(T[i,j — 1], T[i — wj, j] +v;), if w; <i

The space of this is O(nW). The runtime is the same as before. E]

5 Linear Space

To our knowledge we can’t improve runtime, so instead let’s try making the space better.
Here we’ll create one table T'[i] which is indexed by the capacity using all the items. Then

2Most variants of knapsack are as hard as each other; although one may think there is some greedy
approach to this, sadly there is not.

12: Knapsack-3



Algorithm 2 Knapsack With Repeat

T + table indexed from 0 to W > Create the table
T[0] =0
while 7 in 1..W do

T[] = lgjfgﬂgfngi(T[l — wj] +vj)

end while
return T[W, n|

our recursive statement will be as follows

Ti] = 1§jr§ng§j§i(T[l — wj] +vj)

At each step, we consider all the possible elements which could be the last element. Sadly
at each step we still need to consider each element, so our runtime is O(nW'). However our
space is O(W).

12: Knapsack-4



	Problem
	Solution
	Example
	Repetition
	Linear Space

