
CS 3510 Algorithms 4/11/2024

Lecture 18: Linear Programming

Lecturer: Abrahim Ladha Scribe(s): Saigautam Bonam

Linear programming is a class of problems in which you have a linear set of constraints,
multiple variables, and an objective function. The goal is to find a solution to the variables
that maximizes the objective function while satisfying all constraints.

Suppose you sell items. Let’s say item 1 sells for 1 dollar, item 2 for 6 dollars (item 2 is a
luxury item). Your factory can currently produce only 400 items a day. The factory also
cannot make more than 200 of item 1 and 300 of item 2 due to sanctions. We may present
this problem as the following linear program:

Objective Function: max{x1 + 6x2}, subject to the following constraints:

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

We can also represent these attributes as the following matrices:

A =

1 0
0 1
1 1

 b =

200300
400

 c =

[
1
6

]
where you want to maximize cTx subject to Ax ≤ b and x ≥ 0. A represents the LHS of
the constraints, and is a m× n matrix where m is the number of constraints, and n is the
number of variables. b is a m× 1 vector represents the RHS of the constraints, while c is a
n×1 vector represents the coefficients of the objective function. We can plot the constraint
inequalities and find the region in which all are satisfied below.

100 200 300 400

100

200

300

400

18: Linear Programming-1



This is called the feasible region. The optimal solution would be when the line corre-
sponding to x1+6x2 intersects the shaded region with the highest value. That would be at
(x1, x2) = (100, 300). This makes sense intuitively; since the coefficient is higher for item 2,
we would want to satisfy the 400-item constraint by decreasing quantity of item 1 instead
of item 2.

The optimal solution of a linear program (LP) is only unachievable when the constraints
are either infeasible or unbounded. For an infeasible example, the constraints x1 ≤ −1
and x1 ≥ 1 will not be able to be satisfied. For an unbounded example, consider the only
constraint is x1, x2 ≥ 0 and the objective function as max{x1 + x2}. There is no bounded
solution.

We can write the standard form for an LP as follows using the A, b, c matrices defined
earlier:

1. We wish to find solution x =


x1
x2
. . .
xn


2. The objective function is max cTx.

3. The objective function is subject to constraints Ax ≤ b and x ≥ 0.

1 Three Classic Examples

Surprisingly, many problems can be represented by LPs.
Shortest Path: Suppose in a graphG we want to compute the shortest s−t path. Let dv be
the shortest path from s to v. Note that ds = 0. We may add constraints dv ≤ du+w(u, v)
for pairs of vertices u, v in G that share an edge. We can write the LP as follows:

Objective Function : max dt

subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

and ds = 0

Why do we maximize instead of minimize in the objective function? dt = 0 is the mini-
mum solution, but the rest of the constraints have dt = minu,(u,t)∈E{du + w(u, t)} need to
enforce that dt is actually a path! dt is the largest value less than or equal to all the paths set.

Max Flow: Given a flow network G where edges have capacities c(u, v) ≥ 0, we want to
maximize the flow from s to t. Here’s the LP:

18: Linear Programming-2



Obj. Fn (sum of flows from s) : max{
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s)}

subj. to constraints for all edges f(u, v) ≤ c(u, v)

f(u, v) ≥ 0∑
v∈V

f(v, u) =
∑
v∈V

f(u, v) (flow conservation)

The second term of the objective function is usually not required, as the incoming flow to s
is usually 0 in most graphs we’ve seen, as s is a source. However, it’s still necessary to write
it in case it’s not a well-formed graph. The constraints regarding the flow f(u, v) ensure
that the max flow through an edge is the capacity of the edge, and that there is nonnegative
flow. Note that a constraint like x = y is not in standard form, but can be transformed into
one with constraints x− y ≤ 0 and y − x ≤ 0

Knapsack. We’re given items (vi, wi) where we want to maximize the value of the item
while ensuring the weight is below some constraint. Knapsack is already formatted as an
LP! Consider the variables x1 . . . xi denoting a 1 if we choose an item and 0 and if we don’t.

Obj. Fn : max(
∑

vixi)

subj. to constraints
∑

wixi < W

and 0 ≤ xi ≤ 1

Note this is technically not an LP, as you cannot take a fractional amount of items. It
is an ILP.

2 Simplex

How do we solve LPs? Let’s go over an algorithm to solve them called Simplex. Think
of it as a traversal over the polytope of the feasible region. It is necessary that one of the
corners of our polytope must be the optimal solution for our objective function. This is
because our objective function is linear. Think about it like this: if you’re on an edge and
looking in two directions, there’s one direction that will lead to a greater result and another
that will lead to a smaller result. Choose the direction that leads to a larger result, and
that will stop only when the edge stops. Here’s the Simplex algorithm that revolves around
the same idea; choose the direction that maximizes the objective function:

begin corner v = (0, 0)

while True:

if any corner v’ neighbor of v is more optimal:

v = v’

else

break

18: Linear Programming-3



To more easily determine v′, we can change the origin to the current vertex v repeatedly
by using a modified coordinate system. Let’s look at this algorithm in action. Consider the
following LP:

Obj. Fn : max{2x1 + 5x2}

subj. to constraints 2x1 − x2 ≤ 4 (a)

x1 + 2x2 ≤ 9 (b)

− x1 + x2 ≤ 3 (c)

x1 ≥ 0 (d)

x2 ≥ 0 (e)

Finding the intersection of all these constraints gives us this polytope:

Let’s start with the corner (0, 0). Looking at the two adjacent corners, these are (0, 3) and
(2, 0). Plugging these into our objective function, we can see that (0, 3) gives us a higher
value, which makes sense given the coefficient for x2 is larger than the coefficient for x1. We
move to vertex (0, 3). From there, we can see the next corner is (1, 4), which results in a
larger value. We move to (1, 4). However, from (1, 4), we can see that the next coordinate,
which is (3.4, 2.8), actually results in a smaller value in our objective function. As a result,
we stop at (1, 4), which is our solution to the LP.

This variant of LP allows solutions to be real numbers, which guarantees by linearity that
the solutions can be found by moving through the edges of the feasible region. This makes

18: Linear Programming-4



LP, on average, a polynomial time problem to solve. However, a variant of LP is Integer
Linear Programming (ILP), which corresponds to Knapsack!

ILP is an NP-complete decision variant of LP where the solutions must be integers. Let’s
prove it’s NP-Hard. We can reduce from Vertex Cover instead of Knapsack. Recall the
definition of Vertex Cover: given input G, g, it returns if there exists a set S ⊂ V of size
g such that every edge has an endpoint in S. For the reduction: for each edge (u, v) in
G, add variables xu, xv which can take on values 0 or 1 and the constraint xu + xv ≥ 1,
which symbolizes choosing one vertex. The objective function is to maximize the sum of
the variables! If we can get at least g as a result from the ILP, we return True for Vertex
Cover. Otherwise, we return False.

18: Linear Programming-5


	Three Classic Examples
	Simplex

