CS 3510 Algorithms 1/18/2023

Lecture 4: Cryptography

Lecturer: Abrahim Ladha Scribe(s): Himanshu Goyal

1 Cryptography

Cryptography is the science of secrecy and private. We learn about it in this class (algo-
rithms) because it is all about algorithms for secure communication. Consider the following
scenario. You have two parties say Alice, Bob. They want to communicate and pass mes-
sages to each other with a goal that eavesdropper has a slight idea about what they are
communicating about. There is a third party, the adversary, perhaps denoted as Charlie.
Charlie can listen to what Alice and Bob send to each other. Is there an algorithm, or a
protocol, in which Alice and Bob could agree to use to stop Charlie from listening to their
secret communication, with provable guarantees? This is not such a contrived scenario.
For instance, imagine You and Amazon could be Alice and Bob respectively. This protocol
should stop someone from stealing your credit card info. There are numerous such scenarios
in our daily life. Much of the financial sector relies on cryptography. In this lecture, we will
try to define protocols to solve this problem.

< ‘ ..f — 7

- m ==
_—

1.1 One Time Pad (OTP)

Let us see one of the one such protocol among many others, called One Time Pad (OTP).
e Communication

— Suppose that Alice wants to send Bob a message m of length |m| = n. Alice and
Bob already have a shared Secret Key |s| = n.

— Alice computes m & s, and sends it to Bob.

— Bob decodes the message by doing (m @ s) @ s = m @ (s ® s) = m and learns
Alice’s message m.

4: Cryptography-1

e Security: From this exchange, Charlie learns m@®s from eavesdropping which provides
little to no information. If s is completely random, then m @ s looks as random as s,
so Charlie can learn nothing about m from looking at m & s.

e This scheme works fast but has three immediate issues:-

— How do Alice, and Bob already know the secret s? They can’t just directly share
s, because Charlie would find it out.

— The second problem is that |s| has to be as long as |m|. But we want small keys
and long messages. We don’t want to store gigabytes of keys to send lots of info.

— The biggest problem is reuse. It’s called one time pad for a reason. Suppose, Bob
after learning m, wants to reply with message m’, so he sends m’@®s. Now, Charlie
learns (m @ s) and (m’' @ s). He may compute (m @ s) & (m' @ s) = m@m’, which
provides extra information to the adversary (charlie) then anticipated. Generally,
It is assumed that user messages does not have high entropy. For instance, most
of our website passwords are highly correlated.

Original message 1 Key Encrypted message 1

SEND |
CASH |

Original message 2 Key Encrypted message 2

1.2 Symmetric Key Encryption

e A symmetric encryption is a tuple of three algorithms. Key Generation, Encryption,
and Decryption.

SE = (G,E,D) (where G is the generator, F is the encryptor, and D is the decrypter)

— k < G(1™) (the generator generates keys; k denotes a key)

4: Cryptography-2

— ¢ < Ei(m) (the encryption algorithm with a given key k takes a message m and
creates a ciphertext c)

— m < Dg(c) (the decryption with a given key k takes a ciphertext ¢ and gives the
message m)

e Note: Here k is much shorter than m, and given only cipher text ¢ to Charlie, it is
computationally infeasible to compute m from ¢ without the knowledge k. It is called
symmetric encryption, as the same key is used for encryption and decryption.

e Communication:

— Both Alice and Bob agree on a key, k, from G (somehow).
— Alice computes ¢ — Ej(m)

— Alice transmits ¢ (i.e, Ex(m)) over the wire to Bob. Charlie is also listening to
this channel.

— Bob decodes the message with m = Dy/(c).
e In this scheme, Charlie sees only the ciphertext ¢, i.e., Ex(m), which will have high
entropy, so he would learn little. There is an instantiation of this scheme commonly

known as Advanced Encryption Standard (AES) today. The problem which it still
doesn’t solve is of having a common preshared secret key.

1.3 Asymmetric Cryptography

e A public key or asymmetric cryptosystem is comprised of three algorithms (G, E, D)
and uses two keys pk, sk. In this, encryption is done with the public keys, however the
decryption is done with secret keys. Every party participating in communication have
their own set of (pk, sk). Parties tend to know only pk of every other party, keeping
sk secret with themselves. First we define the protocol and later define the security.

— (pk, sk) < G (generates a public key pk and secret key sk)
— ¢+ Ep(m)
— m < Dg(Epr(m))

e Communication

— Bob generates a public key pkp and a secret key skp.
— He broadcasts the public key pkp to Alice (or others).

— Alice encrypts her message m using public key of Bob as E,j,(m), and sends it
to Bob.

Bob decodes the intended message m using its own secret key as D, (Epi (m)).

e Problems

— An integrity issue can arise if Charlie is able to repeat a message of Alice and
wants to be assumed as Alice to Bob.

4: Cryptography-3

1.4

— Another issue could arise if there are a small number of options which are sent
often. Say a vote is taking place with two options and one message is sent
60% of the time and another message is sent 40% of the time. This is fixed
by concatentation of the message with some randomness, that is discarded after
decryption.

Charlie will see pkp and E,j,(m). From just this information, we want to ensure that
he learns nothing.

Semantic Security

One time pad achieves perfect secrecy (or information theoretic security), which states
that there is no positive correlation between the information of communicated cipher-
text and the information learned about the message.

In reality, however, we can assume that eavesdroppers like Charlie are bounded by
realistic computational limits and therefore belong to the class of Probabilistic Poly-
nomial Time (PPT) adversaries. So, now we will see security for PPT adversaries. It
is also commonly referred as computation security.

If a cryptographic scheme has a key k that is n-bits long, the probability of simply
guessing the key is Pr[guessing k] = 27",

We say a cryptographic scheme is secure if for all Probabilistic Polynomial Time (PPT)
adversaries, Pr[learn anything about m|] < 27",

This essentially means the system is secure if the best option for someone without the
key to decode the ciphertext is to guess a key.

Although many people believe this holds true for cryptographic systems, it is hard to
prove, and doing so would cause many major breakthroughs in complexity theory.

Most of cryptography algorithms heavily uses ideas from number theory. So, let us try to
see some of related concepts before defining cryptographic algorithms.

2

2.1

Number Theory

Greatest common divisor (gcd)

Now we have described an ideal asymmetric cryptosystem. Let’s actually give a protocol for
it. First we need to develop tools form number theory to get there.ged(a,b) computes the
greatest common divisor of a, b. For example, ged(105,30) = ged(3-5-7,2-3-5) = 3-5. The
following is an easy divide and conquer algorithm discovered long ago by Euclid to calculate
ged of any two numbers.

function gcd(a, b)
if b=20

return a

4: Cryptography-4

else
return gcd(b, a mod b)

e Proof of Correctness: We can prove correctness by showing ged(a, b) = ged(a,a — b).

Let d = ged(a,b). If dla (d divides a), and d|b (d divides b), then a = dk, and similarly
b=dl. So,a—b=dk—dl =d(k—1). Therefore, d is a factor of a — b, hence d|(a —).
So, d|ged(b,a — b).

Let ged(b,a —b) = d'. So, d'|b, d'|(a —b). So d'|(a—b)+b=a. Sod|a and d'|b =
d'|ged(a,b) = d' = d. Since these two numbers divide each other, they must be
equal. Easy!!

e Runtime: Since a mod b < §, every two recursive calls shrinks our answer by one bit.
Therefore n calls, each performing an mod N bit remainderﬂ in the O(n?), resulting
in total time O(n?).

e We can use the stack trace executionﬂ of the euclidean algorithm to compute modular
inverse of an element. The inverse of a is a~! such that aa™! = 1 (mod N). For
example, 37! =2 (mod 5), since 3-2 =6 (mod 5) = 1. Similarly, 27! = 3 (mod 5).

e The necessary property for the existence of inverse of an element a, is
a texists (mod N)) < ged(a, N) =1

In words, If a is relatively prime to N, then it has an inverse. In general, if N is
prime, then all elements less than it has an inverse. For fun, try proving it!

2.2 Fermat’s little theorem
We prove the following insanely useful fact. If p is prime and 1 < a < p, then
a?'=1 (mod p)

This is called Fermat’s little theorem.

Proof of Correctness:

o Let S ={1,2,...,p— 1}, and aS = {a,2a,...,(p — 1)a mod p}. First we show
(mod p) that S = aS. It is sufficient for us to show the equality if we can show the
following two:

1. None of the elements in aS is 0, i.e. 0 ¢ aS.

2. All the elements in aS are distinct.

"We didn’t cover this in class, but integer division with remainder, like multiplication can be done in
O(n?) time. It can actually be done in not just linear time, O(n), but real time, n. No constants.

2We won’t cover the extended euclidean algorithm, but you may supose that modular inverses may be
computed easily in polytime given the modulus.

4: Cryptography-5

e Suppose ai = 0 mod p, then a~'ai = =0 (mod p). But a~'ai = (e la)i=i =
1 =0 mod p, but 7 > 1, contradiction

e For 2, we prove by contradiction. Suppose aS contains two equal elements while S
does not. That ai = aj (mod p) but ¢ # j. Since ged(a,p) = 1, therefore there exists
an a~! for a.

1

ai =aj (mod p) = a lai =alaj = i=j, a contradiction.

e Since a5 = 5, we may product the elements of both sets.

[[s=1-23.0-1)=(p—1)

. Similarly,
HaS’ =a-(2a)-(3a)...alp—1)=a" (p—1)!

So, (p— 1)!' = aP~(p —1)!. Since ged((p — 1)!,p) = 1, then we see that (p — 1)! has a
multiplicative inverse (mod p)

(p=1H'p-'=((p-1)H ' (p—1)la?™" (mod p)
a?'=1 (mod p)

e Corollary: if p is a prime number, then for any integer a, the number a? — a is an
integer multiple of p, and
a’? =a (mod p)

2.3 Euler’s Theorem

It is a generalisation of Fermat’s little theorem, which we won’t prove. For any integer a
co-prime to N, Euler’s Totient theorem states that:

a?™) =1 (mod N)
©(n) is the number of positive integers less than N that are relatively prime to N.
e For a prime number p, ¢(p) =p — 1.
e For two distinct prime numbers p and ¢, ¢(pq) = (p — 1)(q — 1)E[)

e It should be clear that Fermat’s little theorem is a special case of Euler’s theorem.

3This does not work for p?, for simplicity, we only worry about the case when N is a product of two
distinct primes

4: Cryptography-6

2.4

Security hardness assumptions

Wdﬂ believe that the following problems are computationally infeasible, that there are
no polynomial time algorithms for these problem.

1. Factoring: Given N = pq, determine p, q
2. Discrete Log: Given y, ¥ (mod N), and N, determine z.
3. Diffie-Hellman: Given ¢*, ¢¥, g, N, determining ¢*¥ (mod N).

All asymmetric cryptosystems relies on these unproven assumptions that we strongly
believe that hard to solve. Therefore, currently the security is, unfortunately con-
ditional. You can design any other protocol using these assumptions, and you may
assume these problems are hard while proving security of your protocol.

It is believed that demonstrating the security of public key Cryptography poses a
formidable challenge and would imply that P # NP.

However, the uncertainty lies in whether these problems are indeed hard, as we are
yet to determine if P = NP or P # NP.

Factoring, in particular, is interesting because we can efficiently factor numbers with
many small factors. To make factoring hard, cryptographic schemes often rely on the
use of two large prime factors.

3 RSA

RSA is an implementation of a public key cryptosystem.

Communication

— Bob’s Actions:

+* Bob generates large prime numbers p and gq.

* Bob computes N = pq.

* Bob chooses e, a number relatively prime to (p — 1)(q — 1).
* Bob computes d = e~! (mod (p —1)(¢ — 1)).

Public Key: pk = (N, e), Private Key: sk = d.

+ Bob broadcasts the public key pk.

*

— Alice’s Actions:
* A computes and sends m® mod N.
— Bob’s Actions:

* Bob computes m = (m€)? mod N.

“the cryptographic community

4: Cryptography-7

e Correctness

ed=1 (mod (p—1)(¢—1))
ed=k(p—1)(g—1)+1
(m)?% = (m)*? (mod N)
(me)? = mFP-Da=D+1 (04 N)
(me)? = m**MN+1 (mod N)
(me)? = m' (m*MN))* (mod N)
(me)? =m1* (mod N)
d —

(me)*=m (mod N)

e Charlie will only see N, e, and m® mod N. By our assumption, he cannot learn m.

3.1 Diffe-Hellman (Common Secret Exchange)

e Alice and Bob agree on prime numbers p and g such that the two sets (1,2,...,p—1)
and (gl,gz, . ,gpfl) mod p are bijective.

Communication
e Alice’s Actions:
— Alice computes x and ¢*, then communicates them to Bob.
e Bob’s Actions:
— Bob computes y and ¢¥, then communicates them to Alice.
e Alice’s Actions:
— Alice computes g"¥ = (¢¥)* (mod p).
e Bob’s Actions:

— Bob computes ¢*¥ = (¢*)Y (mod p).

Visibility to Charlie

Charlie sees g, p, g%, and ¢g¥, but cannot compute ¢*¥ mod p.

Common Use

This method is commonly used to establish a symmetric encryption algorithm, which is
typically faster and more practical for actual encryption.

4: Cryptography-8

	Cryptography
	One Time Pad (OTP)
	Symmetric Key Encryption
	Asymmetric Cryptography
	Semantic Security

	Number Theory
	Greatest common divisor (gcd)
	Fermat's little theorem
	Euler's Theorem
	Security hardness assumptions

	RSA
	Diffe-Hellman (Common Secret Exchange)

