
CS 3510 Algorithms 1/11/2024

Lecture 2: Merge Sort and Master Theorem
Lecturer: Abrahim Ladha Scribe(s): Aditya Kumaran

When do we use divide and conquer algorithms? These algorithms divide the larger problem
into smaller, easier-to-solve subproblems, and use their solutions to help find a solution to
the larger problem.

1 Merge Sort

Given an array of length n, we want to order the array such that they are sorted in increasing
order. We assume here that all the elements are bounded, for easy comparisons.

Pseudocode :

def mergesort(A[1..n]):
Base Case
if n == 1: return A
Split problem into two subarrays , recursively call

mergesort on both
L = mergesort(A[1.. floor(n/2)]
R = mergesort(A[floor(n/2) +1..n]
Return the merge of the left and right
return merge(L,R)

Note : For odd length arrays, it doesn’t matter which half the middle value is folded into,
as long as you make a consistent definition for your algorithm.

Note : Arrays can be 0-indexed or 1-indexed depending on your own convention, as long as
your pseudocode is consistent with your decided convention. Many textbooks use 1-indexing.

To prove the correctness of recursive algorithms, we typically use proof by induction. We can
assume merge() is correct to prove correctness of mergesort(), and prove the correctness
of merge() later.

Lets consider the execution on A = [5,2,4,7,1,3,2,6]

2: Merge Sort and Master Theorem-1

When A in mergesort(A) is length 1, mergesort returns the individual arrays to the parent
call. Therefore, for each parent call (Ex.- when A = [5,2]) the values of L and R would
be the individual values (Ex.- L = [5], R = [2]). As we move up the callstack, we call
merge() on these two halves and return the sorted arrays (Ex.- return = [2, 5]). We
can see here that the heavy lifting is being done by the recombining method, what we call
merge().

1.1 merge()

merge() takes two parameters - x[1...k] and y[1...m] We can assume that both these
halves are also sorted, by induction - for the smallest case of length 2, our base case will
handle the P(2) case in induction.

Pseudocode :

2: Merge Sort and Master Theorem-2

def merge(x[1...k], y[1...m]):
if x is length 0

return y
if y is length 0

return x
if x[1] <= y[1]:

return x[1]. join(merge(x[2...k], y[1... k]))
else:

return y[1]. join(merge(x[1...k], y[2... k]))

Note : It’s very important that every divide and conquer algorithm has a base case, or it
can recurse endlessly.

The beauty of this algorithm is that we are doing the smallest amount of work at every
indivdual step, and combining this work in the most efficient way. Lets see if we can justify
its correctness. Why does this merge the two sorted arrays? It is enough for us to argue that
assuming x,y are sorted, that min(x[1],y[1]) is the first element of their sorted merger.
Suppose without loss of generality that x[1] < y[1]. By assumption, note that x[1] is less
than all of x, and y[1] is less than all of y. So we know since x[1] is less than the least
element of y, that x[1] is less than all of y. So x[1] is less than all of the elements in both
x and y meaning in the sorted merger, it should be the first element.

1.2 Example of how merge() works:

Let X = [2,4,5,7] and Y = [1,2,3,6], as in the last stage of combination in the above mergesort
callstack.

• We first compare x[1] and y[1], here 2 and 1 respectively, and return [1].join(merge([2,4,5,7],
[2,3,6]))

• We then compare 2 and 2, and return [2].join(merge([4,5,7],[2,3,6]))

• We then compare 4 and 2, and return [2].join(merge([4,5,7],[3,6]))

• We then compare 4 and 3, and return [3].join(merge([4,5,7],[6]))

• We then compare 4 and 6, and return [4].join(merge([5,7],[6]))

• We then compare 5 and 6, and return [5].join(merge([7],[6]))

• We then compare 7 and 6, and return [6].join(merge([7],[]))

• y is length 0, and return [7].join([],[])

The joins then return [1,2,2,3,4,5,6,7], which is our solution.

merge() references every element in the array once, giving it a time complexity of O(n).

But what is the time complexity of mergesort()?

2: Merge Sort and Master Theorem-3

• This is the time taken to solve a problem of size n is T (n).

• T (n) = 2T (n/2) + time complexity of merge.

• Therefore, T (n) = 2T (n/2) +O(n).

How do we analyze this recurrence to get the time complexity?
We can look at the recursion tree and count the leaves. Rather than solve this specific
recurrence, we show a general way to solve recurrences of this form.

2 Master Theorem

Given a recurrence relation of the following form:

T (n) = aT (n/b) +O(nd)

where

• a is the number of recursive calls

• b is the size of each subproblem (how many pieces are you dividing the problem into?)

• nd is the time it takes to divide and recombine the problem.

Note : Usually, the time to divide the problem is negligible (python list slicing, etc.), and
the recombination time makes up the majority of the nd.

Consider the computation of a divide and conquer algorithm with such a general recur-
rence. We want to count the total work done. Think of a like the arity, or the number of
branches, and think of b and d like the thickness of the next level of branches.

2: Merge Sort and Master Theorem-4

• At the top level, the subproblems work has already been completed, and only the final
recombination needs to be done, so we see that the work done at this level is O(nd).

• At the next level, there are a sub problems, and the size of each subproblem has also
been reduced to size n/b, so we see the work done at this level is aO((n/b)d)

• At the next level, each of the previous a subproblems has a subproblem of their own,
giving us a2 subproblems. The size of the subproblem has been further divided to size
n/b2, giving the total work done at this level to be a2O((n/b2)d)

• Continuing this like a geometric series, the work done at the following intermediate
levels is aiO((n/bi)d)

• The work done at the last level is the number of leaves times the work done at each
leaf. Each leaf takes O(1) to compute as a base case. The number of leaves we can
compute from a little combinatorics. Given a binary tree of depth k, we see that it
has 2k leaves. Our tree has arity a so the number of leaves will be ak where k is the
depth. What is the depth of our tree? We continue to subdivide the problem until we
divide out. That happens with (n/bi) runs out. For what i does this happen? When
i = logb n. Then the number of leaves is alogb n = nlogb a. The work done at the level
of the leaves is O(1) · (nlogb a) = O(nlogb a).

• We sum each level to get the total work done to be

T (n) =

logb n∑
i=0

aiO

((n

bi

)d
)

+ O(nlogb a)

• We want this in terms of big O, so we have three cases on what the dominating term
is

• Case 1, if the work done at each exceeds how fast the problem subdivides, then the
dominating term will be the first one of the summation in the series. This occurs when
d > logb a and the work done is T (n) = O(nd)

• Case 2, if the work done at the leaves far exceeds the work required to recombine,
the dominating term will be the number of leaves. Consider a tree with really thin
branches but an insane amount of leaves. Each leaf may weigh nearly nothing but
combined they are the heaviest part of this tree. This occurs when d < logb a and the
work done is T (n) = logb a.

• Case 3, if the work done subdivides quite neatly and doesn’t increase or decrease
one way or the other, we have to weigh the entire tree. The number of subprob-
lems increases to a similar ratio as the size of the subproblems and the work done.
This occurs when d = logb a. Every term of the sum is equivalent and we see then
that

∑logb n
i=0 aiO((n/bi)d) + O(nlogb a) =

∑logb n
i=0 O(nd) + O(nlogb a) = (logb n)O(nd) +

O(nd) = O(nd log n)

2: Merge Sort and Master Theorem-5

This gives us the final derivation of the master theorem. If T (n) = aT (n/b) +O(nd) then

T (n) =


O(nd) d > logb a

O(nd log n) d = logb a

O(nlogb a) d < logb a

Note : We don’t write the base of logs when they aren’t in the exponent because asymptoti-
cally (aka when concerned with big O and time complexity) they are equivalent. The change
of base formula for logarithms simply multiplies by a constant. Ex- O(log2(n)) = O(log3(n))
In the exponent or when not “on the ground", the base of the log does matter.

3 Examples

3.1 Mergesort

We said that Mergesort has complexity from the recurrence: T (n) = 2T (n/2) +O(n) With
respect to the Master Theorem, here: a = 2, b = 2, d = 1. Using the Master Theorem cases
above, we have d = log2(2) = 1 Therefore, the time complexity of mergesort is O(n1 log n) =
O(n log n). We could have computed this for the specific case of mergesort, but by doing
it for a general recurrence, we can easily apply this to many problems. This also tells us if
modify mergesort to split the array into thirds, and solve via three recursive calls, the time
complexity won’t change! logb a doesn’t change when a = b.

3.2 Binary Search

As a sanity check, lets compute the run time of binary search, just to make sure that
the master theorem works. You may have seen this implemented iteratively in the past,
but it can be visualized recursively as well. We would split the whole array into 2 parts,
and make a single recursive call on one of the halves, and the work done at each level
is O(1) given that no real work is being done, we are just searching. Therefore, T (n) =
1T (n/2) + O(1) = T (n/2) + O(n0) We see that a = 1, b = 2, d = 0. Which case of the
Master Theorem applies? Here d = log2(1) = 0. Therefore, the time complexity of binary
search is O(nd log n) = O(log n). This is in fact the correct time complexity of binary search.

Note : We can see from this theorem that there are 3 ways to optimize a problem: reduce
work at each level, reduce number of subproblems, reduce size of each subproblem. It is not
uncommon for the number of subproblems to be reduced by making smarter ones, as we will
see next time.

2: Merge Sort and Master Theorem-6

	Merge Sort
	merge()
	Example of how merge() works:

	Master Theorem
	Examples
	Mergesort
	Binary Search

