CS 3510 Algorithms 04/9/2024

Lecture 17: Max-Flow Min-Cut Theorem
Lecturer: Abrahim Ladha Scribe(s): Richard Zhang

This is the last lecture on this unit of graph algorithms, and one of the most important:
Max-Flow Min-Cut. It comes from many real world problems, and can actually be applied
to many more real world problems. In this lecture, we’ll discuss the problem setting, an
algorithm to solve it, and go through some real world examples.

Throughout the lecture, we’ll talk about the algorithm at a high level; it’s not terribly
important you understand the internals of the algorithm, but it is important you understand
what it does and you can apply it.

1 Max-Flow

A flow network G = (V, E) is a subset of weighted graphs with a single source s and a single
sink t. Every edge in a flow network has a non-negative capacity 0 < ¢(u,v). We then make
the following assumptions, if there is an edge from u to v, there is no edge from v to u, and
all vertices lies in a path between the source and the sink (s — ..v — t).

@ 0 < f(u,v) < c(u,v) @

Figure 1: Flow is less than or equal to capacity.

Now, to define our problem, we have two constraints. The capacity constraint: each
edge u,v in a flow network has some flow f(u,v) attached such 0 < f(u,v) < ¢(u,v). The
flow conservation that the flow entering a node must be the same as the flow exiting a node
(> vev f(u,v) =3 v f(v,u)). Then, in the maximum-flow problem, given G, s, ¢, and ¢
we try to maximize the flow moving across the network (or the total flow moving out of the
source or into the sink).

: Dallas

San Antonio

Figure 2: A simple flow network illustrating oil movement between cities in Texas.

If you're a little confused hopefully the following example can help; consider you’re
shipping oil through pipes from an oil refinery to a consumer. Say your oil refiner is in

17: Max-Flow Min-Cut Theorem-1

Houston, Texas and you want to transfer oil to a consumer in Dallas. You have pipes each
with individual capacity (barrels/hour) connecting Houston to Austin (2 barrels/hour),
Houston to San Antonio (2 barrels per hour), Austin to San Antonio (1 barrel/hour),
Austin to Dallas (10 barrel/hour), and San Antonio to Dallas (1 barrel/hour).

You don’t have to actually move this amount of oil through these pipes though, you're
simply limited by this capacity. Since Austin and San Antonio are pass through cities, the
can not produce or consume oil. Therefore, if more oil flows into a city than it can move
out, that oil is wasted, so it makes no sense to move in and out unequal amounts of oil.

There are many flows which could go through this network. The most obvious is that
we could move no oil through the network. Alternatively, you could move oil only through
the top path (from Houston to Austin and Austin to Dallas), getting two barrels per hour.
However these aren’t particularly helpful because moving nothing or moving a little of
something does not make full use of the network.

Figure 3: A large example flow network referred to throughout the lecture.

Instead we’d like to move the maximum flow through the network. Since this network is
fairly small, it’s not hard to see that you can move 3 barrels per hour through the network.
It would be nice since realistically there are many more cities and many more pipes. For
instance, consider the network above; the flow is 7 as we’ll find later, but this is hard to find
without an algorithm. Furthermore since this can be applied to many more applications, it
would be nice to find an algorithm to work on general graphs.

2 Min-Cut

When we talk about Max-Flow, we often also talk about Min-Cut; we’ll understand why
later, but for now we’ll introduce Min-Cut. An s-t cut of a flow network G = (V, E) are
sets of vertices L C V and R =V — 5, such that s € L, t € R. The capacity of an s-t cut
(L,R) is

¢(L,R) = Z c(u,v)

ueLvER

[

'For all vertices in L, and all vertices in R, if there is a capacity (or an edge) between them, add the
capacity. Note that we don’t consider the edges that are solely in L, solely in R, or that go from R to L.

17: Max-Flow Min-Cut Theorem-2

Figure 4: An s-t cut through the graph with L = {S, A, B}.

Consider the following s-t cuts on the large graph above where L is equal to {s}, {s,a, b, c,d, e}, {s, a,b}.
In the first s-t cut, there are three edges from L to R, SA, SB, and SC'. The capacity across
this s-t cut is 3 + 5 + 4 which is 12. The next s-t cut has two edges DT and ET" which is
2+ 5 or 7. The last s-t cut has edges AD, BD and SC, making the capacity 7.
Like Max-Flow, Min-Cut also has many real world applications. We won’t get into these
too much, but you can imagine you're a city planner and there a number of roads moving
cars within the city. You want to make sure that construction on one of the roads will not
cause a large outage. You can find the minimum s-t cut through the network and increase
capacity of that s-t cut, then the smallest s-t cut will cause less of a problem. E] We see
though that this too is an important problem, and as it turns out, the two are related.

3 Max-Flow Min-Cut Theorem

It turns out individual s-t cuts can be really high because the capacities can be arbitrarily
high, but flow is limited by the global value of all the edges.

Figure 5: A large flow network with Max-Flow 7 and Min-Cut 7.

In the above graph, as we’ve mentioned the flow could zero to seven; the smallest s-t

2This of course assumes that each edge has equal rate or that no edge holds all the weight because then
of course, you could cut that one edge and drastically decrease capacity.

17: Max-Flow Min-Cut Theorem-3

cut capacity we've found is also seven, while the largest is around 20. You may come to
the conclusion that the capacity of all s-t cuts is greater than or equal to the possible flows
through the network, and this would be right. This might turn some gears, and actually
the Max-Flow Min-Cut theorem states that the maximum flow is equal to the minimum
cut.

4 Baseball Elimination

We'’ve already talked about a number of applications, but another appreciable example is
for baseball elimination. Say you have the following data about the top four teams.

i Team | Wins | Losses | To Play | PHL | NYC | BOS | CHI | HOU
1 | Phillies 75 59 28 - 6 8 7 7
2 | Yankees 71 63 28 6 - 8 7 7
3 | Red Sox | 69 66 31 8 8 - 8 7
4 Cubs 63 72 28 7 7 8 - 6
5| Astros 49 86 27 7 7 7 6 -

Figure 6: The baseball statistics of several teams playing.

From this, it might seem that the Astros have a chance to make it to the finals if they
win all of their remaining 27 games, and the Phillies lose all their games, putting the two
of them at 76 wins and 75 wins respectively. The issue with this analysis is that there are
knock on effects to this, and the Phillies losing all of their games implies that the Red Sox
would have 77 wins with 23 games remaining, meaning that the Red Sox would be first and
the Astros still cannot be 1st with this scenario. This goes on, but it turns out that the
Astros were eliminated the whole time. We could keep going but it’s not important.

Instead of going through this, we can actually formulate this as a Max-Flow problem,
and then solve it. First we define the baseball elimination problems such that we have a set
of teams X, a particular team x ¢ X, there are remaining games between the the teams
in X. Each team has currently w; wins for team 4, r; remaining games for team 4, and g; ;
remaining games between teams ¢, j.

17: Max-Flow Min-Cut Theorem-4

Figure 7: An example flow network for baseball.

Intuitively, it’s easy to think of a single flow as a game being played, so let’s set up the
network like that. Our network will have a first layer which represents the games being
played between each two teams i,j € X where i < j. The weight going from the source to
those nodes will be the number of games left between the pair g;, j. Then, each team either
wins or loses a game, so we can draw two lines to another layer of nodes, and these lines
will have infinite capacity. We have to call the flow through these lines them something, so
let’s call them ¢y, ¢2. Due to flow conservation, ¢; 4¢3 = g1 2 where ¢; would be the number
of games team 1 won against team 2. Lastly, we’ll take all of these team nodes and connect
them to the sink. The capacity of these edges will be w, + r, — w;. If w, + rp < w;, then
team x was eliminated to began with, so there is no need to find the flow of this graph.
Therefore, we can assume that w, + r, — w; is non-negative and represents the amount of
games that team ¢ can win without exceeding the maximum number of wins that team x
can achieve and eliminating team x all together.

To cap it oﬂﬂ we'll define the following value R =),y 7; which is the total amount
of games remaining. Here’s the claim: if a flow of R exists in the network, then team x
is not eliminated. The logic here is that if a flow of R exists, it must have filled all edges
leaving S since the sum of those edges would also be the total amount of games remaining
and equal to R. As a result, all the games have been played, and still the teams all have at
most as many wins as team x because of the capacities on the final layer. In other words,
the last layer, which is restricting how much the other teams can win, is not restricting the
number of games that can be played for team = to win.

Alternatively, if a flow of R does not exist in the network, then the team is eliminated.
Then that means that all the teams have met the capacities put upon them by the last layer,

3Pun not intended

17: Max-Flow Min-Cut Theorem-5

meaning that all the teams have at least tied team x. However, there are still R minus the
flow of the games left to be played, making it impossible for x to have the maximum amount
of wins.

5 Ford-Fulkerson

Ford-Fulkerson sort of isn’t an algorithm; the pair wrote an article which outlined an ap-
proach you could take to solving Max-Flow Min-Cut, but they did not give a strict algorithm
for solving it. This means, that the different implementations of the algorithm have different
runtimes, so you should not worry about the runtime or in-depth implementation details. E]

Figure 8: A large flow network for Ford-Fulkerson.

At a high level, suppose we modified depth first search to try to greedily solve this
problem. Say we do something along the lines of keeping track of the maximum flow
entering nodes and then use that to calculate what we think the flow is. The issue with
this approach is that we’ll need to correct for things we may have overcompensated for and
we’ll need to do a lot of backtracking.

Ford-Fulkerson is able to retain metadata so it doesn’t have to do this backtracking.
More specifically, it maintains a residual network Gy = (V, Ey) for the original graph G.

G Gy
O ONNO==0
c—f
Figure 9: Comparsion of edges in G' vs Gy.

For each edge in G, Gy has forward edges representing the remaining capacity ¢ — f and
backwards edges representing the current flow f for that edge. The Ford Fulkerson method
then finds augmenting paths on Gy to continuously increase the flow of the graph.

41f you’re curious what an implementation of Ford-Fulkerson looks like, refer to the website of [Stephen
Huan. The algorithm they implement is Edmonds-Karp.

17: Max-Flow Min-Cut Theorem-6

https://cgdct.moe/blog/algorithm-library/#flow
https://cgdct.moe/blog/algorithm-library/#flow

def Ford-fulkerson(G):
initialize the residual graph Gf as G
initialize flow to zero

while Gf has an (s-t) path
find a path and compute its bottleneck b
augment Gf by subtracting the path from Gf with b
add reverse edges of the path from Gf with b

return flow

Figure 10: Ford-Fulkerson

Again we’ll go over this at a high level: given an (s-t) path, find the bottleneck, augment
the residual graph with this information, and add to the flow. The ways we generate (s-t)
paths are again not explicitly mentioned. A popular way to do this is with BFS. E]

The bottleneck on the path is the edge with minimum capacity on that path. If you
consider the path SADCET, the bottleneck is edge DC because that has capacity one.

The last and most important thing about Ford-Fulkerson is the trick it does on the
residual graph so it doesn’t have to do any big backtracking. When we have a path and a
bottleneck, we augment the graph such that all the edges on that path are subtracted by
the bottleneck, and add the reverse of the path with the bottleneck.

This may sound a bit complicated so we’ll do an example. Suppose we have the following
paths in sequence, E] SADCET, SADET, SCET, SCEDT, and SBDT. We’ll go through
the Ford-Fulkerson algorithm.

Figure 11: Ford-Fulkerson with modifications from path SADCET. Our total flow is 1.

SIf you’re interested think about why this might be.
6 Again, the ways in which you generate (s-t) paths can cause different things to happen but you should
get the same flow provided you’re doing everything else correctly.

17: Max-Flow Min-Cut Theorem-7

Figure 14: Ford-Fulkerson with modifications from path SCEDT. Our total flow is 6.

17: Max-Flow Min-Cut Theorem-&

Figure 15: Ford-Fulkerson with modifications from path SBDT. Our total flow is 7.

Now there are no more (s-t) paths, meaning there can be no more iteration on the graph.
We end with a final flow of 7.

We need to justify that the flow returned is maximum. Certainly since we found a cut
equaling a flow in this example, then that would have to be the maximum flow and the
minimum cut. In general, we can show that the max flow is achieved when there is no (s-t)
path in Gy. Suppose for contradiction that flow f was the maximum but the corresponding
G had an augmenting (s-t) path with bottleneck b. We then can add b to the flow for each
edge in G (not Gy) corresponding to the (s-t) path and produce a greater flow of f + b,
contradicting that f was the max flow.

Additionally, the algorithm also produces the minimum cut. Call explore(S) on Gy and
take the set of nodes which are reachable from it as L and everything else as R. Then then
in GG, these edges had to have totally saturated capacity since there don’t exist any L — R
forward edges in G.

6 Proof of the Theorem

We want to prove that the algorithm terminates when it finds a maximum flow, and along
the way, show that the maximum flow is equal to the minimum cut.

If we know that every flow f is less than cut ¢y, and less than cut ¢y, then we know that
f < ¢ and f < co. We then also know that f < min(cq,c2). We then know that every flow
is less than every cut, so we know that the max flow is less than or equal to the minimum
cut. max(flows) < min(cuts). It is then sufficient for us to show there is a maximum flow
which is equivalent to some cut.

First we prove that if f is a max flow, then Gy has no (s —t) path (the stopping
condition of the ford-fulkerson algorithm.) Suppse to the contrary that f was maximum
with Gy having an (s — t)-path still. Compute the bottleneck b of the path and note that
we may increase the flow by this much exactly along this path. This gives us a new flow of
f + b, contradicting the fact that f was maximum.

Next we show that if f is a max flow, then it is equivalent to some cut. Since f is
maximum, there is no (s — ¢) path in Gy. Call explore(Gy, s) and note that since ¢ is not
reachable from s, this is a partition, a cut of G. We called explore on the residual graph
but got a cut on the original graph. Consider the edges in Gy with one end in L and the

17: Max-Flow Min-Cut Theorem-9

other in R. Let these edges be like (u,v) with u € L and v € R. These edges have some
capacity and flow f,c. Note that the forward edge ¢ — f must zero in Gy, otherwise v would
be reached by the explore call, so ¢ — f = 0 implies that ¢ = f. The edges of this cut all
are fully saturated, so the capacity of the cut is equivalent to the flow on the cut. Also
notice that any edges R — L, going backwards, must be zero. The flow is then equivalent
to the flows of the outgoing edges on this cut, minus the flow of the incoming edges. The
outgoing edges sum to the capacity of the cut, and the incoming edges sum to zero, so we
see that this maximum flow is equivalent to this cut, meaning the cut was minimal. We
may conclude then that the maximum flow is equal to the minimum cut.

17: Max-Flow Min-Cut Theorem-10

	Max-Flow
	Min-Cut
	Max-Flow Min-Cut Theorem
	Baseball Elimination
	Ford-Fulkerson
	Proof of the Theorem

