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You may remember we talked about the Knapsack problem during our Dynamic Pro-
gramming section. You should recall that we had trouble solving Knapsack with better
than an exponential runtime. Today we’ll talk about a problem similar to Knapsack called
SubsetSum. We’ll proceed to relate this back to Knapsack by showing that the two
problems are both NP-Complete.

1 SubsetSum

SubsetSumis a problem where you’re given a list of numbers and you want to find a subset
which can sum to some target number (think 2sum but for arbitrarily sized sets). This
is formalized by having a set S, a subset S′ ⊂ S and a target t, where

∑
s∈S′ s = t. An

exponential time dynamic programming solution is the best known approach to this problem.
As it turns out, SubsetSum is actually NP-Complete; we’ll begin the proof.

First we need to show that SubsetSum is in the class NP. We take the subset as a
witness and we take the sum over the set. If the subset sum is equal to the target, then the
witness is valid. We have shown that SubsetSum is in the class NP.

Now we must show that SubsetSum is NP-Hard; we’ll reduce from 3Sat. Overflow,
the carrying of bits will make things complicated. We choose the base arbitrarily high such
that there is no overflow.

We can model an exclusive or relationship by adding two ones together and testing
whether they equal one or not. This is essentially the relationship between inverted literals,
i.e., x1 and x1. So we’ll create numbers for each literal. We create the target such that it
is one for all the literals, meaning either x1 or x1 need to be true. If both the numbers for
x1 and x1 are selected to be in the subset, it can not be the target because the target has a
one in the x1 place (again no overflow).

x1 x2 x3
x1 1 0 0
x1 1 0 0
x2 0 1 0
x2 0 1 0
x3 0 0 1
x3 0 0 1
t 1 1 1

Figure 1: Figure showing just variables and literals.

Now we need to add clauses; we’ll use the clauses (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)
as an example. We add clauses on columns so that rows can represent literals in clauses.
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Then for each clause and literal, we set the place to be the number of times that literal
appears in the clause. We just need to extend the target for the clauses.

x1 x2 x3 c1 c2 c3
x1 1 0 0 1 0 0
x1 1 0 0 0 1 1
x2 0 1 0 1 1 0
x2 0 1 0 0 0 1
x3 0 0 1 1 0 1
x3 0 0 1 0 1 0
t 1 1 1 x x x

Figure 2: Figure with literals for clauses with the number of times the literal appears in a
clause.

We can’t have it be three because that would imply that all three literals must be true.
However if we make it one, then we can’t have two be true. For instance the following 3Sat
instance would not be able to be solved x1 ∧ (x1 ∨ x2)∧ x2 because the middle clause would
need to have both of its literals be true. This is because we’d need to take both of the rows
for the literals x1 and x2 in the subset, but this would make clause have a value of two which
is not one. Then what do we do? Here comes our last trick: we add slack variables near
the bottom and we require a clause to have three true variables. Since there are at three
variables in 3Sat (we’re doing 3Sat with exactly three literals per clause), we only need
two slack variables, making it so that if one value is taken in the subset, it can use the two
slack variables. If three values with a positive value for a clause are taken, no slack variables
need to be taken.

x1 x2 x3 c1 c2 c3
x1 1 0 0 1 0 0
x1 1 0 0 0 1 1
x2 0 1 0 1 1 0
x2 0 1 0 0 0 1
x3 0 0 1 1 0 1
x3 0 0 1 0 1 0
s1 0 0 0 1 0 0
s1 0 0 0 1 0 0
s2 0 0 0 0 1 0
s2 0 0 0 0 1 0
s3 0 0 0 0 0 1
s3 0 0 0 0 0 1
t 1 1 1 3 3 3

Figure 3: Figure with slack variables.

Then we’ve completed our reduction for SubsetSum, and now we’ll show the correctness.
Say a 3Sat CNF instance is satisfiable, this would imply that there is a satisfying assignment
of the variables such that all the clauses have at least one true literal. First, all literals by
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definition are either true or false, meaning the columns with the variables will total one.
Next we know that since there’s a satisfying assignment, meaning the clause has at least
one literal which is true. Since there’s a taken literal, we know that each clause column
is at least one. The slack variables could be used to make the total exactly three for each
variable. Then the SubsetSum instance has this subset to sum to the target.

If 3Sat is not satisfiable, then some clause column does not have a true value, meaning
even with the slack variables it can sum to at most two. Since this is for every subset, no
subset sums to the target t. Then we’ve completed the proof that SubsetSum is in the
class NP-Complete.

2 Knapsack

From here, showing Knapsack is in NP-Complete is very easy. We first formalize it as a
decision problem

Knapsack = {⟨I,W, V ⟩ | I = {(w1, v1), ..., (wn, vn)} and
∑

vi ≥ V and
∑

wi ≤ W}

This is obviously a generalization of subsetsum, so our reduction is simple. For each
element si ∈ S, add item (si, si) ∈ I. Create a set of items where the weight and value of
each item are equal. Then set W = V = t. Our transformation is quite literally f(⟨S, t⟩) =
⟨S × S, t, t⟩.

If ⟨S, t⟩ ∈ SubsetSum then there exists a subset S′ ⊂ S which sums to t. Then consider
the set of items corresponding to this subset S′. The sum of the weights of these items are∑

wi =
∑

si = t = W ≤ W . The sum of the values are
∑

vi =
∑

si = t = V ≥ V . So we
see that ⟨S × S, t, t⟩ ∈ Knapsack.

⟨S, t⟩ ̸∈ SubsetSum, then every single subset S′ ⊂ S has the sum of the items strictly
greater than or less than t. If the sum of the items is greater than t, then

∑
wi =

∑
si >

t = W , so our capacity condition is not satisfied. If the sum of the items is less than t, then∑
vi =

∑
si < t = V so our value condition is not satisfied. Either way, for all possible

choice of items, one of the conditions never holds, so we see that ⟨S × S, t, t⟩ ̸∈ Knapsack.
This reduction also takes polynomial time, so we see that Knapsack is NP-hard. It is

also obviously in NP, as your witness would be the subset of items, that you sum and check
two inequalities. We conclude that Knapsack is Np-complete.
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