CS 3510 Algorithms 3/14/2023

Lecture 14: Satisfiability
Lecturer: Abrahim Ladha Scribe(s): Jiazuan Chen

1 Introduction

Let’s review what we did last time. We began our discussion on NP-completeness. To prove
some problem B is NP-complete, you should:

1. Prove B € NP by showing it is verifiable in polynomial time.
2. Prove B is NP-hard. That is, A <, B.

e Choose some known A which is NP-complete.

e Give some reduction f computable in polynomial time such that, for every = € A:

x € A(is good) <= f(z) € B(is good),
xz ¢ A(is bad) = f(x) ¢ B(is bad).

» B
§ 1
) =

F

In order to prove a problem is NP-complete, this depends on some other known NP-complete
problem existing. Cook and Levin independently did this. They proved SAT is NP-complete
without a predecessor. That is, VA € NP, A <, SAT. Note that, this is true for every prob-
lem in NP. But, what is SAT?

A variable is one of x1,x9,...,Ty.

A literal is a variable or its negation x; or —x;.

A clause is an OR of several literals.

A formula in CNF form is an AND of several clauses.

For example:
(1) A (m21)

14: Satisfiability-1



is unsatisfiable. Another example might be satisfiable:

(xVyVz)AN(xVzVw)A...

SAT

SAT is extremely universal. Most constraint problems can be made to look like SAT. Each
clause is a constraint: every constraint must be satisfied, but they can be satisfied in a
number of ways.

Let’s say you have to feed everyone. You want either a burger, a gyro or a cheeseburger.
My buddy only wants a cheeseburger. Each of us is a constraint. We have variables like
you order a burger (b) or gyro (g). Our SAT formula is like:

(bvgVve)Ae

The formula (z1 V —y1) A (2 Vy2) A« A (z, V Yy ) is satisfiable only when 1 = yp, 29 =
Y2,y Ty = Yn. A SAT formula for string equality.
To be clear, an assignment is a selection of variables x; € {0,1}. An assignment satisfies a
given boolean constraint, an assignment satisfies I.

SAT Definition: ® € SAT such that ® is a formula in CNF form and is satisfiable.

Recall Cook and Levin proved L € NP = L <, SAT. Soif SAT e P = NPCP —
P = NP. SAT is like an elected representative of the entire class of NP. This is also why we
don’t believe there exists a polynomial time algorithm for SAT.

kSAT definition: 3® such that ® is a formula in CNF, satisfiable, each clause has at most
k literals.

3SAT

We prove that 35 AT is NP-complete by reduction. First, we show 3SAT € NP. Our witness
is simply the assignment of variables for the problem instance solution. All these compu-
tations can be done in polynomial time. For all ®(C1,...,C),), check if ®(Cy,...,Cp) =1
or not.

Now we prove SAT <, 3SAT. For a general SAT formula, we convert it to a 3S AT instance
such that ® is satisfiable (€ SAT) if and only if F'(®) is satisfiable (€ 3SAT'). We describe
our reduction F as follows: For an input ® of every SAT formula has some max clause size
k. If £ < 3 then ® is both in SAT and 35AT. Now suppose ¢ has max clause size k > 3.
We convert a clause of size k > 3 to a pair of clauses, one of size kK — 1 and the other of size
3. We add a variable z as follows:

(rrVaaV---Var_1Vag) < (x1VaoaV- Vg oVz)A(xp_1VagV-z)

14: Satisfiability-2



Where each z; is a literal. Note, if the k clause is true, at least one of its literals is true,
so there is a selection of z to make the two clauses true. If the k clause is always false, the
two clauses are also always false for any selection of z. Note, it is important this conversion
does not change the satisfiability of ®. Repeat this process, adding dummy variables, until
® only has clauses of size 3.

e Note: Since this does not alter satisfiability, ® € SAT if and only if F(®) € 3SAT.
reduction F' occurs in polynomial time.

e This reduction F' occurs in polynomial time.
e We conclude: SAT <, 3SAT and so, 3SAT is NP-complete.

Note that since Cook-Levin showed us SAT € NP, 3SAT <,, SAT, and we found 3SAT € NP,
3SAT <, 3SAT. This implies 3SAT is NP-complete without having to repeat the entire SAT
proof. A simple reduction suffices. It is possible to repeat this reduction for 4SAT, 5SAT,
..., kSAT for any k£ > 3.

What about 2SAT? Actually, 2SAT € P, so if 3SAT <, 2SAT, SAT € P and NP = P.
Surely, we don’t believe should happen. Recall (p = q) < (—pV q). So every 2SAT clause
of size two is an implication.

(aVd) & (ma=1b), (-aVd) < (a=1b), (avV-b)< (-a= -b), (-aV-b)< (a= —b).

Create a graph two vertices for each literal, two edges for each clause. If (a V b) a clause,
add edge —a — b, -b — a. Recall implication is transitive, and a formula is unsatisfiable if
and only if Vz, (x = —x) or (-z = x) so 3 a path in our graph from z to -z and from —x
to x.

(VY Az Vy)A(-zV-y)

r —
-y — X
—r — -y
-y — T

x — Y

Yy — T

fx=0=y=1ify=1=2=0.

CircuitSAT

Let circuitSAT be defined as the set:
circuitSAT = {C' | C a boolean circuit with AND/OR/NOT gates and a way to bring output to 1}

We prove that circuitSAT is NP-complete.

14: Satisfiability-3



e First, we show that circuitSAT € NP. The verifier V' takes as input (C) and a witness
of n bits, and runs (C) on the inputs. The size of the input is obviously polynomial
(increasing depth or more gates).

e Now, we show that 35AT <, circuitSAT. Let ® be a 3SAT formula. We create
a boolean circuit with variables x1,...,z; and additional input wires for negated
literals. We add one root gate on the next layer. For each clause, add a sub-circuit
for the appropriate three. Then, add an ” AND” gate to AND the clauses together.

o If & € 3SAT, this circuit C = F(®) € circuitSAT.
o If & ¢ 3SAT, this circuit is also unsatisfiable.

e Construction of this circuit obviously takes polynomial time.

We conclude that 3SAT <, circuitSAT so circuitSAT is NP-complete.

CircuitSAT
3SAT
. - = = - .
’ \
ol )
' '
1 - [}
3SAT ] ’
A ’
J > S = = CircuitSAT

14: Satisfiability-4



	Introduction

