
A B R AH IM L ADHA

D I S C R E T E MATH EMAT I C S ( D R A F T )





Contents

Introduction to Logic 9

Propositional Logic 17

Predicates and Quantification 25

Inference 31

Introduction to Proof 37

Mathematical Induction 49

Set Theory 63

Functions 75

Asymptotic Analysis 85

Relations 89

Modular Arithmetic 93

Cardinalities of Sets 95

Disivibility of Integers 105



4

Group Theory 111

The Chinese Remainder Theorem 113

Fermat and Euler 117

Pigeonhole Principle 123



List of Figures

1 Calculating-Table by Gregor Reisch: Margarita Philosophica, 1503. 9

2 One kind of the ambiguity of language. 10

3 The dictionary definition of a knave is “An unprincipled, crafty fellow.” 17

4 Euclid’s construction of the dodecahedron, from Nasir al-Din al-Tusi’s

translated copy of The Elements, 1280 AD. 37

5 Diogenes seated with his barrel behind him, and reading a book while

holding a stick that rests on a geometry book to his right, Giovanni Jacopo

Caraglio, 1526-27 39

6 a 16× 16 board with one quadrant removed tiled by 64 triominoes 55

7 The complexity of a proposition can be thought of as the maximum depth

of the tree to parse it. Since p ⇐⇒ q may be written well-formed as

(((¬p) ∨ q) ∧ ((¬q) ∨ p)), the complexity of this formula is 3. 59

8 A set which contains two elements, a cat, and a set containing a cat. 63

9 Cool Lamp I found on Tenth Street 73

10 You should think of the execution of the euclidean algorithm as a swapping

of pairs for a smaller pair of numbers with the same gcd. 106





What is Discrete Math?

TBD and all that.





Introduction to Logic

Why Logic?

Logic is a formalization of pure thought. Before we go to logic, lets look at

arithmetic. Arithmetic is the basic calculator math we all do. In the before

times, we1 did arithmetic on our fingers. Or we did it by making hatch marks, 1 as in, humanity

or maybe using a abacus. Eventually, we found a much more efficient way to

do arithmetic, symbolically. We made up names for the numbers, and a syntax

and list of rules you could apply to these equations. For example:

5(3 + 2)

5 · 3 + 5 · 2
15 + 10

25

First note, that quantity is intangible, nonphysical. “3” is nothing. You

cannot have “3”. You can have three of something, three hats, three apples,

three fingers, but you cannot have a “3”. We use the curly symbol “3” to

reprent an ideal concept of a quantity. Using symbols for the numbers, we made

up symbols for the operations, addition, multiplication.

Figure 1: Calculating-Table by Gregor Reisch:

Margarita Philosophica, 1503.

Then we made up rules on how to manipulate these symbols. From there,

arithmetic is performed by moving the symbols around, instead of counting one

by one. This is really efficient and we have stuck with this system since. From

there, we could develop so much more. The quadratic formula, trigonometry,

physics, calculus and so on. We went to the moon.

Performing arithmetic symbolically was a huge revolution. What else could

be advanced by symbolic representation? What other mental procedures could

be formalized? What about thought itself? The end of this result is logic;

Logic is the formalization of thought. Leibniz was one of the first to

think in this direction. He believed that thought was compounded from some

kind of alphabet of ideas, and new ideas were produced in a process similar to

multiplication of numbers.2 2 “It is obvious that if we could find characters

or signs suited for expressing all our thoughts

as clearly and as exactly as arithmetic expresses
numbers or geometry expresses lines, we could

do in all matters insofar as they are subject to

reasoning all that we can do in arithmetic and
geometry. For all investigations which depend

on reasoning would be carried out by transposing
these characters and by a species of calculus.” -

Leibniz

Your brain has ideas, but they are trapped in your head. In order to express

those ideas, you must use language. Unfortunately, since language is a natural

product, it is imperfect. Since the meaning of words cannot be fixed, it is

not possible to exclude all possible misunderstandings. Consider the sentence

“The dog ate the cat who scratched the fence. ” We may say this sentence is

ambiguous. There are many kinds of ambiguity.

Rather than expressing assertions, inferences, and deductions in natural

language, we may express them in our formal language in order to limit ambiguity

and fallacy. Mathematicians have created a “formal language”, in that the

meaning of these symbols cannot be misinterpretted. Deduction and reasoning
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can be performed in this formal language as one might perform arithmetic. The

following is an example

∀x∀y(∀z(z ∈ x ⇐⇒ z ∈ y) =⇒ x = y)

Figure 2: One kind of the ambiguity of language.

This sequence of symbols to you now is unreadable and meaningless, but

it has one advantage over natural language. It is precise and unambiguous.

It is impossible to misinterpret it, like it is impossible to misinterpret a well

formed mathematical formula. You should treat this subject like learning a new

language.

We will not extensively discuss why logic appears to emulate our own laws of

thought, but rather the use of logic as a tool. As we define parts of this formal

language, for each step, convince yourself like “yea, thats how I think”.

Truth

What is truth? Hard to say, and hard to define. Without further inquiry, we

may be confident in the following two assertions:

• Truth exists

• Not everything is true.

Given a collection of truths, you may derive new truths. But where do those

truths come from? To prevent a chicken-egg problem, we make use of axioms.

An axiom is a true statement which needs no proof. It is given to you by god.

No more questions. It is the basic truths, usually too simple to demonstrate.

For example with numbers, it is true that for any number n that n = n is true.

This is an axiom. The rules of deduction are themselves axioms.

Note that intuitively, propositions may either be true or false. If a proposition

is not true, it must be false. If a proposition is not false, it must be true. This

is called law of excluded middle. We take the law of excluded middle to be true

because it is how we interact and use truth. For any proposition, it must be

true, or it must not be true. Everything in this world either is, or isn’t. There

is no intermediate between contradictories. 3 3 “It will not be possible to be and not to be the
same thing, except in virtue of an ambiguity, just

as if one whom we call “man”, and others were

to call “not-man”; but the point in question is
not this, whether the same thing can at the same
time be and not be a man in name, but whether

it can be in fact.” - Aristotle, in Metaphysics

Proposition

A proposition is a sentence which may be understood to have an objective truth

value, one which can be demonstrated and asserted. The following are examples

of propositions.

• Socrates is a man.

• The sun will rise tomorrow

• The sum of two numbers is a number.

• 10 > 7

• 1 + 1 = 3

Even though some of these sentences are false, they are propositions because they

may be understood to have an objective truth value. The following sentences

are not propositions:
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• What time is it?

• Subscribe to me on youtube.

• Team X is the best.

• n > 7

Examples of sentences which are not propositions include questions, commands,

and sentences with subjective truth value. For a truth to be objective, intuitively,

you must understand that it is demonstrable. The fourth one cannot be assigned

an objective truth value, as it is true or false for different values of n. This

is a predicate, and not a proposition. It can be made into a proposition and

assigned a truth value by evaluation of n by a number.

Rather than pure english, we with to use a calculus of symbols so that

the meaning of well formed formulas may be understood more objectively

than natural language. To that extent, we use propositional variables.4 A 4 You may recall a moment in your earliest math
classes when they added letters to arithmetic and

never went back. This is an analogous moment.
propositional variable is a letter, such as p, q, r, s which represents a proposition.

For example:

p := “Socrates is a man”

Now whenever p is referenced, it is in context of the proposition which asserts

that Socrates is a man.

Negation (¬)

What is the negation of a proposition? The negation of a proposition p is

written as ¬p. It is understood to be the logical “opposite” of proposition p. If

p is truth, then the opposite of truth is certainly and can only be falsehood. So

if p is true, then ¬p is false, and if p is false, then ¬p is true. In fact, we define

false to mean “not true”. What is the opposite of white? If you said “black”,

thats incorrect. The opposite of “white” is “not white”. For p the proposition

that asserts “Socrates is a man”. We may write ¬p either as:

• It is not the case that Socrates is a man

• “Socrates is a man” is false.

• “Socrates is a man. Not.5 5 https://www.youtube.com/watch?v=

fhIdbRp6xeg

Although these are correct representations, they are cumbersome in english.

The proposition ¬p may be equivalently rewritten as “Socrates is not a man”.

Note again that since p was true, ¬p must be false.

What is the proposition which occurs when we negate a negated statement?

Consider ¬¬p. If p is true, then ¬p is false, so then ¬¬p must be true. If p is

true, then it is not the case that it is not the case that p is true, so we see that

¬¬p has identically the same truth value as p. The logical negations cancel

each other out in a way similar to arithmetic: (−1) · (−1) · x = x

Combining Propositions

You must observe that ideas may be formed from smaller, more atomic ideas.

There are few words in english, reserved for making such combinations.

https://www.youtube.com/watch?v=fhIdbRp6xeg
https://www.youtube.com/watch?v=fhIdbRp6xeg
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Conjunction (∧)

Consider the proposition “Socrates is a man and all men are mortal”. We

use the english word “and” here to represent a combination of two smaller

propositions. Let p be the proposition to assert that “Socrates is a man”, and

q be the proposition to assert that “all men are mortal”. We may write the

original proposition as the conjunction p ∧ q. How does the truth value of this

conjunction depend upon its pieces? If you conjunct truths together, you can

only get truth. If you conjunct several truths together, but then any falsehood,

then the conjuncted proposition in whole must be false. For example, “p is true

and p is false” is false. The proposition p must be either true or false, but it

cannot be both. As another example, consider “Socrates is a man and I am

Socrates”. This proposition is false. Although Socrates is a man, I am not

Socrates. As a whole, the statement is false, even if it contains some truth.

The word “and” is one english word we represent with conjunction, but

others which are equivalent may include:

• p and q

• p but q

• p plus q

• p in addition to q

Natural language may distinguish between “and” and “but”, but notice that

logically, there is no difference with respect to the truth value of the established

proposition. The word “but” may provide some connotation, a subliminal

meaning, but the truthfulness or nontruthfulness of the sentence is unperturbed.

Disjunction (∨)

Ideas may not need to be composed in such a way which requires all pieces, to

be true, but perhaps just some, or any of the pieces. Consider the proposition

“Socrates is a man or I am Socrates”. Even though I am not Socrates, the fact

that Socrates is a man makes this proposition true on the whole. We may write

the disjunction of propositions p ∨ q to represent a logical “or”. A disjunction

is true if any of its propositions are true. For example, the disjunction “p is

true or p is false” is a true proposition, as p must definitely be either true or

false. In a disjunction, if both are true, then the proposition is true.

Some other logically equivalent words to “or” include

• p otherwise q

• p rather q

Exclusive Or (⊕)

Note the english use of the word “or” is not understood identically with the

logical definition of “or”. Sometimes, the use of “or” is exclusionary, in that

“p or q” means “either p or q but not both”. A logician goes to olive garden

and the waiter asks, “would you like soup or salad with that?” The logician

replies “yes”. and is unfortunately charged extra for both.6 This kind of “or” 6 true story

we denote as an exclusionary or, xor. We use the symbol p⊕ q to mean xor.
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In language, it is often ambiguous if an “or” is meant inclusionary or exclu-

sionary. In our formalization, we remove this ambiguity by having two different

distinct symbols.

Truth Tables

A truth table is a list where the first columns represent propositions and all

possible truth values they may take on, and the later columns represent combi-

nations of those propositions, and their respective truth values as well. Of the

logical primitives we have seen so far, convince yourself that the following truth

table is correct.

p q p ∨ q p ∧ q ¬p ¬¬p p⊕ q

T T T T F T F

T F T F F T T

F T T F T F T

F F F F T F F

if there are n distinct propositions, then a truth table will have 2n rows.

When filling out a truth table, please write all rows and columns. The leftmost

columns are reserved for the propositional variables.

Logical Consequence

Some propositions entail each other, in a causal manner. Consider the proposi-

tion “If Socrates is a man, then all men are mortal”. We may represent this as

“If p then q”, and use the notation p =⇒ q. This is called an implication and is

read as “p implies q”. We refer to p as the premise, or hypothesis. Then q is

the conclusion, or consequence.

What is the truth value of an implication? Certainly if p is true, and q is

false, then the implication p =⇒ q should be false. But what about the other

cases?

Consider the implication “If you study, you will pass”. To evaluate its truth,

suppose someone tells you this, and we will determine if they were lying or not.

• If p is true, and q is true, then p =⇒ q should be true

• If p is true, and q is false, then p =⇒ q should be false. If you study and

fail, then the implication was not true.

• If p is false, and q is true, then p =⇒ q is true. If you don’t study and you

pass, whoever told you this was not lying, so it must have been true.

• If p is false, and q is false, then p =⇒ q is true. If you don’t study and

you fail, the person who told you this was not lying, so they were telling the

truth.

We may represent this as the following truth table: 7 7 Pay special attention to the truth of p =⇒ q in

the case that p is false. It is perhaps unnatural.
There is no notion of “undefined” or “untested”,

these are temporal. It is as plain as if it was

not a lie, then it must be a truth, by excluded
middle. Everything in this world either is, or

isn’t.

p q p ∨ q p ∧ q ¬p ¬¬p p⊕ q p =⇒ q

T T T T F T F T

T F T F F T T F

F T T F T F T T

F F F F T F F T

There are many english equivalents:
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• p implies q

• If p then q

• A necessary condition for p is q

• A sufficient condition for p is q

• q given p

• q when p

• If p, q

• p only if q

• q follows from p

Related Implications

There are three related implications to p =⇒ q

• Given implication p =⇒ q, its converse is defined as q =⇒ p.

• The inverse of the implication p =⇒ q is defined as (¬p) =⇒ (¬q)

• The contrapositive of the implication p =⇒ q is defined to be (¬q) =⇒ (¬p).

Lets add these to our truth table. Rather than compute these by understanding

sentences, we may simply compute them using the previous entries in the truth

table.

p q p ∨ q p ∧ q ¬p ¬¬p p⊕ q p =⇒ q q =⇒ p (¬p) =⇒ (¬q) (¬q) =⇒ (¬p)
T T T T F T F T T T T

T F T F F T T F T T F

F T T F T F T T F F T

F F F F T F F T T T T

Notice the p =⇒ q and its contrapositive have identical columns in the

truth table. That means that these two logical statements are equivalent. This

is true, even in english:

• If it is raining, then the bus is late.

• If the bus is not late, then it is not raining.

From here on, if we say two propositions are equivalent, we mean their truth

tables have identical columns. We will detail equivalence of propositions later.

Biconditionals

If two propositions are equivalent, we may write them as p ⇐⇒ q and say

p if and only if q. This is called a biconditional, or a characterization. This

is similar to the definition of equality in arithmetic. For example, “It rains if

and only if it pours”. We may write the equivalence of an implication with its

contrapositive as

(p =⇒ q) ⇐⇒ (¬q =⇒ ¬p)
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Also note that since p =⇒ q and q =⇒ p are necessary and sufficient, we

can represent p ⇐⇒ q as

(p =⇒ q) ∧ (q =⇒ p)

In english, its equivalents are:

• p is necessary and sufficient for q

• p implies q and q implies p

• p iff8 q 8 This is a mathematical short hand to mean “if

and only if”.

• p exactly and only when q

Note in english, it is not common for people to say “if and only if” when

they mean it. The use of language in this case is imprecise.

Precedence

In order for our formal language of propositional logic to remove ambiguity, we

must define an ordering of the operators. Is ¬p =⇒ q to mean (¬p) =⇒ q

or ¬(p =⇒ q)? Much like PEMDAS for arithmetic, we have an equivalent for

propositional calculus. In order of priority first:

• parenthesis

• ¬

• ∧

• ∨

• =⇒

• ⇐⇒

Propositions you write should be sufficiently paranthesized so that one reading

it may not have to delegate to the rules of precedence. Avoid use of other

symbols, such as xor (⊕) and “implied by” ( ⇐= ). Most formally, a proposition

is correct sequence of symbols only over the symbols (, ),¬,∧,∨, =⇒ , ⇐⇒
and propositional variables. Other symbols can be defined in terms of these.





Propositional Logic

Logic Puzzles

If propositional logic is supposed to be a formalization of thought, then we

should be able to apply it to solve some problems. There are often small

gotcha’s, or confusing paradoxes. But many of these are not true paradoxes.

Although they may seem contradictory, this vanishes when we can express the

problem in the clear language that is the propositional calculus.

Figure 3: The dictionary definition of a knave is

“An unprincipled, crafty fellow.”

Consider the Knights and Knaves problem. You are in some sort of monty

python skit, in which everyone is either a knight or a knave, not niether and not

both. Knights always tell the truth, and knaves always lie. You come across

two travelers, we may denote as A,B.

• Person A says “B is a knight”.

• Person B says “The two of us are opposite types”

You do not know if they telling the truth or not. But you not know nothing.

You know something conditionally: If they are telling the truth, then what they

say is true. Moreso, if they are lying, then you know the negation of what they

are saying is true. What are the types of A and B? If A is telling the truth,

then B is a knight, so B is telling the truth, so then A must be a knave, and

must be lying? On the surface it seems paradoxical, muddied. Lets try again

by applying the propositional calculus.

Let p, q denote the propositions that “A is a knight” and “B is a knight”

respectively. Then ¬p,¬q denote the propositions that “A is a knave” and “B

is a knave” respectively. If you are not a knight, then you must be a knave.

We may represent the statements given then as

• Person A: (p =⇒ q) ∧ (¬p =⇒ ¬q)

• Person B: q ⇐⇒ [(p ∧ ¬q) ∨ (¬p ∧ q)]

If A is a knight, then p is true, so q must also be true, so p, q are both true.

But q asserts that p, q must be different, so A cannot be a knight. If p is false,

and B is a knave, then we know that B must also be a knave. Since B asserts

that A,B must be different types, if they are lying then A,B must be the same

type. So they actually were both knaves.

We may determine the answer even more mechanically with a truth table.

Observe that the information A provides can be simplified to p ⇐⇒ q.

p q ¬p ¬q p ⇐⇒ q p ∧ ¬q ¬p ∧ q (p ∧ ¬q) ∨ (¬p ∧ q) q ⇐⇒ (p ∧ ¬q) ∨ (¬p ∧ q)
T T F F T F F F F

T F F T F T F T F

F T T F F F T T T

F F T T T F F F T
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Lets look at the columns that are important, and take the conjunction of

the statements given by both parties

p q A: p ⇐⇒ q B: q ⇐⇒ (p ∧ ¬q) ∨ (¬p ∧ q) A and B: [p ⇐⇒ q] ∧ [q ⇐⇒ (p ∧ ¬q) ∨ (¬p ∧ q)]
T T T F F

T F F F F

F T F T F

F F T T T

There is only one valid solution, both p, q are false, so they must both be

knaves. Note that if there if the last column has no solution, then there is no

solution to the puzzle. If the last column has more than one truth value, then

there may be more than one solution to the problem.

Equivalence

We may use the symbol ≡ to denote that two propositions are equivalent, in a

truth table sense. For example, we will show that

p =⇒ q ≡ ¬p ∨ q

p q ¬p ¬p ∨ q p =⇒ q

T T F T T

T F F F F

F T T T T

F F T T T

Notice that the two last bolded columns are the same. Their respective

propositions are said to be equivalent. 9 9 There is a relationship between ≡ and ⇐⇒ .

Let Φ1,Φ2 be any two propositions. Then

Φ1 ≡ Φ2 if and only if Φ1 ⇐⇒ Φ2 is always
true. The difference between them is that ≡
is a relation among two different propositions,
while ⇐⇒ is a symbol which can be used in a
proposition. Φ1 ⇐⇒ Φ2 is one proposition.

Laws of Thought

Truth tables are useful, but actually quite annoying. If a proposition has n

propositional variables, it will have a truth table of 2n rows, and who knows how

many columns. Why don’t we define a set of laws by which you can manipulate,

simplify, expand a proposition? If two propositions are equivalent, then you

may replace one for the other in some larger proposition syntactically. We can

modify the proposition into a smaller or simpler one this way, and determine its

truth with a smaller truth table. We will demonstrate the equivalence of all our

rules using truth table, but afterwards, you may take them like you take the

laws of arithmetic. You use a+ b = b+ a for example without prejudice. Some

of these laws we can show by a truth table equivalence, others are so simple, we

can only take them as laws. Don’t take the following truth tables too much in

depth. They simply are there to demonstrate the laws are good ones.

Identity

• p ∧ T ≡ p

• p ∨ F ≡ p

Domination

• p ∨ T ≡ T
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• p ∧ F ≡ F

Idempotent

• p ∧ p ≡ p

• p ∨ p ≡ p

Double Negation

• ¬¬p ≡ p

p ¬p ¬¬p
T F T

F T F

Communitivity

• p ∧ q ≡ q ∧ p

• p ∨ q ≡ q ∨ p

Associativity

• (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

• (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p q r (p ∧ q) (q ∧ r) (p ∧ q) ∧ r p ∧ (q ∧ r) (p ∨ q) (q ∨ r) (p ∨ q) ∨ r p ∨ (q ∨ r)
T T T T T T T T T T T

T T F T F F F T T T T

T F T F F F F T T T T

T F F F F F F T F T T

F T T F T F F T T T T

F T F F F F F T T T T

F F T F F F F F T T T

F F F F F F F F F F F

Distributive Laws

• p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

• p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

p q r (p ∧ q) (p ∧ r) (p ∧ q) ∨ (p ∧ r) (q ∨ r) p ∧ (q ∨ r)
T T T T T T T T

T T F T F T T T

T F T F T T T T

T F F F F F F F

F T T F F F T F

F T F F F F T F

F F T F F F T F

F F F F F F F F
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p q r (p ∨ q) (p ∨ r) (p ∨ q) ∧ (p ∨ r) (q ∧ r) p ∨ (q ∧ r)
T T T T T T T T

T T F T T T F T

T F T T T T F T

T F F T T T F T

F T T T T T T T

F T F T F F F F

F F T F T F F F

F F F F F F F F

We have a distribute law for propositional logic, it may or may not be

surprising to you. Lets try to explain why it should be true. The truth table

asserts its correctness, but we can give intution. Consider a proposition which

is a specification for possible restarant orders. Let b, f, c be propositional

variables representing if you order a burger/fries/coleslaw respectively. You

must choose one main and one side, so we may write this as b∧ (f ∨ c). Choose
the burger, then choose a side (here, perhaps both). What are the possible

meal configurations? You could have had a burger with fries, or a burger with

coleslaw. We may write this as (b ∧ f) ∨ (b ∧ c).

DeMorgan’s Laws

• ¬(p ∧ q) ≡ (¬p ∨ ¬q)

• ¬(p ∨ q) ≡ (¬p ∧ ¬q)

speech on demorgans law

p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q p ∨ q ¬(p ∨ q) (¬p ∧ ¬q)
T T F F T F F T F F

T F F T F T T T F F

F T T F F T T T F F

F F T T F T T F T T

Absorption

• p ∨ (p ∧ q) ≡ p

• p ∧ (p ∨ q) ≡ p

p q p ∧ q p ∨ q p ∨ (p ∧ q) p ∧ (p ∨ q)
T T T T T T

T F F T T T

F T F T F F

F F F F F F

Implications

• p =⇒ q ≡ ¬p ∨ q (conditional disjunction equivalence)

• p =⇒ q ≡ ¬q =⇒ ¬p (law of contraposition)

• p ∨ q ≡ ¬p =⇒ q

• p ∧ q ≡ ¬(p =⇒ ¬q)
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• ¬(p =⇒ q) ≡ p ∧ ¬q

p q ¬p ¬q p ∨ q ¬p =⇒ q p =⇒ ¬q ¬(p =⇒ ¬q) p ∧ q p =⇒ q ¬(p =⇒ q) p ∧ ¬q
T T F F T T F T T T F F

T F F T T T T F F F T T

F T T F T T T F F T F F

F F T T F F T F F T F F

• (p =⇒ q) ∧ (p =⇒ r) ≡ p =⇒ (q ∧ r)

• (p =⇒ r) ∧ (q =⇒ r) ≡ (p ∨ q) =⇒ r

• (p =⇒ q) ∨ (p =⇒ r) ≡ p =⇒ (q ∨ r)

• (p =⇒ r) ∨ (q =⇒ r) ≡ (p ∧ q) =⇒ r

p q r (p =⇒ q) (p =⇒ r) (q ∧ r) p =⇒ (q ∧ r) (p =⇒ q) ∧ (p =⇒ r) ...

T T T T T T T T

T T F T F F F F

T F T F T F F F

T F F F F F F F

F T T T T T T T

F T F T T F T T

F F T T T F T T

F F F T T F T T

(q =⇒ r) p ∨ q (p =⇒ r) ∧ (q =⇒ r) (p ∨ q) =⇒ r ...

T T T T

F T F F

T T T T

T T F F

T T T T

F T F F

T F T T

T F T T

(p =⇒ q) ∨ (p =⇒ r) p =⇒ (q ∨ r) (p =⇒ r) ∨ (q =⇒ r) (p ∧ q) =⇒ r

T T T T

T T F F

T T T T

F F T T

T T T T

T T T T

T T T T

T T T T

Biconditionals

• p ⇐⇒ q ≡ (p =⇒ q) ∧ (q =⇒ p)

• p ⇐⇒ q ≡ ¬p ⇐⇒ ¬q

• p ⇐⇒ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

• ¬(p ⇐⇒ q) ≡ (p ⇐⇒ ¬q)
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p q ¬p ¬q p =⇒ q q =⇒ p p ∧ q ¬p ∧ ¬q ...

T T F F T T T F

T F F T F T F F

F T T F T F F F

F F T T T T F T

p ⇐⇒ q ¬p ⇐⇒ ¬q (p =⇒ q) ∧ (q =⇒ p) (p ∧ q) ∨ (¬p ∧ ¬q) ¬(p ⇐⇒ q) (p ⇐⇒ ¬q)
T T T T F F

F F F F T T

F F F F T T

T T T T F F

Tautologies and Contradictions

A tautology is a proposition which is always true. A contradiction is a proposition

which is always false. p ∨ ¬p is a canonical example of a tautology and p ∧ ¬p
is a canonical example of a contradiction.

p ¬p p ∨ ¬p p ∧ ¬p
T F T F

F T T F

This is how we define excluded middle as a law of thought. It is the case

that p ∧ ¬p is always true.

Examples

So far, we know we can demonstrate two propositions to be equivalent by

computing their truth tables and observing they have the same columns. But

we don’t need to do this, we can do without this by simply applying our

previously demonstrated laws.

Suppose we want to demonstrate that ¬(p =⇒ q) is equivalent to p ∧ ¬q.
We can do this without a truth table as follows

¬(p =⇒ q) ≡ conditional disjunction equivalence (1)

¬(¬p ∨ q) ≡ DeMorgan’s (2)

¬(¬p) ∧ ¬q ≡ Double Negation (3)

p ∧ ¬q ≡ (4)

Suppose we want to demonstrate that (p ∧ q) =⇒ (p ∨ q) is always true, it
is a tautology.

(p ∧ q) =⇒ (p ∨ q) ≡ conditional disjunction equivalence (5)

¬(p ∧ q) ∨ (p ∨ q) ≡ DeMorgan’s (6)

(¬p ∨ ¬q) ∨ (p ∨ q) ≡ Associativity (7)

(¬p ∨ p) ∨ (¬q ∨ q) ≡ Negation (8)

T ∨ T ≡ Domination (9)

T (10)
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Rather than doing very complicated and tedious truth tables, we can demon-

strate equivalence by applying laws. We demonstrate the absorption law

p ∨ (p ∧ q) ≡ p

p ∨ (p ∧ q) ≡ Identity (11)

(p ∧ T ) ∨ (p ∧ q) ≡ Distributive (12)

p ∧ (T ∨ q) ≡ Domination (13)

p ∧ T ≡ Identity (14)

p (15)

All Laws

Here is a small cheatsheet of exactly and only the laws you can use.

• p ∧ T ≡ p Identity

• p ∨ F ≡ p

• p ∨ T ≡ T Domination

• p ∧ F ≡ F

• p ∧ p ≡ p Idempotent

• p ∨ p ≡ p

• ¬¬p ≡ p Double Negation

• p ∧ q ≡ q ∧ p Communitivity

• p ∨ q ≡ q ∨ p

• (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) Associativity

• (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

• p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) Distributive Laws

• p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

• ¬(p ∧ q) ≡ (¬p ∨ ¬q) DeMorgan’s Laws

• ¬(p ∨ q) ≡ (¬p ∧ ¬q)

• p ∨ (p ∧ q) ≡ p Absorption

• p ∧ (p ∨ q) ≡ p

• p ∨ ¬p ≡ T Negation

• p ∧ ¬p ≡ F

Implication

• p =⇒ q ≡ ¬q =⇒ ¬p contrapositive

• p =⇒ q ≡ ¬p ∨ q conditional disjunction equivalence

• p ⇐⇒ q ≡ (p =⇒ q) ∧ (q =⇒ p) Biconditional
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Other Laws

These are some laws which may be demonstrated from those previous. You may

not apply these, but you should know them.

• p ∨ q ≡ ¬p =⇒ q

• p ∧ q ≡ ¬(p =⇒ ¬q)

• ¬(p =⇒ q) ≡ p ∧ ¬q

• (p =⇒ q) ∧ (p =⇒ r) ≡ p =⇒ (q ∧ r)

• (p =⇒ r) ∧ (q =⇒ r) ≡ (p ∨ q) =⇒ r

• (p =⇒ q) ∨ (p =⇒ r) ≡ p =⇒ (q ∨ r)

• (p =⇒ q) ∨ (p =⇒ r) ≡ (p ∧ q) =⇒ r

• p ⇐⇒ q ≡ (p =⇒ q) ∧ (q =⇒ p)

• p ⇐⇒ q ≡ ¬p ⇐⇒ ¬q

• p ⇐⇒ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

• ¬(p ⇐⇒ q) ≡ (p ⇐⇒ ¬q)



Predicates and Quantification

Predicates

Recall that we had the example of a declarative sentence “n > 7” and that it

was not a proposition. Its truth value relied on a “free variable” called n. Were

we to fix this variable, then the truth value could be determined, and it would

be a proposition. This is called a predicate, or a propositional function.

We may write this as

P (n) : n > 7

We will traditionally use capital letters for predicates. Notice that P (10) ≡ T , The predicate P (n) : T is still technically a

predicate and not a proposition, even though its

truth value does not vary. The constant function
f(x) = 3 is still a function and not a number.

but P (2) ≡ F . A predicate may have multiple arguments, such as P (x, y, z) :

x+ y = z. For a predicate to become a proposition, it must be the case it has

no free variables. P (1, 2, z) is a predicate, but not a proposition. P (1, 2, 3) is a

proposition, and is true.

The universe of discourse10 must be defined for the variables of predicates. 10 Also called the universe, the domain of dis-

course, or the domainThere is an understood set of possible values each free variable of a predicate

can take on. Without this, the predicate is simply undefined.

Consider the predicate

P (x, y) : If x > 0 then x+ y = 10

Observe that

• P (−1, 100) is true

• P (4, 6) is true

• P (4, 5) is false

Again, a predicate is not assigned a truth value until all its free variables have

been assigned.

Quantification

Some words used in declarative english sentences include “Any, all, some, none,

few,” and so on. Consider the english

A quantifier specifies how a variable of a predicate interacts logically with

the universe of discourse the variable ranges over.

Existential Quantification

The existential quantifier corresponds to the english words “there exists, some,

atleast one” and so on. We may express this quantification by using a quantifier.

We bind a quantifier to a free variable of a predicate. For example, given a
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predicate of three free variables P (x, y, z). We may bind an existential quantifier

to x and write ∃xP (x, y, z). Here, a backwards “E” is used to mean “there

exists x such that:”.

Consider the predicate

P (x, y) : elephant x is heavier than duck y

The universe of discourse of x is all possible elephants, and the universe of

discourse of y is all possible ducks. What is a predicate for the sentence ‘Some

elephant is heavier than duck y”? This is a predicate, but we determine that

the elephant must exist, so its truth is dependent only upon y. We may express

this using the symbol “∃” and write three examples.

• ∃xP (x, y) : There exists an elephant which is heavier than duck y

• ∃yP (x, y) : elephant x is heavier than some duck

• ∃x∃yP (x, y) : Some elephant is heavier than some duck.11 11 Most formally, this would be read as “There

exists an elephant and there exists a duck such
that the elephant is heavier than the duckNote that the third example not a predicate, but is a proposition! The

quantifier ∃ binds to the variable, making it no longer free. If predicate has

all its variables bound, it is a proposition. We can demonstrate the truth of

this proposition by finding just one elephant and just one duck such that the

elephant weighs more than the duck. Again, the universe of discourse must be

defined for the quantifier to make sense. In our previous example, the universe

of x is all possible elephants, and the universe of y is all possible ducks.

Consider the proposition ∃x[x is even]. This is true even if P (x) is false for

some values of x. Since we know there is atleast one even number, then we

know this is true. There is no claim as to which numbers are even, or how to

find them, simply that an even number exists.

Uniqueness

In language, we often want to denote not only that an item exists, but does so

uniquely. To this extent, we use the quantifier ∃! to denote this. For example

“exactly one number x is positive”, we may represent as ∃!P (x). This is not a
real quantifier, but you should know the notation if you come across it.

Universal Quantification

While the existential quantifier logically captures the meaning of words like

“there is, atleast one, some, there exists” and so on, what about words like

“every, for all, for each”? For these, we use the universal quantifier. Let P (x) be

a predicate. We write

∀xP (x)

to mean that for every single possible value that x could take on from its

universe of discourse, the predicate P (x) is true. For example consider the

sentence “every elephant is heavier than duck y”. We may write this as

∀xP (x, y) : Every elephant is heavier than duck y

We may also quantify over the variable y to get

∀x∀yP (x, y) : Every elephant is heavier than every duck
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.

Consider the Predicate (x2 ≥ 0). We can bind its free variable to get the

proposition ∀x(x2 ≥ 0). Note how important the universe of discourse is. If the

universe is a restriction of real numbers, then its true. If the universe involves

complex numbers, its false.

Equivalence

We may say two statements12 are equivalent if and only if they have the same 12 involving both predicates and quantifiers and

propositionstruth values, regardless of propositions used, or universes of discourse allowed for

the variables of the predicates. We denote S ≡ T to mean these two statements

are equivalent.

Let P (x), Q(x) be two predicates, with the same variable over some universe

of discourse. We demonstrate

∀x(P (x) ∧Q(x)) ≡ (∀xP (x)) ∧ (∀xQ(x))

We must perform such a demonstration since a quantification can occur over a

universe of discourse which is infinite. We cannot do an infinitely large truth

table to show equivalence. We know that Φ1 ≡ Φ2 is true exactly and only

when Φ1 ⇐⇒ Φ2 is a tautology. So we will demonstrate that Φ1 =⇒ Φ2 and

Φ2 =⇒ Φ1.

Suppose that ∀x(P (x) ∧ Q(x)) is true. Then for all a in the universe, we

know that P (a)∧Q(a) is true. So both P (a), Q(a) are true. Since P (a) is true

and Q(a) is true for any a in the univese, we know that ∀xP (x) is true, and
∀xQ(x) is true. So (∀xP (x)) ∧ (∀xQ(x)) is true.

Suppose that (∀xP (x)) ∧ (∀xQ(x)) is true. Then (∀xP (x)) is true, and

(∀xQ(x)) is true. Then since they share the universe, we know that for every

a that P (a) is true and Q(a) is true. So P (a) ∧ Q(a) is true. Since a is any

element in the universe of x, we see that ∀x(P (x) ∧Q(x)) is true.

We can write the uniqueness quantifier equivalently as just an existential one

∃!P (x) ≡ ∃x[P (x) ∧ ∀y(y ̸= x =⇒ ¬P (y))]

To interpret this back in natural language, it states that ∃xP (x), for every other

distinct value y, that ¬P (x). This is the definition of uniqueness.

Multiple Quantifiers

Note that the order of quantifiers does matter. They do not commute.

Suppose that x, y have universes of booleans. Observe that the following are

not equivalent

∀x∃y[(x ∨ y) ∧ (¬x ∨ ¬y)]

∃y∀x[(x ∨ y) ∧ (¬x ∨ ¬y)]

Consider the semantic difference between “every sailor has a hat” and “some

hat has every sailor”.

Negation of Quantifiers

How do you compute the negation of a quantifier? For example let P (x) be

the predicate that P (x) : “man x is mortal” and the proposition ∀xP (x) to
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mean that “all men are mortal”. The logical opposite of “all men are mortal”

may be interpreted as “there is a man who is not mortal”. The negation of a

universal quantification can be understood as an existential quantification of

the opposite!

¬(∀xP (x)) ≡ ∃x[¬P (x)]

Similarly, the negation of the statement “some man is not mortal” could be

understood as “all men are mortal. So

¬(∃xQ(x)) ≡ ∀x[¬Q(x)]

One way to think about this is as a generalization of DeMorgan’s law. You

cannot have an infinitely long proposition, but if you could, a quantifier could

be expressed this way.

¬(∃xP (x)) ≡ ¬(P (0) ∨ P (1) ∨ ...) ≡ (¬P (0) ∧ ¬P (1) ∧ ...) ≡ ∀x(¬P (x))

Again, you cannot have an infinitely long proposition, but DeMorgan’s law

carries over this way. Consider the propsition ∀x[x2 ≥ x] where the universe of

x is integers. Note that this proposition is true. If we compute the negation of

it, then

¬(∀x[x2 ≥ x]) ≡ ∃x¬[x2 ≥ x] ≡ ∃x[x2 < x]

If your proposition has multiple quantifiers, then we may represent this in

a nested manner. For example, ∀x∃yP (x, y) may really mean ∀x[∃yP (x, y)],
where there is an internal predicate. Negation is handled recursively so that

¬(∀x∃y∀z...P (x, y, z, ...)) ≡ ∃x∀y∃z[¬P (x, y, z, ...)]

Lets compute the negation of the unique existential quantifier. Since

∃!xP (x) ≡ ∃x[P (x) ∧ ∀y(y ̸= x =⇒ ¬P (y))]

Then

¬(∃!P (x)) ≡ ∀x[¬P (x) ∨ ∃y(y ̸= x ∧ P (y))]

We can read this back in english as either its false for all possible x, or if its true

for one x, there exists a distinct y which its also true for. So either it doesn’t

exist, or if it exists, its not unique.

Prenex Normal Form

A quantified proposition is said to be written in prenex normal form if it can

be written as all quantifications coming first. For example

∀x∃y...Φ(x, y, ...)

Every quantified predicate or proposition can be rewritten into an equivalent

one which is in prenex normal form.
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Table

• ∀xP (x) is true when P (x) is true for every x, and is false when there is an x

such that P (x) is false.

• ∃xP (x) is true, when there is an x such that P (x) is true, and is false when

for every x that P (x) is false.

• ¬∃xP (x) is understood as “there does not exist an x where P (x) is true”, so

it is equivalent to “for every x that P (x) is false, or ∀x¬P (x).

• ¬∀xP (x) is understood as “It is false that for every x that P (x) is true”

which is equivalent to “There is an x such that P (x) is false, or ∃x¬P (x).





Inference

Argument

We have seen that propositional logic is good at removing ambiguity from many

parts of natural language, but we have not seen how it can be used to establish

truth. The act of deduction is done sequentially, as a sequence of steps. An

argument is a sequence of statements which establishes the total, undeniable

truth and validity of some statement.

The form of an argument usually begins with a presumed body of knowledge

p1, p2, ..., pk. Each of these statements consists of the facts, and are presumed

true. They are called premises. You wish to deduce a conclusion, called q. We

may represent this as

(p1 ∧ p2 ∧ ... ∧ pk) =⇒ q

We conjunct the body of knowledge together because they all must be true.

An argument is said to be valid if (p1 ∧ ...∧ pk) =⇒ q is a tautology. We could

demonstrate the validity of an argument by writing out a truth table. But note,

we actually do not care about situations when any premise p1, ..., pk is false.

We need to only demonstrate that q follows from when p1, ..., pk are all true.

Observe that if any premise is false, then the deduction trivially becomes true.

Many people13 do not act illogically, they act logically from wrong premises. 13 Debate bro’s, flat earthers, etc

The steps of their argument appear correct, but since they assume an invalid

premise, then they could “argue” the “truth” of any statement. Recall that

an implication is trivially true if its premise is false. For an argument to be

correct, its premises must also be true.

burden of proof

The Rules of Inference

A rule of inference is like a law of thought, in that we may apply it to deduce

some statement from a given collection of premises or other deductions. When

we use a law of thought to manipulate a proposition, such as ¬(p∨q) ≡ (¬p∧¬q),
these laws preserve truth. If its true before, its true after applying the law, and

if it was false before, it will remain false after applying the law.

The rules of inference are less general and more specific, but this allows them

more power in presenting an argument. Combination of premises may assume

the combined premises are true.

We construct a rule of inference in the following syntax. Let p1, ..., pk be the

premises, and let q be the conclusion. Then we may write
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p1

...

pk

∴ q

To mean that from premises p1, ..., pk we may deduce q. The symbol ∴ means

“therefore”.

Modus Ponens

p

p =⇒ q

∴ q

If p, and if p =⇒ q, then we may deduce that q is true. It is not too hard to

show this is a tautology with a truth table as well.

p q p =⇒ q (p =⇒ q) ∧ p ((p =⇒ q) ∧ p) =⇒ q

T T T T T

T F F F T

F T T F T

F F T F T

Let p be the proposition corresponding to “Today is Thursday”. Let p =⇒ q

correspond to “If today is Thursday, then you will go to class”. We may deduce

then that q is true, that “you will go to class”. This is one of the most basic

deductive tools we have as humans. You may interpret p =⇒ q as “actions have

consequences”, and you may interpret p as “actions occur”. So the deduction

of q is that “consequences occur”. It is a rule of inference because the truth

table is a tautology, sure. But it is a good rule of inference because it is often

used in our day-to-day cognitive problem solving and existence.

Modus Tollens

¬q
p =⇒ q

∴ ¬p

Loosely, if p =⇒ q, but q never happened, then p didn’t happen. If p =⇒ q

corresponds to the proposition “If it is Friday then students wear blue”, and

¬q corresponds to “students are not wearing blue”, then we may deduce that

“It is not Friday” is true. You may again interpret p =⇒ q as “actions have

consequences”, and you may interpret ¬q as “consequences didn’t occur”, so

the deduction of ¬p is “actions must not have occured”.

Hypothetical Syllogism

p =⇒ q

q =⇒ r

∴ p =⇒ r
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If p =⇒ q corresponds to the proposition “If you make an A on the final, you

will pass the class” and q =⇒ r corresponds to “If you pass the class, then you

will graduate on time”. We may deduce p =⇒ r, that “If you make an A on

the final, you will graduate on time.” Actions have consequences sure, but those

consequences may be actions for even more consequences. This also displays

that the implication in propositional logic is a transitive relation.

Disjunctive Syllogism

p ∨ q
¬p
∴ q

If we take p ∨ q to mean “Bob brought cake or Alice brought cake” and ¬p
to mean “Bob did not bring cake”. Then it must be the case that q: “Alice

brought cake”.

Addition

p

∴ p ∨ q

If p : “I like dogs”, then p ∨ q :“I like dogs or cats” is certainly true.

Simplification

p ∧ q
∴ p

If p ∧ q means “I like both dogs and cats” then p : “I like dogs” is true.

Conjunction

p

q

∴ p ∧ q

If p :“I like dogs” and if q :“I like cats”. Then p ∧ q:“I like dogs and cats” is

true.

Resolution

p ∨ q
¬p ∨ r
∴ q ∨ r

It is the case that p is always true or always false. So in the case that p is

true, then r must be true, and in the case that p is false, then q must be true.

Either way, q ∨ r must be true since p ∨ ¬p is true.
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Examples

Lets give an example of an argument with several steps and several applications

of the rules of inference. We demonstrate

(¬p ∨ ¬q) =⇒ (r ∧ s)
(r =⇒ t)

¬t
∴ p

1. r =⇒ t (Premise)

2. ¬t (Premise)

3. ¬r (Modus Tollens of 1,2)

4. ¬r ∨ ¬s (Addition of 3)

5. ¬(r ∧ s) (DeMorgan’s Law)

6. (¬p ∨ ¬q) =⇒ (r ∧ s) (Premise)

7. ¬(¬p ∨ ¬q) (Modus Tollens of 5,6)

8. (¬¬p ∧ ¬¬q) DeMorgan’s law

9. (p ∧ ¬¬q) Double Negation

10. p Simplification

Principle of Explosion

Given the laws of arithmetic, you should not be able to correctly deduce that

0 = 1, or anything else incorrect. The laws are harmonious with each other, and

preserve truth. Similarly, the laws given for propositional calculus also preserve

truth.

We demonstrate the Principle of Explosion.14 If there exists any statement 14 https://xkcd.com/704

which is both true and false simultaneously, then every statement is both true

and false simultaneously. Truth is then meaningless. 15 15 In a psychological context, cognitive disso-

nance refers to the mental disturbance people

experience when they realize their thoughts,
cognitions, or actions may be contradictory. The

principle of explosion could be understood as

an application of the propositional calculus to
explain this.

Let p be some single statement such that both p and ¬p are true. Let q

be any possible statement. We will demonstrate that q is true. It could be

anything, that the sun won’t rise tomorrow, that 1+1 = 3, that zebras are and

are not blue.

1. p (Premise)

2. ¬p (Premise)

3. p ∨ q (Addition of 1)

4. q (Disjunctive Syllogism of 2,3)

Important here is that nothing about q was referenced other than it exists. You

could repeat this similarly for ¬q.

https://xkcd.com/704
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Fallacies

Fallacies can include an incorrect application of correct laws of thought. For

example, ((p =⇒ q) ∧ q) =⇒ p is not a tautology because it may be false

when p is false. If p =⇒ q is to mean “If you get into a car accident, you

will die” and q is to mean “You die”. You cannot conclude you got into a car

accident. You may have died from other methods (perhaps a meteor). This is

called the fallacy of affirming the conclusion.

Similarly ((p =⇒ q) ∧ ¬p) =⇒ ¬q is not a tautology. If you do not get

into a car crash, you are not immortal, as you may die of other methods. This

is called the fallacy of denying the hypothesis.

Quantified Statements

The rules of inference may also apply to those statements which are quantified.

Universal Instantiation

∀xP (x)
∴ P (c)

If all men are mortal, then Socrates is mortal.

Universal Generalization

P (c) for any c

∴ ∀xP (x)

Existential Instantiation

∃xP (x)
∴ P (c) for some c

We do not know which c this is true for, only that it is true for some c.

Existential Generalization

P (c) for some c

∴ ∃xP (x)

These rules may seem redundant, but they are necessary when you may syntac-

tically need a quantifier or not.

speech on this more

One of the classic examples of logic is All men are mortal Socrates is a man,

therefore Socrates is mortal

We may formalize this, and express this in formal language. Let Man(·) and
Mortal(·) be two predicates whos variables range over the same universe of

discourse of all objects of being.

• All men are mortal: ∀x(Man(x) =⇒ Mortal(x))
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• Socrates is a man: Man(Socrates)

1. ∀x(Man(x) =⇒ Mortal(x)) (Premise)

2. Man(Socrates) =⇒ Mortal(Socrates) (Universal Instantiation)

3. Man(Socrates) (Premise)

4. Mortal(Socrates) (Modus Ponens of 2,3)



Introduction to Proof

Why Prove Things?

Our goal with mathematics is to seek truth in all forms. The purpose of proof

is to establish the total and convincing truth. It is evident that truth may

only be derived and established from other truths. If we wish to demonstrate

total certainty of a mathematical statement, then we must make some basic

assumptions. These are called Axioms

Definition 0.0.1 (Axiom). An axiom is a statement which may be assumed

true without proof.

Different fields of math use different sets of axioms, and the set of axioms

you use characterizes the math you are working in. In real numbers, we have

axioms like ab = ba, the communitivity of multiplication. Or a(b+ c) = ab+ ac,

distributivity. Usually an axiom is so simple, it is impossible to prove it, and

there is little debate whether or not an axiom is true. It is so simple that

it must be true. The axiomatic method16 is the standard method we use to 16 The axiomatic method began with Euclid over
two millenia ago. He gave five simple axioms
for what we now call Euclidean geometry. For

example the fourth axiom is just “all right angles
equal each other”. From just these five axioms,
he was able fill several volumes with proofs.

Some theorems he proved include the interior
angle sum of any triangle is 180 degrees, the
Pythagorean theorem, and much more. His
thirteen volumes of The Elements has been

translated and studied across civilizations for
over two thousand years.

establish truth. You begin with only axioms and previously established truths.

You perform a sequence of true deductions, and concludes with the statement

to be proven.

Figure 4: Euclid’s construction of the dodecahe-

dron, from Nasir al-Din al-Tusi’s translated copy
of The Elements, 1280 AD.

Definition 0.0.2 (Theorem). A theorem is a statement which is not an axiom,

but has been proven true.

A proof from the axioms involves combining axioms with the laws of thought

(themselves axioms) and other proven theorems. A corollary is a theorem which

follows some more general theorem. A lemma is a tiny helper theorem used to

prove some main theorem. A conjecture is a statement which is unproven. It

may be hard to prove, but a mathematician states it hoping someone else may

prove it some day in the future. There is also a connotation that a theorem

should be interesting. The fact that 1 + 1 = 2 is true, and not an axiom, so it

must be a theorem, but few would call it that.

Universes of Discourse

Without defining what a set is, we implement some common notation for the

universes of discourse.

• The Naturals N = 0, 1, 2, 3, ...

• The Integers Z = ...,−2,−1, 0, 1, 2, ...

• The Rationals Q = a/b where a, b are any integer but b isn’t zero.
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• The Irrationals I any quantity which isn’t rational

• The Reals R = any number with any decimal expansion. Every real is either

rational or irrational.

• The Complex Numbers C = a+ bi where a, b are any reals and i2 = −1.

Different theorems require different techniques. Given a statement, it may

beg for you to use this or that specific technique. You should keep these

techniques like tools in your toolbox, and knowing when to use what tool is a

skill to develop.

Direct Proof

For this section, let the universe of discourse be the natural numbers.

Definition 0.0.3 (Even Number). A number is even if it satisfies the predicate

Even(n) := ∃k[n = 2k]

This is a definition. A number is even if it can be written as two times a

number. It is even if it can be split in two wholes equally. A number is even if

two divides it. Why even bother to prove things? Why not
simply observe that 0 · 0, 0 · 2, 2 · 2, 4 · 2 are all even

and call it a day. A few examples of a theorem
does not constitute a proof, and does not imply
a theorem is true for all a, b. This is especially

true for a statement universally quantified over
an infinite universe of discourse.
Pierre de Fermat was a 17th century French

lawyer and hobbyist mathematician. He noticed
the following pattern:

22
0
+ 1 = 3

22
1
+ 1 = 5

22
2
+ 1 = 17

22
3
+ 1 = 257

22
4
+ 1 = 65537

They are all prime. He reasonably conjectured

that for all n that 22
n
+ 1 is prime. But Euler

showed the very next number in the sequence
was not prime.

22
5
+ 1 = 4294967297 = 641 · 6700417

In fact, the only known values in which 22
n
+ 1

is prime are n = 0, 1, 2, 3, 4. We may observe

a pattern, and predict that such a pattern
may continue, but there are infinitely many

numbers, and we may make only finitely many

observations. Our proof demonstrates truth
for any possible a, b, in the way a few examples

could never.

“The man who has fed the chicken every
day throughout its life at last wrings its neck

instead, showing that more refined views as to

the uniformity of nature would have been useful
to the chicken.” - Bertrand Russell

Definition 0.0.4 (Odd Number). We can correspondingly define the predicate

Odd(n) := ∃k[n = 2k + 1]

Note that a number is odd if and only if it is not even. Odd(n) ≡ ¬Even(n).

Theorem 1. The product of two even numbers is even.

We could write this using the predicate calculus as

∀a∀b[(Even(a)) ∧ (Even(b)) =⇒ (Even(ab))]

We do not often wish to over detail a theorem in terms of predicates and

quantifiers. It can become too cumbersome. Rather, we express them in terms

of natural language. This is a relatively simple statement, but already involves

two quantifiers, a logical and, and an implication. Statements we wish to prove

may be far more complex if written this way. If asked to rewrite a statement

into the propositional and predicate calculus, you should be able to. Otherwise,

just know it is going on in the background. Now let us prove the theorem.

Proof. Let a be an even number. Then there exists a number k such that

a = 2k. Let b be an even number. Then there exists a number l such that

a = 2l. Then ab = (2k)(2l) = 2(2kl). Since we may write ab as two times a

number, it is even.

It is polite that the beginning and end of your proof are denoted in some

way. In a larger body of text, which may contain more rambling thoughts, you

want to make it clear and explicit to the reader where the argument begins

and where the argument ends. Note that this proof actually shows more. It

shows that the product of two even numbers is actually divisible by four. Its

like, twice as even as normal even number. Doesn’t matter. We are tasked with

proving that a product of even numbers was even. Were we to conclude that a
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product of even numbers was divisble by four, it may not be immediate and

clear to the reader that is sufficient for it to be even. The proof should conclude

exactly with the theorem to be proved, for clarity. Lets do some more simple

examples.

Theorem 2. The product of an odd number and an even number is even.

Proof. Let a be an even number. Then a = 2k for some number k. Let b be an

odd number. Then b = 2l + 1 for some number l. Then ab = (2k)(2l + 1) =

2(k(2l + 1)). Since we may write ab as two times a number, it is even.

Theorem 3. The product of an odd number and an odd number is odd.

Proof. Let a be an odd number. Then a = 2k + 1 for some number k. Let b be

an odd number. Then b = 2l+1 for some number l. Then ab = (2k+1)(2l+1) =

4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1. Since we may write ab as two times a

number plus one, it is odd.

Corollary 4. If n is a number and n2 is odd then n is odd.

Recall a corollary is a tiny theorem following some main one. This actually

doesn’t directly follow from theorem 3, but from theorem 3 and the contrapositive

of theorem 1. The product of even numbers is even and the product of odd

numbers is odd. So n2 being odd means that n cannot be even, so it must be

odd.

Proof by Counter Example

If trying to prove a universally quantified statement to be false, such as ∀xP (x),

you can simply find one example c in which P (c) is false, since

¬(∀x(P (x))) ≡ ∃x(¬P (x))

An example in which a statement is false is called a counterexample.

One of the most famous examples of a coun-

terexample involves the dialogue of Diogenes and
Plato. Plato, great man and great mind, had

a school in Athens. He had many students and

much recognition. Diogenes was an eccentric
character who lived in a barrel on the outskirts

of the city. Plato, to his school, attempts to es-

tablish the definition of a man (as in humanity).
Plato asserts that

Man(x) ⇐⇒ ¬Feathered(x) ∧ Biped(x)

All that are humanity are featherless bipeds, and
all that are featherless bipeds are man. Plato
was interested in a dichotomy and hierarchy of

all objects, real or otherwise. To an ancient greek
man, the only things he may have seen include
some sheep, a mountain, a cloud, etc. Everything

is or isn’t a biped, and is or isn’t featherless.
All examples of a biped he may have known

had feathers, except man. As the myth goes,
Diogenes busts into the amphitheatre, raises a
plucked chicken and yells “Behold! A Man!”.

This is a counterexample. Is a plucked chicken
a featherless biped? Yes. Is it a man? Certainly
not. Then

man ⇍⇒ featherless biped

Diogenes displays this counterexample, and

proves Plato wrong.

Figure 5: Diogenes seated with his barrel behind

him, and reading a book while holding a stick
that rests on a geometry book to his right,

Giovanni Jacopo Caraglio, 1526-27

Theorem 5. It is false that every positive number is the sum of two squares.

We could represent this as the negation of ∀n∃a∃b[(n > 0) =⇒ (n = a2+b2)],

but we shouldn’t. To prove that it is false, you simply need to demonstrate a

counterexample where it is false.

Proof. Consider n = 3. For what values a, b could it be the case that 3 = a2+b2?

Since 22 = 4, we know that a < 2 and b < 2. So a, b can only be 0 or 1. Lets

try all possible combinations.

02 + 02 = 0

12 + 02 = 1

02 + 12 = 1

12 + 12 = 2

We only get the possible values of 0, 1, 2. So 3 is a counter example to the

statement, and it is thus, proven false.
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Proof by Contraposition

Recall that we proved using a truth table that the contrapositive of an implica-

tion was equivalent to it.

p =⇒ q ≡ ¬q =⇒ ¬p

To prove an implication. It may then be easier to prove its contrapositive.

Theorem 6. If 5n+ 4 is odd, then n is odd.

Let us try to prove it directly first. Assume 5n+ 4 is odd, and we will try to

prove n is odd. If 5n+ 4 is odd then 5n+ 4 = 2k+ 1 for some k. Moving terms

around, we see that n = (2k− 3)/5. Here we get stuck. Its not even clear if n is

a natural number, let alone an odd one. Lets instead prove the contrapositive.

Proof. We prove the equivalent statement that if n is even, then 5n+ 4 is even.

if n is even, then n = 2k for some number k. If we substitute it into 5n+ 4, we

get 5n+ 4 = 5(2k) + 4 = 2(5k + 2). Since 5n+ 4 can be written as two times a

number, it is even.

Here, observe that the contrapositive was easier to prove. A direct proof of

the theorem may exist, but you want the shortest, clearest proof possible. If

you prove the contrapositive, please write the contrapositive of the theorem for

the reader. Lets do another example.

Theorem 7. If n = ab then a ≤
√
n or b ≤

√
n

This one is also difficult to prove directly, but its a very useful property of

composite numbers. Since n is so general, we don’t really have good information

about a or b to work with, except that they exist. Lets instead prove the

contrapositive.

Proof. Assume that a >
√
n and b >

√
n. We prove that ab ̸= n. If a >

√
n

and b >
√
n then ab >

√
n
√
n = n. So since ab > n, we know ab ̸= n.

We get an interesting corollary. The smallest prime factor of a composite

number is less than or equal to its square root.

Proof By Contradiction

A proof by contradiction is one of the most versatile techniques, and also

may involve some creativity. If you wish to demonstrate some proposition p

is true, you can show the negation of the proposition must be absurd. That

¬p =⇒ (0 = 1). For this reason, it is also called Reductio Ad Absurdum17 17 “Reductio ad absurdum, which Euclid loved

so much, is one of a mathematician’s finest

weapons. It is a far finer gambit than any chess
play: a chess player may offer the sacrifice of

a pawn or even a piece, but a mathematician

offers the game.” - G. H. Hardy, A Mathemati-
cian’s Apology

Your proof should always begin soon after stating the theorem. The first

sentence of your proof should be an acknowledgement that you are about to

perform a proof by contradiction. Traditionally, if you want to prove p, you

may begin with “Assume to the contrary ¬p”. Or sometimes simply “Suppose

not”. It must be made explicit in some way. You should proceed with deduction

applying laws of thought, until you produce the absurdity. The absurdity is a

statement derived as a consequence of ¬p. It aught to be so absurd that the

reader will have no choice but to accept that ¬p must be false. The absurdity

can take on the form of a negation of a premise or the negation of an axiom.

It can take on the form that there is some statement that p ∧ ¬p is true. The
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concluding absurdity should be so absurd, that the reader should gawk. If its

not absurd enough, proceed further in deduction.

demonstrate proof by contradiction works Let c be a contradictory statement

such that ¬c is true. A proof by contradiction of p would then be written as

¬p =⇒ c. Why is proof by contradiction a valid proof technique? Modus

Tollens:

¬c
¬p =⇒ c

∴ p

Lets do a few examples.

Theorem 8. There is no largest number

Proof. Assume to the contrary there was a largest number n. Consider the

number n+ 1. We know n+ 1 is a number when n is a number, but n < n+ 1,

so n was not the largest number, contradiction.

The statement of the theorem is obvious, but take note of the setup and

syntax. The fact it is a proof by contradiction is declared at the beginning. The

absurdity is the negation of a premise.

Theorem 9. If x, y are positive real numbers, then
√
x+ y ̸=

√
x+

√
y

Proof. Assume to the contrary that there exists positive real numbers x, y such

that
√
x+ y =

√
x+

√
y. Then

√
x+ y =

√
x+

√
y (16)

x+ y = (
√
x+

√
y)2 (17)

x+ y = x+ 2
√
xy + y (18)

0 = 2
√
xy (19)

0 = xy (20)

By the zero product property, if xy = 0, then one of x, y must be zero. This

contradicts our assumption that x, y are both positive.

Note again how we negate the implication here. Recall that ¬(p =⇒ q) ≡
p∧¬q. We phrase this negation as there do exist positive real numbers (p), but
√
x+ y =

√
x+

√
y (¬q).

We finish with one more proof and its legend. Pythagoras is well known for

many advancements in mathematics, including the Pythagorean theorem18 He

18 Even though it had been discovered by others,
a few thousand years before him.

led a society, a cult maybe, which believed in numerology. They believed that

all of nature could be explained by either numbers, or ratio of whole numbers.

Today we write 2
3 and understand it as a “part”. They did not. They would

have only interpretted this as 2 : 3, as in two wholes to three wholes, as a ratio.

We may eat 2
3 rds of a pie. They would have understood it as two wholes to

three wholes. Two pies of three pies. Every number they believed was either

whole, or a ratio. The concept of an irrational number was unfathomable to

them. Following the Pythagorean theorem grew an essential question. What

ratio was the hypotenuse of a right triangle with unit side lengths? How long

was the diagonal of a square of side lengths 1?

Following the Pythagorean theorem, we see that 12 + 12 = c2. For what

ratio c could c2 = 2? Today we know that
√
2 can not be rational, it cannot
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be represented as a ratio of whole numbers. Ancient civilizations thought it

might be 577/408 or even 305470/216000, but these are simply approximations.

Pythagoras could not comprehend that an irrational number could exist, since

it contradicted his view of nature. A student19 of his, was able to demonstrate 19 “For Pythagoras, the beauty of mathematics
was the idea that rational numbers (whole

numbers and fractions) could explain all natural

phenomena. This guiding philosophy blinded
Pythagoras to the existence of irrational numbers

and may even have led to the execution of one
of his pupils. One story claims that a young
student by the name of Hippasus was idly toying

with the number
√
2, attempting to find the

equivalent fraction. Eventually he came to realise
that no such fraction existed, i.e. that

√
2 is an

irrational number. Hippasus must have been
overjoyed by his discovery, but his master was
not. Pythagoras had defined the universe in

terms of rational numbers, and the existence
of irrational numbers brought his ideal into
question. The consequence of Hippasus’ insight
should have been a period of discussion and

contemplation during which Pythagoras ought
to have come to terms with this new source of
numbers. However, Pythagoras was unwilling to
accept that he was wrong, but at the same time

he was unable to destroy Hippasus’ argument
by the power of logic. To his eternal shame he
sentenced Hippasus to death by drowning. The

father of logic and the mathematical method had
resorted to force rather than admit he was wrong.
Pythagoras’ denial of irrational numbers is his

most disgraceful act and perhaps the greatest
tragedy of Greek mathematics. It was only
after his death that irrationals could be safely
resurrected.” - Simon Singh, Fermat’s Enigma

that not only do irrational quantities exist, but c =
√
2 must be irrational.

Theorem 10. The number
√
2 is irrational.

Proof. Assume to the contrary that
√
2 = m/n for m,n numbers in reduced

form. The numbers m,n do not share any factors, the ratio has been simplified.

Certainly every rational number can be written in such a reduced form. Since

it is reduced, we know both m,n cannot both be even, so atleast one must be

odd. We may write

√
2 =

m

n
(21)

√
2n = m (22)

(
√
2n)2 = m2 (23)

2n2 = m2 (24)

Since we may write m2 as two times a number, it must be that m2 is even.

Since the square of an odd number is always odd, then m must also be even.

So m = 2k for some k. Then

2n2 = m2 (25)

2n2 = (2k)2 (26)

2n2 = 4k2 (27)

n2 = 2k2 (28)

Since we can write n2 as two times something, n2 is also even, so we know

that n must also be even. But how can both m,n be even? We assumed they

were both reduced. If they are both even, they are not reduced, as they share

the common factor of two. A contradiction.

wording on the foreshadowing

A number is prime if the only numbers which divide it are 1 and itself. The

first few prime numbers are 2, 3, 5, 7, 11, 13, 17... As another famous proof by

contradiction, we present Euclid’s proof of the infinitude of primes.

Theorem 11 (Euclid’s Theorem). There are infinitely many primes.

Proof. Assume to the contrary there are only finitely many prime numbers.

Let them be denoted as p1, p2, ..., pk where pi denotes the ith prime number.

Consider the number

n = (p1 · p2 · ... · pk) + 1

Note that n is not equal to any of the finitely many primes, so by assumption,

it must not be prime. Since it is composite, it has some prime divisor p, which

must be one of p1, ..., pk. But then p divides P = (p1 · ... · pk) and p divides

n = (p1 ·p2 ·...·pk)+1. So p divides n−P = (p1 ·p2 ·...·pk)+1−(p1 ·p2 ·...·pk) = 1.

But no prime number divides into 1, a contradiction.
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Proving If and Only If Statements

Exhaustive Proof

Suppose we want to prove a statement of the form ∀xP (x). If we are lucky

enough that the universe of discourse of x is finite, then we may simply prove

it for each x. If x can only be one of a, b, c, d, then ∀xP (x) = P (a) ∧ P (b) ∧
P (c) ∧ P (d) Lets do a simple example

Theorem 12. If n is a number between two and four, then n2 > n

Proof. We confirm that 22 = 4 > 2 and 32 = 9 > 3 and 42 = 16 > 4.

This obviously doesn’t work in the case that the universe of discourse is

infinite. You are not allowed to have an infinitely long proof. A proof of ∀xP (x)

must itself be of finite length, but assert something which is true for infinitely

many values of x.

Proof by Cases

A theorem may require a trickier proof, in that it may need to be decomposed

into cases. If you wish to prove a statement of the form (p1 ∨ ... ∨ pk) =⇒ q,

it is equivalent to prove (p1 =⇒ q) ∧ ... ∧ (pk =⇒ q). For example, if you

wish to prove a statement about all numbers, you may do it into cases, one

case with the assumption that your number is even, and another case with the

assumption that your number is odd. Each case may imply the conclusion for

very different reasons, and each case may be proven with different techniques

even.

Theorem 13. If n is any number, then n2 + n is even.

Proof. Let n be any number. Then we have two cases if n is even or odd.

• Case 1: If n is even, then n = 2k for some number k. Then n2 + n =

4k2 + 2k = 2(2k2 + 1) which is even.

• Case 2: If n is odd, then n = 2k + 1 for some number k. Then n2 + n =

4k2 + 4k + 1 + 2k + 1 = 2(2k2 + 3k + 1) which is even.

Note that when you break your problem into cases, they must cover the entire

universe of discourse. If you wish to prove something is true for any integer of

Z, it is not sufficient to prove it in the cases that x > 0 and x < 0, since you

have not covered the case that x = 0. When presenting your cases to the reader,

it has to be obvious that the cases cover all possibilities. Famously, the four

color theorem was proved by checking nearly two thousand cases. Along with a

proof of each case, they have to provide a proof that the those were the only

cases which needed to be proven.

Proving Uniqueness

Recall we characterized the uniqueness quantifier as

∃!xP (x) ≡ ∃x(P (x) ∧ ∀y(x ̸= y =⇒ ¬P (y)))
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Proving uniqueness is a two step process. First you show the object exists. Then

you show the object is unique. Usually for the second step, it is done in the

contrapositive. Suppose that there are two objects, both have the property a, b.

Conclude that it must be the case that a = b, and that they are not actually

distinct. It is just one object with two names.

Theorem 14. If x is any nonzero rational number, then there exists a unique

rational number y such that xy = 1.

We are proving that the reciprocal of a nonzero fraction is unique.

Proof. First we show that y exists, and it does so uniquely. Let x be any nonzero

rational number. Then x = a
b with a, b both not zero. Consider y = b/a. Since

x is not zero, its reciprocal is not zero. That xy = a
b
b
a = 1.

Now we show that the reciprocal of a nonzero rational is unique. Suppose

that there are two rational numbers y = c
d and y′ = c′

d′ such that xy = 1 and

xy′ = 1. We show that y = y′. Since 1 = xy = xy′ = 1 we see that xy = xy.

xy =
a

b

c

d
=
a

b

c′

d′
(29)

acbd′ = ac′bd (30)

cd′ = c′d (31)

c

d
=
c′

d′
(32)

y = y′ (33)

Since y, y′ are not distinct, the reciprocal is unique.

Without Loss of Generality

Sometimes, a theorem doesn’t need multiple cases if the cases are all the logically

similar. For example, suppose you were to prove “If x, y have opposite parity

then xy is even”. You don’t need to split this into the two cases that x even

y odd and x odd y even. Since xy = yx, you may simply say “without loss of

generality 20, suppose x is even and y is odd”. Each case is simply a relabeling 20 “Without loss of generality” is often apprevi-
ated as “WLOG” and pronounced wuh-log.of the other where you swap the names of x and y. This is a powerful proof

tool, and you should be careful that you are applying it correctly.

Vacuous Proof

Recall that p =⇒ q is true when p is false or q is true. A proof of an implication

is said to vacuous if it demonstrates p is false. A proof of an implication is said

to be trivial if it demonstrates that q is true.

Theorem 15. Let x be a real number. If x2 + 2x+ 2 ≤ 0 then x100 is even.

Proof. We may factor x2 + 2x+ 2 = x2 + 2x+ 1 + 1 = (x+ 1)2 + 1. A square

is always greater than or equal to zero, so a square plus one is alwasy greater

than or equal to one. Therefore, the implication is vacuously true.

Non-constructive Proof

Suppose we want to prove an existential statement of the form ∃xP (x). We

may simply find a value x from its universe of discourse which satisfies the
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predicate P . As it turns out, this is not necessary. You can prove something

to exist without knowing what it is. This is called a nonconstructive proof. It

demonstrates something must exist without any indication of where it is or how

to find it. This is a correct proof strategy because an existential quantifier only

asserts the existence of something, not that you may know specifically what it

is. Again, we witness the power of proof.

Theorem 16. Some digit of π = 3.14... appears infinitely often.

Proof. Suppose not. Then every digit of π appears only finitely many times.

Then the decimal expansion of π must terminate, which would imply that π is

a rational, contradiction.

Observe how we used the fact that decimal numbers which terminate must be

rational. Any terminating decimal of the form 1.23 may be written as 1 + 23
100 .

Next, note that this proof established that a digit of π does appear infinitely

often. It didn’t establish which digit, or how often, or where it appears. It

simply established exactly and only what it stated. It didn’t give us any method

to even determine what digit appears infinitely often. This is why we may

denote the proof as non-constructive.

Theorem 17. There exists irrational numbers a, b such that ab is rational.

This result should surprise you. If a, b are irrationals, it turns out, you would

be wrong to expect that ab is also irrational. The proof should surprise you

even more. It doesn’t tell us for which irrational numbers a, b is the theorem

true, or even one example. But it does simply assert such a pair of irrationals

must exist.

Proof. Consider
√
2
√
2
. We have two cases, whether or not that

√
2
√
2
is rational

or irrational.

• Case 1: If
√
2
√
2
is rational, then let a = b =

√
2 and we are done.

• If
√
2
√
2
is irrational, then let a =

√
2
√
2
and b =

√
2

ab = (
√
2

√
2
)
√
2 = (

√
2)

√
2
√
2 = (

√
2)2 = 2

In either case, we have asserted that there exist irrational a, b such that ab is

rational.

For the proof, we don’t even know if
√
2
√
2
is rational or irrational! Yet in

either case, we may assert the existence of irrationals a, b with the property

that ab is rational. One of the pairs (a, b) = (
√
2,
√
2) or (a, b) = (

√
2
√
2
,
√
2)

must work. We don’t know which, but we know it must be one of them.

Mathematical Writing

Now that we have seen a few proofs, let us detail exactly what is a proof, and

what is required of it. A proof establishes the mathematical correctness of a

theorem. It is a paragraph, and not a calculation. To write a good proof, you

must employ very clear, and precise technical writing.

There are many more great resources on mathematical writing,21 but here 21 Sections 1,2 of Mathematical Writing by Don
Knuth et al, and How to Write Mathematics by

Paul Halmos.
are few important things to keep in mind.
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• Avoid use of symbols and write precisely. Recall that we proved “the

product of even numbers is even”. This theorem is represented as a concise,

clear, english sentence. It could also be represented by the more formal

proposition

∀a∀b[(Even(a)) ∧ (Even(b)) =⇒ (Even(ab))]

Although this representation is more technical, it is worse. It contains two

quantifiers, three uses of a predicate, and an implication. The examples we

have done so far are simple, but they may get so complicated, that it could

take a page or more to represent them purely logically. A good analogy

is using pseudocode to describe an algorithm, rather than using assembly.

Every proof could be formalized all the way down to pure axioms of logic,

but such a proof would be unreadable and extremely long.22 We did spend a 22 Russell and Whitehead in Principia Mathe-

matica gave a set of axioms for mathematics. Its
over five thousand pages long, and the proof that

1+1 = 2 takes over 350 pages. Their proof is

done fully symbolically.

great deal of time formulating logic just so we could remove ambiguity from

natural language, but a proof is prose. Your proof should be clear enough

that someone else could choose to formalize it if they wanted to spend the

time. Much like how a compiler may turn your readable code into unreadable

machine instruction. This does not mean don’t use equations or formulas,

but don’t only use equations or formulas. Don’t begin a sentence with a

symbol, and use complete sentences. Its okay to use symbols in your proof

drafts. The reader, on skimming a proof will often only glance at equations,

so make sure the remaining part of your proof is intelligible. Avoid using

vague terms, like ”that” or ”it”. Avoid the use of the pronoun “I”. Even

when a proof is authored by a single writer, the pronoun should always be

“we”, in reference to the writer and the reader. It is seductive for you to

want to skip certain tedious steps and use phrases such as “clearly” and

“obviously”. Avoid this whenever possible.

• The Syntax Proofs are commonly templated in the following manner.

Theorem XYZ. The theorem comes before the proof, and is explicitly called

a theorem. The theorem can also be numbered, so reference can be made to

it later (for example, “Hence by theorem XYZ we see that...”)

In between a theorem and a proof, there may contain minimal commentary

on the proof strategy, or the proof idea. If there is too much to say on the

proof strategy, don’t be afraid to repeat yourself, and restate the theorem.

The point is that it is clear to the reader what is about to be demonstrated.

Proof. The beginning of the proof should be denoted in some way. A safe

way is to simply begin with “Proof.”. The first sentence of the proof aught

to detail the proof method. If you are doing a proof by contraction, declare

“Assume to the contrary...”. If you are doing a proof of the contrapositive,

explicitly state the contrapositive for the reader. Finally, denote the end of

your proof in some way, such as in the following box.

A proof must be clearly terminated in some way. This can be with a small

box, or symbol, or by declaring QED.23 23 Quod Erat Demonstrandum, meaning “that
which was to be demonstrated” in Latin

• The Flow A proof is not a calculation, but a demonstration. In prior

mathematics courses, the problems are motivated by determining a solution

to something like the volume of a shape, or root of a polynomial or something.
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Here, we are dealing with a totally different setting. Our goal is not to

discover a solution, but to explain or convince someone of a solution; We are

establishing truth.

The point of the proof is not the theorem, it is about the show. It is the When a mathematician wishes to prove a the-
orem, they write up the proof and circulate it
among the community. Usually, everyone is in

consensus if the proof is correct (or not), but
there are two interesting case studies of when
this didn’t happen.

In 1976, Appel and Haken proved the four color
theorem, but with a catch. There were 1,834
cases and they were only checked by a computer

over thousands of hours. Initially, many argued
this did not constitute a proof, because they had
to trust the computers calculation. The dust has

since settled, and their proof has been widely
accepted, even greatly improved upon.

More recently, there has been interest in the

abc conjecture. In over five hundred pages,
Shinichi Mochizuki had developed something

he calls Inter-universal Teichmüller theory. He
estimates it would take a mathematics grad
student ten years to understand his work. In

another hundred pages, he used his theory
to “prove” the abc conjecture. Despite many
attempts by many people, only a few can claim

to understand his work. Of those who do, some
argue there is an irreparable error in corrollary

3.12. He disagrees, and accepted his own papers

at a journal in which he is editor-in-chief. His
proof is not widely accepted or rejected, but

decisively in limbo, where it may remain for

decades. Even if his proof might be correct, the
root of the controversy lies in his inability to

communicate his ideas effectively.

journey, and not the destination. The proof is a small game between a reader

and a writer. As you read and write proofs, you will wear either of these two

hats. The writer must convince the reader that the theorem is true. The

theorem is declared at the beginning, what is being proved is very explicit.

The proof begins with its outline, and first principles. In an obvious order,

the writer makes one step at a time. For each step, the writer proposes a

deduction to be true, and the reader should convince themselves it is true.

The steps should not be so much of a stretch to lose the reader. If you skip

too many steps, you will quickly lose and upset the reader, rendering the

proof incorrect. You should be doing the proof for them, and not rely on

them to do too much calculation to verify the correctness of your proof. The

steps of the proof should be chronological and obvious. The flow only goes

one way. You should never try to begin with the theorem and work towards

something. Its quite likely you will accidentally assume the theorem to be

proved as a premise, making your proof incorrect.The proof should conclude

with the theorem that was to be proved, but you don’t assert to the reader

that the theorem is true, they should be forced to conclude exactly and only

what you wanted them to. They convince themselves of its truth. If each

step of the proof is correct, then the end of the proof must be correct. The

proof should conclude no sooner and no later than immediately after the

truth of the theorem has been established. If your proof goes on, put this

further commentary or discussion outside the proof. If your proof ends too

soon, then the reader won’t be able to establish the truth of the theorem for

themselves.

Elegance and clarity is very important for a proof. A good proof can

be moving, like poetry, but very much unlike poetry, it is not open to

interpretation. If mathematics is a language, the elegance factor in proofs is

part of the dialect.24 I can’t tell you how to develop this skill, you can only 24 Paul Erdös, the modern father of discrete

mathematics, used to keep a running joke about
“The Book”, one which God keeps which contains

the most elegant proof of each mathematical

theorem. “You need not believe in God but, as a
mathematician, you should believe in The Book.”

- Paul Erdös

develop it for yourself with lots of practice.

There are several common errors in writing proofs.

• Do not begin a proof like“Theorem XYZ is true, this is because....” It is

the readers job to establish the truth of the theorem. Don’t tell them its

true at the beginning. The proof should be a sequence of undeniably true

statements which ends with the theorem proved. More generally, don’t state

or reference things which are not known to be true (yet).

• While a proof in formal logic makes which axioms and premises it uses

explicit, this is not necesarily true in the intuitive use of proof. Often when

a proof is incorrect, the error may not be directly pointed to on the page.

This is what can make hard problems hard to prove.25 Be careful on what

25 I can give you an example. There are maybe
fourty wrong proofs a year that attempt to
resolve P ̸= NP , a very big and famous open

problem in computer science. There was this
(incorrect) paper. The proof relied the practical,

statistical properties of SHA256, a hash function.
But hash functions only provably have those

properties if and only if P ̸= NP . It was
never stated in the proof, but by the fact the
author assumed the hash function had certain

properties, he had assumed P ̸= NP , then used
that to prove P ̸= NP .

mathematical tools you assume you may use, and try to make their use as

explicit as possible.

• This isn’t so much a mistake, but a common negative trait. Many proofs

by contradiction are simply a direct proof in a shell. This is especially true
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when the absurdity reached is just the negation of the base premise. It would

be cleaner to simply remove the shell, and present a direct proof.



Mathematical Induction

Induction is a proof technique which can find itself useful for proving ordered

or recursive properties, especially those which are universally quantified. It is

not simply a way to prove things, but it is a way of thinking.

What is Induction?

Like other proof techniques, it is somewhat templated. But this template is a

little more complex than the others. The reason it is a valid technique is also a

little more complex.

Definition 0.0.5 (Principle of Mathematical Induction). Let Φ(·) be any

predicate over the natural numbers. The Principle of Mathematical Induction

states

(Φ(0) ∧ ∀k(Φ(k) =⇒ Φ(k + 1))) =⇒ ∀nΦ(n)

Every induction proof has two parts.

• The base case must be proven true. For a statement over the naturals, you

would usually prove Φ(0) to be true. What the base case is varies on what

is being proven, and can vary wildly. Some examples we shall see will have

base cases of n = 1, 2, 3 and so on. If you prove a base case of n = 3, then

your statement will only be true for n ≥ 3.

• In the induction step, You assume the induction hypothesis. Let k be

a fixed number, and assume Φ(k) is true. This is then used to prove that

Φ(k+1) must be true. You would usually try to phrase Φ(k+1) as a function

of Φ(k) and other things to deduce its truth.

We will convince you induction is a valid proof technique in two ways. First,

appeal to your intuition. Second, that it is equivalent to a more obvious axiom.

Intuition
“Induction makes you feel guilty for getting
something out of nothing, and it is artificial, but

it is one of the greatest ideas of civilization” -
Herbert Wilf

The classic analogy is an to imagine an infinite row of dominoes. The base case

can be thought of as “the first domino falls over”. The induction step can be

thought of as “If the k’th domino falls over, then the (k + 1)’th domino falls

over”. From there, you should deduce “every domino must fall over”.

Another way to think it that it proves that there is a proof for each n. If

someone wants you to prove to them that Φ(6) is true, you can prove Φ(0) is

true, then you prove Φ(0) =⇒ Φ(1), then Φ(1) =⇒ Φ(2), and so on until you

conclude with Φ(5) =⇒ Φ(6). Since you can do this for any n, then it must be

the case that ∀nΦ(n) is true.
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The Well-Ordering Principle

The Well-Ordering Principle is a fairly basic axiom of set theory. The axioms are

usually chosen to be so simple that no one could imagine to wage an objection.

They are written by lawyers. The Well-Ordering Principle is such an axiom.

Definition 0.0.6 (Well Ordering Principle). Every non-empty subset S ⊆ N
has a least element.

Even if your intuition does not directly convince you that induction is a valid

technique, Your intuition should convince you that the Well-Ordering Principle

has to be true. We prove that they are logically equivalent.

Theorem 18. Mathematical Induction is a valid proof technique if and only if

you believe the Well-Ordering Principle.

Since we take the Well-Ordering Principle as an axiom, this proof should

convince you that induction is valid.

Proof. We will prove both implications of our if and only if.

( =⇒ ) Assume Mathematical Induction is true. Let S ⊆ N be non-empty and

assume to the contrary that S has no least element. Let Φ(n) : {0, ..., n}∩S = ∅.
Since 0 is the least element of N, it must be the case that 0 ̸∈ S, so Φ(0) is true.

Let k ∈ N and suppose Φ(k) is true. Then {0, ..., k}∩S = ∅. If k+1 ∈ S then it

would be the least element of S, so we know {0, ..., k+1}∩S = ∅, so Φ(k+1) must

be true. By induction, since we have proven Φ(0) and ∀k(Φ(k) =⇒ Φ(k + 1))

then it must be true that ∀nΦ(n). But if Φ(n) is true for all n, then S = ∅,
contradicting the assumption that S is non-empty.

( ⇐= ) Assume the Well-Ordering Principle is true, and assume to the contrary

that induction is not a valid proof technique for establishing truth. Then there

is some Φ such that Φ(0) is true and ∀k(Φ(k) =⇒ Φ(k + 1)) is true but

∀n(Φ(n)) is false. Let S ⊆ N be the set of numbers of which Φ is false for.

By the Well-Ordering Principle, there is a least element we shall denote as e.

Since Φ(0) is true, we know e ≥ 1 and e− 1 ∈ N. Since e is the least element

which Φ(e) is false, then Φ(e− 1) must be true. But by our assumption that

∀k(Φ(k) =⇒ Φ(k + 1)), If Φ(e − 1) is true, then Φ(e) would also be true.

Contradiction, Φ(e) cannot be both true and false.

The more important direction is of course, the converse. The Well-Ordering

Principle is an established and intuitive axiom of set theory. If you believe it,

you must believe in induction. 26 26 The Well-Ordering Principle does not hold

over other universes of discourse, such as the

integers, rationals, and reals.

Examples

The best way to learn a technique like induction is not to talk about it, but to

do it. To this end, we will do many diverse examples.

Summations

Theorem 19. Let n be a natural number greater than or equal to one. Then

the sum of the first n numbers is

n∑
i=1

i = 1 + 2 + 3 + ...+ n =
n(n+ 1)

2
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Proof. We proceed by induction on n. Our base case is n = 1, and we verify

that
∑1

i=1 i = 1 = 1·2
2 . Now assume the induction hypothesis, that

k∑
i=1

i =
k(k + 1)

2

We prove that
∑k+1

i=1 i =
(k+1)(k+2)

2 .

k+1∑
i=1

i =

k∑
i=1

i+ (k + 1)

By our induction hypothesis,

k∑
i=1

i =
k(k + 1)

2
so

k+1∑
i=1

i =
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

Since we have shown that
∑k+1

i=1 i =
(k+1)(k+2)

2 , we have proven for all n ≥ 1

that
∑n

i=1 i =
n(n+1)

2 .

This is a classic first induction problem, but it actually need not be proven

by induction.27 Observe the proof structure. We outline the base case with

27 This formula by multiplication was known to
Diophantus in around 120BC. It was probably

known to Pythagoras even earlier. They most

likely had observed the following visual “proof”:

Twice the summation is the area of a rectangle of
dimensions n× (n+ 1).

A second proof, likely a folktale, credits Carl

Friedrich Gauss: “In the 1780s a provincial
German schoolmaster gave his class the tedious
assignment of summing the first 100 integers.

The teacher’s aim was to keep the kids quiet
for half an hour, but one young pupil almost
immediately produced an answer: 1 + 2 + 3 +

... + 98 + 99 + 100 = 5,050. The smart aleck
was Carl Friedrich Gauss, who would go on

to join the short list of candidates for greatest

mathematician ever. Gauss was not a calculating
prodigy who added up all those numbers in his

head. He had a deeper insight: If you “fold” the

series of numbers in the middle and add them in
pairs,1 + 100, 2 + 99, 3 + 98, and so on, all
the pairs sum to 101. There are 50 such pairs,

and so the grand total is simply 50 × 101. The
more general formula, for a list of consecutive

numbers from 1 through n, is n(n + 1)/2. ” -
Brian Hayes in Gauss’s Day of Reckoning

n = 1, since Φ(0) makes no sense here. We also assume for a specific k that

Φ(k). We don’t assume ∀nΦ(n), because this is what we are trying to prove.

Theorem 20. Let n be a natural number greater than or equal to one. Then

the sum of the first n perfect squares is

n∑
i=1

i2 = 12 + 22 + 32 + ...+ n2 =
n(n+ 1)(2n+ 1)

6

Proof. We proceed by induction on n. Our base case is n = 1 and we verify

that
∑1

i=1 i
2 = 12 = 1 = 1(2)(3)

6 . Now assume the induction hypothesis, that

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
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We prove that
∑k+1

i=1 i
2 = (k+1)(k+2)(2k+3)

6 .

k+1∑
i=1

i2 =

k∑
i=1

i2 + (k + 1)2

By our induction hypothesis,

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
so

k+1∑
i=1

i2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1)

6
+

6(k + 1)2

6

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)(k(2k + 1) + 6(k + 1))

6

=
(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6

Since we have shown that
∑k+1

i=1 i
2 = (k+1)(k+2)(2k+3)

6 , we have proven for n ≥ 1

that
∑n

i=1 i
2 = n(n+1)(2n+1)

6 .

Lets do another summation example.

Theorem 21. Let n be a natural number greater than or equal to one. Then

the sum of the first n cubes is equal to the sum of the first n numbers, squared.

n∑
i=1

i3 =

(
n∑

i=1

i

)2

Proof. We proceed by induction. By a previous theorem, we have a closed form

for the sum of the first n numbers. It is sufficient then for us to show that the

sum of the first n cubes is

(
n∑

i=1

i

)2

=

(
n(n+ 1)

2

)2

=
n2(n+ 1)2

4

Our base case is n = 1 and we verify that
∑1

i=1 i
3 = 13 = 1 = 12(2)2

4 . Now

assume the induction hypothesis, that

k∑
i=1

i3 =
k2(k + 1)2

4
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We prove that
∑k+1

i=1 i
3 = (k+1)2(k+2)2

4 .

k+1∑
i=1

i3 =

k∑
i=1

i3 + (k + 1)3

By our induction hypothesis,

k∑
i=1

i3 =
k2(k + 1)2

4
so

k+1∑
i=1

i3 =
k2(k + 1)2

4
+ (k + 1)3

=
k2(k + 1)2

4
+

4(k + 1)3

4

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4(k + 1))

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

Since we have shown that
∑k+1

i=1 i
3 = (k+1)2(k+2)2

4 , we have proven for n ≥ 1

that
∑n

i=1 i
3 = (

∑n
i=1 i)

2
.

Recursive Algorithms

A proof of correctness of an algorithm is a proof that what the code outputs

is exactly what the mathematical problem it claims to solve is. For example,

consider the following recursive pseudocode on input n to print the factorial

n! = n · (n− 1) · ... · 2 · 1.

def factorial(n):

if n == 0: return 1

else return n * factorial(n-1)

A lot of algorithms are clear, and their proofs of correctness are trivial. Recursive

algorithms pose an exception to this. Induction is a technique that works

extremely well for proving the correctness of recursive algorithms, because if the

algorithm only calls itself on smaller inputs, you may assume those are correct

by induction.

Theorem 22. Let n be a natural number. The program on input n correctly

returns n!.

Proof. We proceed by induction on n. Our base case is n = 0, and we see that

the algorithm does correctly return 1. Assume the induction hypothesis, that

on input k that our algorithm outputs k!. We argue on input k + 1 that our

algorithm outputs (k + 1)!. Consider the algorithm on input k + 1. Notice

the recursive call parameter is k + 1− 1 = k. The recursive call made is then

factorial(k). By the induction hypothesis, this correctly returns k!. Our

program then returns (k + 1) · k! = (k + 1)! as desired.
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Convex Polygons

Definition 0.0.7 (Convexity of a Polygon). A polygon is convex if none of its

interior angles have degree greater than 180 degrees.

More generally, a shape is convex if given any two points in the interior, the

shortest distance between them is also contained within the shape.

Theorem 23. Given a convex n-gon with n ≥ 3, the interior angle sum is

equal to (n− 2) · 180 degrees.

Proof. We proceed by induction on n. Our base case is that n = 3, which is a

triangle. It is well known that a triangle has interior angle sum of (3− 2) · 180 =

180 degrees.28 Now assume our induction hypothesis, that any convex k-gon

28 This can be proven from the Axioms of Eu-

clidean geometry, and is known to be equivalent
to Euclid’s fifth postulate.

has interior angle sum of (k − 2) · 180 degrees. Consider any convex k + 1-gon.

We will argue it has interior angle sum of (k− 1) · (180) degrees. Let the interior
angles of our convex k + 1-gon be denoted as a1, ..., ak+1. We wish to compute

a1+a2+a3+ ...+ak+1. Draw a line segment between a1, a3. This will partition

the convex k + 1-gon into a convex k-gon and a triangle. Our newly formed

line segment divides angles a1 and a3. Let these splits be denoted as a1 = b+ c

and a3 = d+ e. Notice that a2, b, d are the interior angles of our triangle, so

a2 + b+ d = 180. Similarly, notice c, e, a4, ..., ak+1 are the interior angle sum of

our convex k-gon. By the induction hypothesis, the interior angle sum of our

convex k-gon is (k − 2) · 180 degrees, so the interior angle sum of our convex

k + 1-gon is

a1 + a2 + a3 + a4 + ...+ ak+1 =

(b+ c) + a2 + (d+ e) + a4 + ...+ ak+1 =

(a2 + b+ d) + (c+ e+ a4 + ...+ ak+1) =

180 + ((k − 2) · 180) =
(k − 1) · 180

By induction, we may now conclude that the interior angle sum of a convex

n-gon is (n− 2) · 180 degrees.

Tilings

A triominoe is a tetris piece of three unit squares in the shape of an L. We

may say a board is “tiled by triominoes” if there exists a way to place only

triominoes to cover every space of the board and no two pieces overlap.

Theorem 24. Let there be a board of dimensions 2n × 2n with one quadrant

removed. For all n, any such board can be tiled by triominoes.

Proof. We proceed by induction on n. Our base case is n = 1. Our board is

a 2 × 2 square with one square removed, and may be tiled perfectly by one

triomino. Now assume that a board of dimension 2k × 2k with one quadrant

removed may be tiled by triominoes. We will prove there is a tiling of a board

of dimension 2k+1 × 2k+1 with one quadrant removed.

Consider a board of dimension 2k+1 × 2k+1 with one quadrant removed. We

may split this board into four disjoint areas as per our diagram. Observe that

each area is exactly a board of dimension 2k × 2k with one quadrant removed.

By the induction hypothesis, each of these four areas has a tiling, so we may
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simply compose our tilings to create one larger tiling. Then this is a tiling of a

board of dimension 2k+1 × 2k+1 with one quadrant removed. We have proven

for all n that a board of dimensions 2n × 2n with one quadrant removed can be

tiled by triominoes.

We don’t really understand theorems unless we can understand their proofs.

The proofs explain why the theorems should be true. Here, the proof gives us a

little bit of explanatory power. Suppose someone requested you tile a 16× 16

board with one quadrant removed using 43 triominoes. Solving just this one

problem may be quite tedious and annoying. The proof by induction solves

infinitely many boards, and from the proof, we may extract specific answers.

Again, we witness the power of proof, and induction specifically. One problem

may be hard, infinitely many problems may be easy. The proof motivates the

solution.

Figure 6: a 16 × 16 board with one quadrant
removed tiled by 64 triominoes

Theorem 25. Let there be a board of dimensions 2n × 2n with any one square

removed. For all n, any such board can be tiled by triominoes.

Proof. We proceed by induction on n. Our base case is n = 1. Our board is

a 2 × 2 square with one square removed, and may be tiled perfectly by one

triomino. Now assume that a board of dimension 2k × 2k with any possible one

square removed may be tiled by triominoes. We will prove there is a tiling of a

board of dimension 2k+1 × 2k+1 with any one square removed.

Consider a board of dimension 2k+1 × 2k+1 with some one square removed.

We may split this board into four disjoint areas as per our diagram. This missing

square must fall into one of the four disjoint areas. By the induction hypothesis,

the quadrant with this missing square is a board of dimension 2k × 2k with

one square removed, and thus there exists a tiling of it. The remaining three

quadrants are a board of dimension 2k × 2k with one quadrant removed, and

thus by our previous theorem, there exists a tiling of it. We may compose these

tilings to tile the entire board of dimension 2k+1 × 2k+1 with some one square

removed. We have proven for all n that a board of dimensions 2n × 2n with

any one square removed can be tiled by triominoes.

Strong Induction

Definition 0.0.8 (Strong Principle of Mathematical Induction). Let Φ(·) be
any predicate over the natural numbers. The Strong Principle of Mathematical

Induction states

(Φ(0) ∧ ∀k((Φ(0) ∧ ... ∧ Φ(k)) =⇒ Φ(k + 1))) =⇒ ∀nΦ(n)

Strong induction is like a bigger hammer. In our induction step, instead

of assuming an induction hypothesis Φ(k) and using only that to conclude

Φ(k + 1), with strong induction, you get a strong induction hypothesis. For

i a natural number with 0 ≤ i ≤ k you may assume that Φ(i) is true. If you

think of induction like one domino knocking over the next, strong induction

is analogously several dominoes in the past knocking over the next. Strong

induction may be necessary when the dominoes are not arraigned in a straight

line, and the ninth domino may require force from the third, fifth, and eighth.

Let us proceed with some examples. We emphasize the diversity of ways you

can apply strong induction.
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Theorem 26. Let {an} be a recursively defined sequence. Let a0 = 0, a1 = 1,

and for n ≥ 2 let

an = 2an−1 − an−2 + 2

We prove for all natural numbers n that

an = n2

Proof. We proceed by strong induction on n. We verify our base cases n = 0, 1

with 02 = 0 = a0 and 12 = 1 = a1. Now assume our induction hypothesis. For

all natural numbers i with 0 ≤ i ≤ k that ai = i2. We prove that ak+1 = (k+1)2.

ak+1 = 2ak − ak−1 + 2

By our strong inductive hypothesis, ak = k2 and ak−1 = (k − 1)2

ak+1 = 2(k2)− (k − 1)2 + 2

ak+1 = 2k2 − (k2 − 2k + 1) + 2

ak+1 = k2 + 2k + 1

ak+1 = (k + 1)2

as desired.

Theorem 27 (Fundamental Theorem of Arithmetic). Every positive number

n ≥ 2 has a unique prime factorization.

To prove uniqueness, we need to first show that every number n ≥ 2 can be

written as a product of primes. Then we must show that this factorization is

unique.

Proof. We first prove that every number may be written as a product of primes.

We proceed by induction on n. Our base case is n = 2. As 2 is prime, n may

be written as a product of primes, and the base case is complete. Now assume

for all natural numbers i with 2 ≤ i ≤ k that i can be written as a product of

primes. We show k + 1 can be written as a product of primes. We have two

cases.

• If k + 1 is prime, then we are done, as every prime number is a product of

primes.

• If k + 1 is not prime, then k is composite, so there exists a, b such that

k + 1 = ab with a ≠ 1 and b ≠ 1. We see this implies that a < k + 1 and

b < k + 1. By our strong induction hypothesis, a, b may each be written as a

product of primes, so ab = k + 1 is a product of products of primes.

Next we will show that the prime factorizations must be unique. Let n be

a number with n ≥ 2, and suppose to the contrary that n has two distinct

prime factorizations. Then there exists primes p1, ..., pk, q1, ..., qk such that

n = p1 · ... · pk and n = q1 · ... · ql. Since these prime factorizations must differ

by assumption, there is a pi which does not equal any qj . Observe that since

pi | n, then pi | (q1 · ... · qn). So there must exist some j such that pi | qj . Since
qj is prime, the only numbers which may divide into it are one and itself, and

since pi is not one, it must be the case that pi = qj , contradiction.
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Fibonacci Numbers

Theorem 28. Let n be a natural number. Then the nth Fibonacci number Fn

is strictly less than 2n.

Proof. We proceed by induction on n. Our base case is n = 0, and we see that

F0 = 0 < 1 = 20. Now assume our strong induction hypothesis: For all natural

numbers i with 0 ≤ i ≤ k that Fk < 2k. We prove that Fk+1 < 2k+1.

Fk+1 = Fk + Fk−1

By our strong inductive hypothesis, Fk < 2k and Fk−1 < 2k−1

Fk+1 < 2k + 2k−1

Fk+1 < 2k−1(2 + 1)

Fk+1 < 2k−1(2 + 2)

Fk+1 < 2k−1(4)

Fk+1 < 2k+1

We may then conclude for all natural numbers n that Fn < 2n.

A proof by induction is very much unlike a calculation, in which you are

trying to determine the answer, usually a quantity. In order to do a proof

by induction, you must have something to take as an induction hypothesis.

Suppose we wish to know a closed formula for the Fibonacci numbers. We start

with an upper bound, and try to prove it. Then we examine the proof, and see

how much “slack” we have in our overestimate. Could a proof by induction

succeed to show Fn < 20.9n? What about Fn < 20.5n? What about Fn < 2n/2?

The first two proofs will succeed, the third will fail. Just because a proof of a

theorem fails does not imply that its negation must be true. But it can guide

your intuition, with truth discovery as a procedure.

We have shown previously you can use strong induction to prove closed

formulas of recursively defined sequences. Today we prove a closed formula of

one of the most popular recurrences, the Fibonacci numbers. Defined via the

recurrence

Fn = Fn−1 + Fn−2

with two base cases F0 = 0, F1 = 1. You may surprised to know that it has a

closed form. The reason you’ve never been taught the closed form is because it

is very complicated looking.

Theorem 29 (Binet’s Formula). Let n be a natural number and Fn the n’th

Fibonacci number. Then

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

(34)

Before we prove the correctness of this formula, we will need a small lemma.

Lemma 30. For φ = 1+
√
5

2 and ψ = 1−
√
5

2 These two numbers satisfy φ2 = φ+1

and ψ2 = ψ + 1

Proof. Notice that φ,ψ are the two roots of x2 − x− 1 = 0 by the quadratic

formula, and thus satisfy x2 = x+ 1.
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Proof. We have two bases for n = 0, 1 which we now verify. We want to prove

F0 = 0 and F1 = 1.

F0 =
1√
5

(
1 +

√
5

2

)0

− 1√
5

(
1−

√
5

2

)0

=
1√
5
− 1√

5
= 0

F1 =
1√
5

(
1 +

√
5

2

)1

− 1√
5

(
1−

√
5

2

)1

=
1 +

√
5− 1 +

√
5

2
√
5

=
2
√
5

2
√
5
= 1

Now assume by strong induction that the formula is correct for 0, 1, 2, ..., k. We

prove that it is true for k + 1. We prove that Fk+1 = 1√
5
φk+1 − 1√

5
ψk+1

Fk+1 = Fk + Fk−1 = by our strong induction hypothesis(
1√
5
φk − 1√

5
ψk

)
+

(
1√
5
φk−1 − 1√

5
ψk−1

)
=(

1√
5
φk +

1√
5
φk−1

)
+

(
− 1√

5
ψk − 1√

5
ψk−1

)
=

1√
5
φk−1(φ+ 1)− 1√

5
ψk−1(ψ + 1) =

1√
5
φk−1(φ2)− 1√

5
ψk−1(ψ2) =

1√
5
φk+1 − 1√

5
ψk+1 =

We have therefore proved that

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

This is the power of proof by induction, proof in general. We have absolute

certainty of the correctness of the formula. It doesn’t matter if we know how

to get the formula, we can prove that we know for certain it is right. This is a

very weird formula, yet we know it is correct, even if we can’t explain where it

comes from!29 29 Proving the correctness of this formula is one
thing, but determining what this formula was

first is also not too hard, if you know a little

linear algebra.Structural Induction

Induction is a really powerful technique. We have so far applied it obviously

over sequences denoted by the natural numbers, but you can apply it in many

other cases where induction might not be your first guess. You can perform

induction, structurally. You just need to find a way to induct over the objects

you want.

Propositional Logic

Theorem 31. The truth value of a proposition is only dependent upon the

propositional variables which appear in it.

In order to prove such a thing by induction, we need a more formal definition

of what a proposition is.
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Definition 0.0.9. A proposition is defined recursively as:

• Propositional variables are propositions p1, p2, p3, ...

• If B is a proposition then A ≡ (¬B) is a proposition.

• If B,C are propositions then A ≡ (B ∧ C) is a proposition.

• If B,C are propositions then A ≡ (B ∨ C) is a proposition.

• noting else is a proposition

This makes propositions “well-formed” for us to do math on them. Recall we

do not need implications or biconditionals, as we may represent these with and,

or, and not still. Formalizing the propositions to only look like those which are

well formed allows us to define the complexity of a proposition as follows.

Definition 0.0.10. The complexity of a proposition is the the maximum number

of steps 1-4 which must be applied in order to write it. Let A be a proposition,

and let c(A) denote the complexity of the proprosition.

• If A is a propositional variable then c(A) = 0

• If A is a proposition of the form A ≡ (B ∧ C) or A ≡ (B ∨ C) then

c(A) = max(c(B), c(C)) + 1

Now that we have something nice and natural number like, the Well-Ordering

Principle applies, and we have something to induct over. Now we proceed with

proving that the truth of a proposition is dependent only on the propositional

variables which appear in it.

Figure 7: The complexity of a proposition can
be thought of as the maximum depth of the tree

to parse it. Since p ⇐⇒ q may be written
well-formed as (((¬p) ∨ q) ∧ ((¬q) ∨ p)), the
complexity of this formula is 3.

Proof. We induct on the complexity of the propositions. Our base case is when

a proposition has complexity zero, and is only a propositional variable. A

proposition which is only a propositional variable is true when its propositional

variable is true, and is false when its propositional variable is false, so its truth

value is only dependent on its propsitional variable. Assume the induction

hypothesis, any proposition of complexity k has its truth value dependent only

its propositional variables. Let A be a proposition such that c(A) = k + 1. We

have a few cases:

• Case 1: If the last step in construction of A was a negation. Then there

is a proposition B with c(B) = k such that A ≡ ¬B. By the induction

hypothesis, B has its truth only determined by its propositional variables.

By our definition of negation, A is true when B is false and A is false, when

B is true, so the truth of A is entirely determined by the truth of B. Since

the propositional variables of A are the propositional variables of B. The

truth value of A is determined only by its own propositional variables.

• Case 2: If the last step in the construction of A was a conjunction. Then there

are propositions B,C with c(B) ≤ k and c(C) ≤ k such that A ≡ (B ∧ C).
By our strong induction hypothesis, the propositions B,C have their truth

value determined only by their propositional variables. By definition of

conjunction, A is true when B and C is true, and A is false when B or C is

false. Therefore, the truth of A is entirely determined by the truth of B and

C. Since the propositional variables of A are the propositional variables of

B and C. The truth value of A is determined only by its own propositional

variables.
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• Case 3: If the last step in the construction of A was a disjunction. Then there

are propositions B,C with c(B) ≤ k and c(C) ≤ k such that A ≡ (B ∨ C).
By our strong induction hypothesis, B,C have their truth value determined

only by their propositional variables. By definition of disjunction, A is true

when B or C is true, and A is false when B is false and C is false. Therefore,

the truth of A is entirely determined by the truth of B and C. Since the

propositional variables of A are the propositional variables of B and C. The

truth value of A is determined only by its own propositional variables.

In all cases, the truth value of A is entirely determined by its propositional

variables.

Binary Trees

Lets do just one more simple example

Definition 0.0.11. A binary tree is full if every node has two or zero children

Definition 0.0.12. A binary tree is complete if all leaves are at the same level.

A binary tree is full and complete if it looks like the textbook picture of a

generic binary tree, all leaves at the same, last level and no leaves are missing.

Theorem 32. A full complete binary tree of depth k has 2k leaves

Although this can be proved by a simple counting argument, for demonstra-

tion, we proof it by induction

Proof. We proceed by induction on the depth of the binary tree. Our base case

is on binary trees of depth zero. A depth zero full and complete binary tree has

one leaf, which is also the root. We see that 20 = 1 and the base case is proved.

Now assume it is true for binary trees of depth k − 1. We prove it is true for

binary trees of depth k. Consider a full and complete binary tree of depth k. If

you delete the root, you have two full and complete binary trees of depth k − 1.

Notice that we haven’t touched a leaf, so the number of leaves are the same.

By the inductive hypothesis, These two binary trees of depth k − 1 have 2k−1

leaves each, so the number of leaves of our depth k tree was 2k−1 + 2k−1 =

2(2k−1) = 2k.

Some Induction Mistakes

We consider a wrong example of a proof by induction.

Theorem 33 (Not a real theorem). All horses are the same color

Not a Proof. We proceed by induction on the number of horses. Our base case

is when there is one horse. Certainly, this one horse is the same color as itself.

Now assume the induction hypothesis, any collection of k horses must all have

the same color. Consider a collection of k + 1 horses, and suppose they are

denoted like h1, h2, ..., hk, hk+1. Consider the group of horses h1, ..., hk. By

our induction hypothesis, all these horses have the same color as each other.

Consider the group of horses h2, ..., hk+1. By our induction hypothesis, all these
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horses have the same color. Since h2 has the same color as all of h1, ..., hk,

and also has the same color as h2, ..., hk+1, then h1, ..., hk+1 all have the same

color.

The error is subtle. Before you read on to what the bug in the proof is, try

to find it for yourself.

The proof actually fails for n = 2. By splitting h1, ..., hk+1 into two collections

of size k, we impicitly assume there was overlap, but there is no overlap when

n = 2. Often times, the errors which make a proof incorrect will not be spoken

aloud to be pointed at, but will be hidden by the presentation choices the writer

has made. The assumption this overlap exists is incorrect, but it was also never

stated.

Both the base cases and induction step must be present for the proof to be

correct. Consider the following incorrect proof.

Theorem 34 (Also not a real theorem). Let n be a natural number. Then

n(n+ 1) is odd.

Also Not a Proof. Our base case n = 0 is trivial so assume the induction

hypothesis, that k(k+1) is odd. So there exists an l such that k(k+1) = 2l+1.

We prove (k + 1)(k + 2) is odd.

(k + 1)(k + 2) = k(k + 1) + 2(k + 2)
IH
= (2l + 1) + 2(k + 2) = 2(l + k + 2) + 1

Since we may write (k + 1)(k + 2) as two times a number plus one, it is odd.

We have proven for all n that n(n+ 1) is odd

The error lies in the fact the base case is obviously false! We were still able

to correctly prove the induction hypothesis, but it was vacuous anyway, so it

doesn’t even matter.

Writing Proofs by Induction

Writing base cases is usually uninteresting and procedural, but please do not

skip them. Do not be tempted to declare it to be trivial and unworthy of your

words. As you have seen, if you have a successful induction step, but no base

case, you have nothing. In proofs by strong induction, determining the number

of necessary base cases can be nontrivial. The induction hypothesis should

“kick in” right after the last base case.

Proof by induction only applies to infinite universes of discourse in which

the infinite goes “one way”. The Well-Ordering Principle should give you

this intuition. The integers, rationals, and reals do not have a Well-Ordering

Principle. You can still perform induction on theorems over these universes

of discourse, but it must be in a well-ordered way. Induction can be used to

prove limits and convergence, theorems about taylor series of functions and

more. Induction could in theory be done over the integers if done twice in both

directions.

When to choose between induction and strong induction is a skill to develop.

The fibonacci and recurrence problems should obviously jump out that you

need strong induction, because the problem is naturally defined not from only

the previous term, from from the last two previous terms. In the rare case you

can apply both induction and strong induction, it is usually more elegant to use

the simple form of induction. Consider the convex polygon example. We used
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simple induction, but we could have actually done strong induction. Instead of

decomposing a k+1-gon into a k-gon and a triangle, we could have decomposed

it into a (k −m+ 2)-gon and an m-gon, for any 3 ≤ m ≤ k − 1. By a strong

induction hypothesis, these would both be convex and have the required interior

angle sums, but the arithmetic following would be extremely ugly and tedious,

as well as the explanation of correctness.

When writing a proof by induction, the template is a little more specific and

other proof strategies. Here is some well rounded advice:

• You may denote the base cases and induction step separately. Do the base

case before you do the inductive step.

• Specify that you are doing induction, and if you are doing strong induction.

This can be done by beginning the proof with “We proceed by induction on

n” or “We proceed by strong induction on n”.

• Specify what you are actually inducting over. Sometimes a problems will have

many variables, and you should specify in which direction is the induction

going. It won’t always be over the variable denoted by n. Sometimes, its the

number of steps of a computation, or dimensions of space, or complexity of a

formula.

• Be careful, especially in strong induction, that you do not assume as your

induction hypothesis that ∀kΦ(k). This is what you are trying to prove.

Your induction hypothesis is assumed for some k. To emphasize this, in all

our examples, we have inducted over the variable k, and left n to be used in

the last statement.

• In the induction step, when demonstrating Φ(k) =⇒ Φ(k+1), explicitly say

what the induction hypothesis Φ(k) actually is in english. Then explicitly

say what Φ(k + 1) is, and that you will prove it.

• It is impolite to end a proof on a calculation. Most other kinds of proofs won’t

have this problem but a lot of induction proofs do end this way. What you

can do is simply repeat the theorem for the reader, perhaps like “Therefore

we have shown ∀nΦ(n) for whatever Φ(n) is in english.



Set Theory

There exists many kinds of mathematical structures, numbers are a common ex-

ample. Today we will describe sets. Sets are so essential, all other mathematical

theories can be derived from sets.

Basic Set Notation

Sets are simply a collection of other mathematical objects from some understood

universe of discourse Ω. If the universe of discourse is itself sets, then sets may

contain other sets even. We denote the beginning and ending of a set by “{”
and “}”. An example of a set is {2, 3}. This set contains two elements, which

are the numbers 2, 3. We may write 2 ∈ {2, 3} to mean “two is an element of

the set”. Here ∈ is read as “is an element of” or simply “in”.
30 30 Today we understand x ∈ A to mean that “

x is an element of the set A”, as in A is some

container or collection, and x is “in” this box.
The original history of this symbol (∈) is a
stylized e from the greek word ὲστ ί, which most

literally translates to “is”. The original meaning
of x ∈ A was not that “x in A”, rather “x is A”.
It was much more like a type declaration in a

programming language! We use set theory much
more than to declare universes of discourses of

variables now.

Sets do not contain duplicates of elements. {2, 2, 3} is not a set, but a multi

set, which we will not discuss. A set is also not ordered or even necessarily

orderable. A computer is a highly structured object, but a set is simply an

association between objects.

Sometimes we use the ellipses to denote continuation of a pattern. For

example {1, 2, 3, ..., 99, 100}. Here, this set has 100 elements, but we describe it

simpler. As another example, {2, 4, 6, ..., 98, 100} has only the even numbers

between 2 and 100 inclusive. Note that we don’t have to have a termination,

and sets are allowed to be infinite. We describe N as 0, 1, 2, ... but it really is a

set {0, 1, 2, 3, ...}. Lets define a few large sets:

Figure 8: A set which contains two elements, a
cat, and a set containing a cat.

• N = {0, 1, 2, ...}

• Z = {...,−2,−1, 0, 1, 2, ...}

• N+ = Z+ = {1, 2, 3, 4, ...}

These are some common universes of discourse, and in fact, every universe of

discourse is a set. Previously, when we wrote

∀x∃y[Φ(x, y)]

we may specify what possible values x, y may quantify over using this set

notation as

∀x ∈ X ∃y ∈ Y [Φ(x, y)]

where X,Y are some sets.
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Set Builder Notation

We were able to define N,Z so far, but why not Q? Turns out it is not so

easy to describe the rationals by listing out a few elements. Which one comes

first? What sequence could possibily enumerate all of them? We instead take a

different strategy.

Definition 0.0.13 (Axiom of Comprehension). Let Φ be any predicate and let

Ω be any universe of discourse. Then

{x ∈ Ω | Φ(x) }

is a set.

Where Φ(x) is a predicate to enforce conditions on x. This is called set

builder notation. Instead of listing elements in some possibily ambiguous

pattern, we define a set to contain exactly and only the elements which satisfy

some predicate. Given this, we can easily define the rationals:

Q =
{a
b
| a, b ∈ Z and b ̸= 0

}
The left, before the bar may be understood as the syntax and representation

of objects in this set, as well as the universe of discourse. Right of the bar are

the conditions to define this set. Here are some other examples of set builder

notation.

• {n ∈ N | 1 < n < 10} = {2, ..., 9}

• {n ∈ Z | n ≥ 0} = N

• {n | n ∈ N or − n ∈ N} = Z

• R You can suppose that the definition of a real number is one with any

possible decimal expansion. 31 31 Construction of the reals from axiomatic
set theory is very difficult, but technically
possible. It is far out of scope of what we want

to study, which is the discrete. You could try to
form a restriction of the complex numbers like

R = {a + bi ∈ C | b = 0}. Unfortunately, this

would be circular, as the complex numbers are
defined as an extension of the reals.

• C = {a+ bi | a, b ∈ R and i2 = −1}

Empty Set

There exists a set with no elements, we write it as {} or ∅.32 This is called the 32 This notation was coined by Bourbaki, a

secretive pseudoanonymous collective of math-
ematicians who have influenced much of the
way mathematics is presented today. They had
high standards for proof and rigor, and avoided

illustrations.

empty set. The empty set is not defined, but you can use comprehension with

a predicate which is unsatisfiable to construct it. Let Φ(x) = ¬(x = x). Then

{x ∈ Ω | ¬(x = x)} = ∅.

Intervals

You may be familiar with interval notation in calculus, like (a, b]. We can define

these using set builder notation

• (a, b) = {x ∈ R | a < x < b}

• [a, b) = {x ∈ R | a ≤ x < b}

• (a, b] = {x ∈ R | a < x ≤ b}

• [a, b] = {x ∈ R | a ≤ x ≤ b}
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Equality of Sets

Definition 0.0.14 (Axiom of Extensionality). For any two sets A,B ⊆ Ω

A = B ⇐⇒ ∀x(x ∈ A ⇐⇒ x ∈ B)

Two sets are equal if and only if they have the same elements.

This “sameness” of their elements are defined up to the definition of equality

used in the universe of discourse. A set is defined by its elements, it is only its

elements.

Subsets and Supersets

Definition 0.0.15. For two sets A,B, we say A ⊆ B (A is a subset of B) if

∀x(x ∈ A =⇒ x ∈ B)

We may also define the relations ⊊ or ⊂ to mean

A ⊊ B ⇐⇒ (A ⊆ B) ∧ (A ̸= B)

This is read as “A is a proper subset of B” or “A is a strict subset of B”. We

may also say that A is a superset of B (A ⊇ B) if B ⊆ A. We can describe our

common universes of discourse as subsets of each other.

N+ ⊊ N ⊊ Z ⊊ Q ⊊ R ⊊ C

As another example, given the way we have defined intervals, every interval is a

subset of R. Some intervals are subsets of each other.

(a, b) ⊊ [a, b] ⊊ (a− 1, b+ 1)

Notice that not all sets are comparable. It is true for every number that

exactly one of (x < y), (x > y), (x = y) is true, the numbers are totally ordered.

Not true for sets. Consider the sets A = {1, 2, 3}, B = {3, 4, 5}. They certainly

are not equal, and both A ⊆ B and B ⊆ A are false. Numbers are totally

ordered, sets are partially ordered. This generality gives set theory a lot of

expressive power. Number theory can only express the parts of mathematics

which happen to be totally ordered. Sets can express that, and also much more.

Cardinality

The cardinality of a set is the number of elements it has. It is either a natural

number or infinity. The set {1, 2, 3, 4} has only four elements. Sometimes

sets have an infinite number of elements, so the cardinality of N is denoted

as infinity.33 The empty set has no elements, so its cardinality is zero. For 33 All three element sets have the same “three-

ness”, but not all infinite sets have the same
“infiniteness”. Some infinities are greater than
others. We will not discuss this further. Discrete

mathematics is the study of discrete objects. We
will have heavy attention on finite sets.

S any set, we write |S| to mean its cardinality. Although |N| = ∞, we know

|{N}| = 1. The set {N} is a set containing one element. That element is itself

a set, containing infinitely many elements. A set may itself be a collection of

elements, or an element to be collected.

Set Operations

A set operation takes two sets and produces a third. Given sets, you can

combine them in many diverse and creative way to create even more interesting

sets. We detail several of the most basic set operations.
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Union

Definition 0.0.16. Let A,B ⊆ Ω. We define A ∪B to be

A ∪B = {x ∈ Ω | x ∈ A or x ∈ B}

The union of two sets is a new set containing all the elements of both parts.

• {1, 2, 3, 4} ∪ {1, 5, 7, 8} = {1, 2, 3, 4, 5, 7, 8}

• N ∪ Z = Z

• Q ∪ I = R

It doesn’t matter that A,B may contain some of the same elements, one will

be in A ∪B. Also, observe that if A = B then A ∪B = A = B. And if A ⊊ B

then A ∪B = B. The union is analogous to a logical disjunction.

Intersection

Definition 0.0.17. Let A,B ⊆ Ω. We define A ∩B to be

A ∩B = {x ∈ Ω | x ∈ A and x ∈ B}

The intersection of two sets contains exactly and only the elements that are

in both.

• {1, 2, 3, 4} ∪ {1, 5, 7, 8} = {1}

• R ∩Q = Q

• Q ∩ I = ∅

Note that if A = B then A ∩B = A = B and if A ⊆ B then A ∩B = A. Also

note that |A ∩ B| ≤ min(|A|, |B|). The intersection is analogous to a logical

conjunction.

Complement

Definition 0.0.18. If A ⊆ Ω some set, then we define the complement of A

written as A as

A = {x ∈ Ω | x ̸∈ A}

You may also see this written as A∁ or Ac.

• Q = I

• If Ω = N and A = {2, 3, 4} then A = {0, 1} ∪ {5, 6, ...}

The complement is defined with respect to the universe of discourse, and its

always important to keep in mind what it is at all times. Observe that A = A

and x ∈ A ⇐⇒ x ̸∈ A. The complement is analogous to the logical negation.
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Difference

Definition 0.0.19. The difference of two sets A,B, written A \ B (or even

A−B) is defined as

A \B = {x ∈ Ω | x ∈ A and x ̸∈ B}

.

For A \B, you keep everything in A but take out everything B, if there is

anything to take out. Think of it like A excluding B.

• Z \ N = {...,−2,−1, 0}

• R \Q = I

Also note that A \B = A ∩B.

Symmetric Difference

Definition 0.0.20. The symmetric difference of two sets A,B, usually written

A⊕B or A△B is defined as

A△B = {x ∈ Ω | x ∈ A orx ∈ B but not both}

It can be written in many equivalent ways.

A△B = (A \B) ∪ (B \A) = (A ∩B) ∪ (A ∩B)

Cartesian Product

Definition 0.0.21. Given two sets A,B, we write the cartesian product

A×B = {(x, y) | ∀x ∈ A,∀y ∈ B}

The cartesian product is simply a new set consisting of all possible pairs, in

which the pairs are ordered.For example

{0, 1, 2} × {2, 3} = {(0, 2), (1, 2), (2, 2), (0, 3), (1, 3), (2, 3)}

The pair (1, 2) is different than the pair (2, 1). A set is unordered, but a tuple

is ordered.34 For any set A, A× ∅ = ∅ There are no elements in ∅, and every 34 You may notice that (A×B)×C ≠ A×(B×C),

since the fact that tuples are ordered implies
elements of the first are of the form ((a, b), c),

and elements of the second are of the form

(a, (b, c)). They may look different, but they
behave the same. Mathematicians have not
found it useful to distinguish between these, and
consider elements of A×B × C to be of the form
(a, b, c).

cartesian product is a set containing elements which satisfy something. Since

nothing satisfies it the set is empty.

The graphs of functions can be represented as subsets of cartesitan products.

Consider the function f(x) = x2. We consider this function as something which

takes input and brings it to output. We could technically consider it as a subset

of the cartesian plane:

{(x, y) ∈ R× R | y = x2}

The graph of this function is really a subset of R× R.
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Indexed Collections

An indexed collection of sets is simply a way to notate many sets when venn

diagrams get too big. You could even denote infinitely many sets.

Let i ∈ N and let Ai = {i, i+ 1}. Then

5⋃
i=1

Ai = {1, 2} ∪ {2, 3} ∪ {3, 4} ∪ {4, 5} ∪ {5, 6} = {1, 2, 3, 4, 5, 6}

Lets do an example with intervals

∞⋂
i=n

[
0,

1

n

)
= {0}

35 This is an infinite intersection of intervals, each containing infinitely many 35 Like how we have giant sigmas to denote sums,

we have giant unions and intersections to denote

the operation over a collection of sets.
elements. While in propositional calculus, you can only conjunct or disjunct

finitely many propositions together, in set theory, you may take the intersection

or union of infinitely many sets. This is an infinite intersection of infinite sets

which only contains one element. Lets prove it.

Proof. Observe first that zero is in the intersection. It is also the least element

of each interval, and is then the least element of the intersection. Assume to the

contrary then that there is a second element in this intersection x, and further

suppose that this element is positive, x > 0. Since the sequence 1
1 ,

1
2 ,

1
3 , ... tens

to zero, there must exist a k such that 1
k+1 ≤ x < 1

k . So x ̸∈ [0, 1
k+1 ). But then

x could not have been in the intersection, contradiction.

Power Set

Definition 0.0.22. For S some set, We define P(S) to be the set containing

all possible subsets of S.

For example,

P({1, 2}) = {∅, {1}{2}, {1, 2}}

Additionally, P(∅) = {∅} and P({∅}) = {∅, {∅}}. For any set A, it is true that

∅ ⊆ A and A ⊆ A, so the empty set and the set itself will always be elements of

the power set. Think of a subset like a possible choice, or selection of elements.

For any set A, you always have the options of choosing nothing (∅) or choosing
everything (A). The power set is itself a set, which contains as elements all

possible subsets, even if the original set had a universe of discourse of something

else. There are certainly more ways to choose subsets than there are to choose

elements. The power set of an infinite set will obviously be infinite, but how

many sets are in the power set of a finite set?

Theorem 35. Let S be a finite set. If |S| = n then |P(S)| = 2n

Proof. We proceed by induction on n, our base case is n = 0. There is only

one set of zero elements, and it is the empty set ∅. We know P(∅) = {∅}, so
|P(∅)| = 1 and 20 = 1.

Now assume our induction hypothesis, that If |S| = k then |P(S)| = 2k. Let

S′ be any set such that |S′| = k + 1. We prove |P(S′)| = 2k+1. Since S′ is

nonempty, it has some element x ∈ S′. Consider the set S = S′ \ {x}. Consider
all possible subsets of S′. There are two cases:
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• If A ∈ P(S′) and x ̸∈ A, then A ∈ P(S).

• If A ∈ P(S′) and x ∈ A, then there is a unique set B with A = B ∪ {x} such

that B ∈ P(S).

Lets now count the number of subsets of S′, the number of elements of P(S′).

Each subset is either in P(S), or it is a set in P(S) with the element x. We

then see that |P(S′)| = |P(S)| + |P(S)| = 2k + 2k = 2(2k) = 2k+1. We have

proven that all n element sets have 2n possible subsets.

Sometimes you may see the notation P(S) = 2S for this reason.

Partitions

Definition 0.0.23. A partition of some set S is a collection of sets A,B such

that A ∪B = S and A ∩B = ∅

A set can be partitioned into multiple sets. A parition of some set S is a a

collection of sets A1, A2, ... such that

S =

∞⋃
i=1

Ai

and if i ̸= j then Ai ∩Aj = ∅
For example, we may partition N into two sets, one containing evens, and

one containing odds. N = E ∪O. We may also partition it into infinitely many

subsets each containing one element.

N =

∞⋃
i=0

{i} = {0} ∪ {1} ∪ {2} ∪ {3} ∪ ...

Proof by Double Set Containment

Rather than mechanically applying a set of laws, proving equality of sets is

more practically done with the technique of double set containment

Theorem 36.

A = B ⇐⇒ (A ⊆ B) ∧ (B ⊆ A)

Proof. We take the Axiom of Existentionality, apply a logical equivalence to

the if and only if, and observe the definition of subset.

A = B ⇐⇒ ∀x(x ∈ A ⇐⇒ x ∈ B)

A = B ⇐⇒ ∀x((x ∈ A =⇒ x ∈ B) ∧ (x ∈ B =⇒ x ∈ A))

A = B ⇐⇒ ∀x(x ∈ A =⇒ x ∈ B) ∧ ∀x(x ∈ B =⇒ x ∈ A)

A = B ⇐⇒ (A ⊆ B) ∧ (B ⊆ A)

To prove two sets A,B are equal, in two steps, simply prove A ⊆ B and

B ⊆ A. Often times, these two proofs may follow for different reasons. The

proof syntax should usually look like “Let x ∈ A. ... Therefore, x ∈ B. Let

y ∈ B. ... Therefore, y ∈ A.” This is the standard form, but like with any proof,

there will be variance in why the deduction follows correctly. Let us do some

examples.
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Theorem 37. Let A,B ⊆ Ω. Then

A \B = A ∩B

Proof. We proceed by a double set containment. We first prove that A \B =

A ∩B. Let x ∈ A \B. Then x ∈ A and x ̸∈ B. Therefore, x ∈ B. Since x ∈ A

and x ∈ B, it follows that x ∈ A ∩B.

Let x ∈ A ∩B. Then x ∈ A and x ∈ B. So x ̸∈ B. Since x ∈ A and x ̸∈ B,

it follows that x ∈ A \B.

We reuse the same variable here x, because they belong to different parts of

the proof and are scoped differently.

Theorem 38. Let A,B,C ⊆ Ω. Then

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Proof. We proceed by a double set containment. We first prove that A ∩ (B ∪
C) ⊆ (A ∩ B) ∪ (A ∩ C). Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C.
Then x ∈ B or x ∈ C. We have two cases:

• If x ∈ B, then x ∈ A ∩B, so x ∈ (A ∩B) ∪ (A ∩ C)

• If x ∈ C, then x ∈ A ∩ C, so x ∈ (A ∩B) ∪ (A ∩ C)

in all cases, we have x ∈ (A ∩B) ∪ (A ∩ C)
Now let x ∈ (A ∩B) ∪ (A ∩ C). Then x ∈ (A ∩B) or (A ∩ C) We have two

cases.

• If x ∈ A ∩B then x ∈ A and x ∈ B. Since x ∈ B, we know x ∈ B ∪ C.

• If x ∈ A ∩ C then x ∈ A and x ∈ C. Since x ∈ C, we know x ∈ B ∪ C.

Since x ∈ A and x ∈ B ∪ C, then it follows that x ∈ A ∩ (B ∪ C).

Theorem 39. Let

S = {3s+ 2t | s, t ∈ Z}

Then S = Z

Proof. We proceed by a double set containment. Let x ∈ S. Then there exists

s, t ∈ Z such that x = 3s+ 2t. By closure, we see x ∈ Z.
Now let x ∈ Z. We prove that x ∈ S. Consider s = −3x and t = 5x. By

closure s, t ∈ Z so

3s+ 2t = 3(−3x) + 2(5x) = −9x+ 10x = x

Since there exists s, t ∈ Z such that 3s+ 2t = x, we see that x ∈ S.

DeMorgan’s Law

Theorem 40.

A ∪B = A ∩B

Proof. We proceed by a double set containment.



set theory 71

• (⊆)

x ∈ A ∪B
x ̸∈ A ∪B

x ̸∈ A and x ̸∈ B

x ∈ A and x ∈ B

x ∈ A ∩B

• (⊇)

x ∈ A ∩B
x ∈ A and x ∈ B

x ̸∈ A and x ̸∈ B

x ̸∈ A ∪B
x ∈ A ∪B

Theorem 41. Let n ≥ 2 and A1, ..., An ⊆ Ω. Then

n⋃
i=1

Ai =

n⋂
i=1

Ai

Proof. We proceed by induction on n. Our base case is n = 2 and A1 ∪A2 =

A1 ∩A2 is true by our previous proof. Now assume our induction hypothesis,

for any k sets that
k⋃

i=1

Ai =

k⋂
i=1

Ai

We prove
k+1⋃
i=1

Ai =

k+1⋂
i=1

Ai

Let T = A1 ∪ ... ∪Ak. Then

k+1⋃
i=1

Ai = T ∪Ak+1 = T ∩Ak+1

By DeMorgan’s law on two sets. Since T is a union of k sets, we may apply our

induction hypothesis

T ∩Ak+1 =

k⋃
i=1

Ai ∩Ak+1 =

k⋂
i=1

Ai ∩Ak+1 =

k+1⋂
i=1

Ai

Thus for any Thus, we have proven

n⋃
i=1

Ai =

n⋂
i=1

Ai
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On the Power of Set Theory

There is quite a zoo of mathematical structures. These include numbers,

functions, matricies, vectors, tensors, polygons, graphs, polynomials, groups,

rings, fields, points, lines, planes, propositions, predicates, surfaces, manifolds,

knots, limits, derivatives, integrals, I could go on. It is not the case that the

study of each of these objects has their own sets of axioms and rules defined.

Rather, each of these objects may be constructed from the axioms of pure set

theory. Sets are such a basic, atomic object, they can serve as a foundation

for all of mathematics. Given axioms for sets, you can construct numbers, and

the properties of numbers, but given axioms for numbers, you cannot derive

properties of sets. We give a few examples of such constructions.

The Natural Numbers from Set Theory

The natural numbers are not defined, rather, they are constructed inductively.

• zero is a natural number.

(0 ∈ N)

• If n is a natural number, then S(n) is a natural number.

∀n(n ∈ N =⇒ S(n) ∈ N)

Here S(n) is the successor function S(n) = n+ 1.

This is why it is so important that zero is a natural number. It is not only a

natural number, it is the only natural number, it is the most natural number. If

we want to construct the natural numbers in set theory, we only need something

that looks like a zero, and something that looks like a successor function. An

ordinal is a special kind of set, which pretends its a number. The properties

that numbers have with each other, we will simulate with these ordinals.

In the beginning, there was nothing. No universes of discourse, no objects to

associate with each other. Nothing. Yet, nothing is itself, a kind of something.

It may represent nothing, but it is not nothing. Zero is itself not nothing, it is

a something which represents nothing. We have a set which contains nothing,

but it is still something. We have our zeroth ordinal:

T0 := ∅

What better candidate for the zeroth ordinal than the empty set, since it

has no elements. We need to now construct a another set, one which is distinct

from the first, and therefore, non empty. Since it is not empty, it must contain

something. Why not have this something be what we already know is something.

We have our first ordinal:

T1 := {∅}

This set is different than the emptyset, just like how 0 ̸= 1. It contains one

element, and is a good candidate for the number one. What about the number

two? We need a set with two distinct elements. Coincidentally, we have just

contructed two somethings. We have our second ordinal.

T2 := {∅, {∅}}
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We can repeat this process to realize our successor function. For any ordinal

set Tn, let

Tn+1 = S(Tn) = Tn ∪ {Tn}

We can construct the first few ordinals then as follows.

Figure 9: Cool Lamp I found on Tenth Street

• T0 = ∅

• T1 = {∅}

• T2 = {∅, {∅}}

• T3 = {∅, {∅}, {∅, {∅}}}

• T4 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

• T5 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}

• ...

Observe that S(Tn) = {T0, T1, ..., Tn}, and that |Tn| = n. We now show that

these ordinals do have all the useful properties of numbers.

The first desirable property of numbers would be equality. By the Axiom

of Existenionality, we have a definition of equality of sets to be that two sets

are equal if and only if they have the same elements. We can define equality of

numbers to be if their ordinals are equal.

n = m ⇐⇒ Tn = Tm

The first equality is an equality of numbers, the second one is an equality of

sets. Equality of numbers is defined on the equality of sets.

The next desirable property of numbers would be well-ordering. Although

in general, sets are partially ordered, the ordinals are a special case which are

totally ordered. Notice here there isn’t a universe of discourse. The elements

of sets can be only other sets! Set theory, and therefore, all of mathematics,

can be done totally atomless. Of course, this is not always useful, only cool

that it could be done at all. We much rather usefully use set theory with a well

defined universe of discourse.

n < m ⇐⇒ Tn ∈ Tm

How useful for us was that the definition of an ordinal to be the set containing

all previous ordinals.

Identities

• A ∩ Ω = A Identity

• A ∪ ∅ = A

• A ∪ Ω = Ω Domination

• A ∩ ∅ = ∅
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• A ∪A = A Idempotent

• A ∩A = A

• A Complementation

• A ∪B = B ∪A Communitivity

• A ∩B = B ∩A

• A ∪ (B ∪ C) = (A ∪B) ∪ C Associativity

• A ∩ (B ∩ C) = (A ∩B) ∩ C

• A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) Distributive

• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

• A ∪B = A ∩B DeMorgan’s

• A ∩B = A ∪B

• A ∪ (A ∩B) = A Absorption

• A ∩ (A ∪B) = A

• A ∪A = Ω Complement

• A ∩A = ∅



Functions

You should have come across functions at some point in your mathematical

career. They are the most studied mathematical object of all time. But what

exactly is a function to begin with?

Relations

Definition 0.0.24 (Relation). For any sets A,B we define a relation R to be

a subset of R ⊆ A×B

We write aRb for a ∈ A and b ∈ B to mean a relates to b. The symbol R

here is generic, and is usually meant to be replaced with some operator.

Consider A = {0, 1, 2} and B = {a, b}, then the following are some possible

relations R ⊆ A×B

• R = {(0, b)}

• R = {(0, a), (1, a), (2, a), (1, b), (2, b)}36 36 table

• R = A×B

• R = ∅

Relations among finite sets exist, but the richness occurs when sets are infinite.

We may define the inequality of real numbers as a relation:

“ ≤ ” = {(a, b) ∈ R× R | a ≤ b}

37 There are many more interesting properties of relations we will into later. 37 non circularity

For now we focus on the rich case of when a relation is function.

Functions

A function is a kind of relation with exactly two special properties.

Definition 0.0.25. Let f ⊆ A×B be a relation. A relation is a function when

for all a ∈ A there exists a unique b ∈ B such that the pair (a, b) ∈ f .

38 Instead of writing a function as f ⊆ A×B, we usually write it as f : A→ B, 38 vertical line test

in the sense it is a map from the set A to the set B.They are more interesting

to think of like a map, a transformation from elements in the set A to elements

in the set B Implicit in the definition of a function is actually two properties:

• First, every element of A is mapped to some element of B. The function is

total39 39 partial

• Second, an element of A is mapped to at most one element of B.40 40 vertical line test.
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We can describe some functions you may have seen before using set builder

notation.

• {(x, y) ∈ R× R | y = ex} is usually written as f(x) = ex

• {(x, y) ∈ R× R | y = x2} is usually written as f(x) = x2

For f : A → B, instead of writing (a, b) ∈ f , we usually write f(a) = b.

Functions can be defined using set theory, but we need not do so for conveinence.

These you have associated as an input and output, but you can formally describe

a function as a subset of a cartesian product. Using sets, we can define functions

as a kind of set.

• The domain of a function f : A→ B is A, the set where its input is defined.

• The co-domain of a function f : A → B is B, the set where its output is

defined.

• The image of a function is defined as a subset of the co-domain which has

values mapped to.

• For example, if f(x) = x2, then the domain of f is R, the codomain is R,
but the image is {x ∈ R | x ≥ 0}. Not every element of the codomain gets

mapped to.

We discuss a function f : A→ B which for f(a) = b maps the element a ∈ A

to the element b ∈ B. We can also discuss how f maps a subset of the elements

of A.

Definition 0.0.26. Let f : A→ B. Let S ⊆ A and define

f(S) = {f(a) ∈ B | ∀a ∈ A}

Note that if S ⊆ A then f(S) ⊆ B. It is not mapping the set, but the set of

elements of S which are mapped to in B.

Equality of two functions

Definition 0.0.27. Two functions f : A → B and g : A → B are said to be

equal if

∀a ∈ A[f(a) = g(a)]

They map the same elements to the same elements. Two functions are not

equal if they only have the same domain and co-domain. They must map the

same elements to the same elements. Note that two functions could be “equal”

on all values, yet have different co-domains. Consider f(n) = n2 for f : N → Z
versus g : N → N. Since the image of this function is the naturals anyway, why

not restrict the co-domain to the image. These functions are technically not

equal because they do not have the same co-domain, but they are practically

equivalent.

This formulation of what is or isn’t a function is relatively modern. Functions

used to be too restrictive in their definition, but the generality of this definition

of function allows for some interesting examples. For example Let f : R → R
such that

f(x) =

1 x ∈ Q

0 x ∈ R \Q
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Does this function have a derivative? Is it even continuous? Does it even have

an area under its curve? Or an average of its values within some interval? Nice

and clean and simple functions do have all kinds of interesting properties, but

the generality in the definition of what kinds of functions you can make allows

for a lot of horrors. The Descartian idea of a function was something you could

plot in the cartesian plane. I claim that you could not even attempt to plot this

function. Even though this is not a nice function, |2f(x)− 1| = 1, a constant

function. Extremely nice.

Combining functions

Definition 0.0.28. Let f, g be two functions f : A → B, g : B → C. We

define the composition of f, g as = g(f(x)).

This can also be written as g ◦ f .
f takes an element of A and returns an element of B, which is part of the

domain of g, so g then maps this element to some element of C. The domain of

g ◦ f is A but the codomain of g ◦ f is C.

The set definition of a function allows you to define multiple arguments. For

example, if you want to define a function that takes two numbers and outputs

a third, you may write f(a, b) = c. Rather than defining two domains of this

function somehow, it only has one domain, N×N. The input is not two distinct

numbers, rather an element of the cartesian product (a, b) ∈ N× N.

Bijectivity

A bijection is an ideal function. For f : A→ B, if f is a bijection, it is a perfect

pairing between A,B. We detail how to prove when a function is bijective, and

properties of bijections.

Definition 0.0.29. We say a function f is injective, or one-to-one if a ̸=
b =⇒ f(a) ̸= f(b). Element distinctness in the domain implies distinctness

after mapping into the co-domain.

To prove a function to be injective, you usually use the contrapositive.

f(a) = f(b) =⇒ a = b.

Definition 0.0.30. We say a function f is surjective, or onto if ∀b ∈ B, ∃a
such that f(b) = a.

A function is surjective41 if there is no element in the co-domain which 41 french people

remains unmapped. Nothing is left behind. A function is surjective if its image

is equal to its co-domain.

Definition 0.0.31. A function is bijective if and only if it is injective and

surjective.

When you think of a bijection, you should think of the following picture. A

bijection is a perfect correspondence between the domain and co-domain. In

order to prove that a function is a bijection, you must prove it is injective and

surjective. We do some examples.

Theorem 42. Let a, b ∈ R and a ̸= 0. Define the function f : R → R by

f(x) = ax+ b. The function f is a bijection
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Proof. We prove it is injective and surjective. To first prove it is injective, we

let f(x) = f(x′) and prove x = x′.

f(x) = f(x′)

ax+ b = ax′ + b

ax = ax′ and since a ̸= 0

x = x′

Next we prove it is surjective. Let r ∈ R. We prove there exists an x ∈ R
such that f(x) = r. Consider x = r−b

a . Then

f(x) = f

(
r − b

a

)
= a

(
r − b

a

)
+ b = (r − b) + b = r

proof commentary

You usually have to do a proof three times. First to figure out if its true,

second to work out some of the details and structure of the proof, and a third

time formally. This proof is the third, final version, and it does not show how

we were able to get the proof itself. To show surjectivity, behind the scenes, we

computed the inverse of the function to get x = 2r/(r − 3). Once we had this,

we could procede with the proof of surjectivity normally.

Theorem 43. Let f : R \ {1} → R \ {1} by f(x) = x
x−1 . Then f is a bijection.

Proof. We prove it is injective and surjective. To first prove it is injective, we

let f(x) = f(x′) and prove x = y

f(x) = f(y)

x

x− 1
=

y

y − 1

x(y − 1) = y(x− 1)

xy − x = yx− y

−x = −y
x = y

Next we prove it is surjective. Let r ∈ R \ {1}. We prove there is an

x ∈ R \ {1} such that f(x) = r. Consider x = r
r−1 . Then

f(x) = f

(
r

r − 1

)
=

r
r−1
r

r−1 − 1

=
r

r − 1

(
r

r − 1
− 1

)−1

=
r

r − 1

(
r − (r − 1)

r − 1

)−1

=
r

r − 1

(
1

r − 1

)−1

=
r

r − 1

(
r − 1

1

)
= r

Since we have proven f is injective and surjective, it is bijective.
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Theorem 44. Let S2 = {(x, y, z) ∈ R3 | x2+ y2+ z2 = 1} be the unit sphere in

three dimensions and let N = (0, 0, 1) be the “north pole”. Let the stereographic

projection

f : S2 \ {N} → R2

be defined by

f(x, y, z) =

(
x

1− z
,

y

1− z

)
The stereographic projection in three dimensions is a bijection

Proof. We first prove f is injective. Let f(x, y, z) = f(x1, y1, z1). We prove

that (x, y, z) = (x1, y1, z1)

f(x, y, z) = f(x1, y1, z1)(
x

1− z
,

y

1− z

)
=

(
x1

1− z1
,

y1
1− z1

)
Since both of these points in R2 are equal, their norms are equal. For (a, b) ∈ R2,

the norm42 is a2 + b2. We set the norms of these points equal to each other. 42 Credit to Melvin Gao for figuring out this trick

with the norms!(
x

1− z

)2

+

(
y

1− z

)2

=

(
x1

1− z1

)2

+

(
y1

1− z1

)2

x2 + y2

(1− z)2
=

x21 + y21
(1− z1)2

Since (x, y, z) ∈ S2 \ {N}, they satisfy x2 + y2 + z2 = 1, so x2 + y2 = 1− z2

x2 + y2

(1− z)2
=

x21 + y21
(1− z1)2

1− z2

(1− z)2
=

1− z21
(1− z1)2

(1− z)(1 + z)

(1− z)2
=

(1− z1)(1 + z1)

(1− z1)2

(1 + z)

(1− z)
=

(1 + z1)

(1− z1)

(1 + z)(1− z1) = (1 + z1)(1− z)

1 + z − z1 − zz1 = 1− z + z1 − zz1

z − z1 = z1 − z

2z = 2z1

z = z1

Since z = z1, we may return to our original expression and replace z1 with z(
x

1− z
,

y

1− z

)
=

(
x1

1− z1
,

y1
1− z1

)
(

x

1− z
,

y

1− z

)
=

(
x1

1− z
,
y1

1− z

)
(x, y) = (x1, y1)

Since (x, y, z) = (x1, y1, z1) we see that f is injective.

Next we prove it is surjective. Let (s, t) ∈ R2. We prove there exists a point

(x, y, z) ∈ S2 \ {N} with f(x, y, z) = (s, t). Consider

(x, y, z) =
1

s2 + t2 + 1

(
2s, 2t, s2 + t2 − 1

)
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Since the domain is non trivial, we first prove (x, y, z) ∈ S2 \{N}. First suppose
to the contrary z = 1. Then the numerator and denominator would be equal

s2 + t2 − 1 = s2 + t2 + 1

−1 = 1

Contradiction. Next we verify (x, y, z) ∈ S2

x2 + y2 + z2 =(
2s

s2 + t2 + 1

)2

+

(
2s

s2 + t2 + 1

)2

+

(
s2 + t2 − 1

s2 + t2 + 1

)2

=

4s2 + 4t2 + (s2 + t2 − 1)2

(s2 + t2 + 1)2
=

4s2 + 4t2 + (s4 + 2s2t2 − 2s2 + t4 − 2t2 + 1)

s4 + 2s2t2 + 2s2 + t4 + 2t2 + 1
=

s4 + 2s2t2 + 2s2 + t4 + 2t2 + 1

s4 + 2s2t2 + 2s2 + t4 + 2t2 + 1
= 1

We now verify f(x, y, z) = (s, t)

f(x, y, z) =

(
x

1− z
,

y

1− z

)
We first verify x

1−z = s

x

1− z
=

(
2s

s2 + t2 + 1

)(
1

1− s2+t2−1
s2+t2+1

)

=

(
2s

s2 + t2 + 1

)(
1

s2+t2+1
s2+t2+1 − s2+t2−1

s2+t2+1

)

=

(
2s

s2 + t2 + 1

)(
1

s2+t2+1−s2−t2+1
s2+t2+1

)

=

(
2s

s2 + t2 + 1

)(
1
2

s2+t2+1

)

=

(
2s

s2 + t2 + 1

)(
s2 + t2 + 1

2

)
= s

By a symmetrical argument, we see y
1−z = t. Therefore, f(x, y, z) = (s, t), and

f is surjective.

Properties of Bijections

Theorem 45. For any function f , The image of f is equal to the co-domain

of f if and only if f is surjective.

Proof. Let f : A → B be a function and let f(A) = {f(a) ∈ B | ∀a ∈ A} be

the image of f .

( =⇒ ) We first prove that if f(A) = B then f must be surjective. The definition

of surjectivity is that for every b ∈ B there exists some a ∈ A such that f(a) = b.

Every element of B is mapped to by some element A. The image f(A) is defined

to be the set of elements which are mapped to by elements of B. So if f(A) = B,

then every element of B is mapped to by some element of A, implying that f

must be surjective.



functions 81

( ⇐= ) We now prove that if f is surjective, then f(A) = B By definition, the

image is certainly a subset of the co-domain, so f(A) ⊆ B. We only need to

prove then that B ⊆ f(A). Let b ∈ B. Since f is surjective, we know that for

every b ∈ B there exists an a ∈ A such that f(a) = b. Then this b ∈ f(A).

Since this is for every b ∈ B, we see that B ⊆ f(A).

Theorem 46. The composition of bijections is a bijection.

Proof. Let f : A→ B and g : B → C be bijections. We prove that g◦f : A→ C

is a bijection.

We first prove it is injective. Let g(f(a)) = g(f(a′)). We prove that a = a′.

Since g is injective then

g(f(a)) = g(f(a′)) Since g is injective

f(a) = f(a′) Since f is injective

a = a′

Next, we prove it is surjective, we do so by proving that the image of g ◦ f is

equal to the codomain. Let the image of g be denoted by

g(f(A)) = {g(f(a)) ∈ C | ∀a ∈ A}

Since f is surjective, the image of f is equal to the co-domain of f , so f(A) = B

g(f(A)) = g(B)

Since g is surjective, the image of g is equal to the co-domain of g, so g(B) = C.

Therefore

g(f(A)) = g(B) = C

Theorem 47. The inverse of a bijection is a bijection.

Proof. Let f : A→ B be a bijection. Let f−1 : B → A be a function such that

for f(a) = b then f−1(b) = a. We prove f−1 is a bijection.

We first prove f−1 is injective. Let f−1(b) = f−1(b′). We prove that b = b′.

Note that f−1(b) is an element of A, and since f is a function, for each element

in A, it maps it to exactly one element of B. Therefore, f(f−1(b)) is exactly

one element of B, namely, b ∈ B.

f−1(b) = f−1(b′)

f(f−1(b)) = f(f−1(b′))

b = b′

Next we prove that f−1 is a surjection. Let a ∈ A. We prove that there

exists b ∈ B such that f−1(b) = a. Consider a = f(b). Then

f−1(b) = f−1(f(a)) = a

.

Theorem 48. If A,B ⊆ Ω are finite sets then

|A| = |B| if and only if there exists a bijection f : A→ B
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Proof. ( =⇒ ) Let A and B be finite sets with |A| = |B|. We prove there exists

a bijection from f : A→ B. Without loss of generality, let A = {a1, ..., an} and

let B = {b1, ..., bn}. Each set contains exactly n distinct elements. Consider

the function f(ai) = bi. It will map the ith element of A to the ith element of

B. We prove that f is a bijection by proving it is injective and surjective.

To prove it is injective, Let f(ai) = f(aj) with 1 ≤ i, j ≤ n. We prove that

ai = aj .

f(ai) = f(aj)

bi = bj

By our assumption of distinctness, if bi = bj then i = j, so

bi = bj

i = j

ai = aj

Next, we prove it is surjective. Let b ∈ B. Then there is an i with 1 ≤ i ≤ n

such that b = bi. There is an element of the domain which maps to bi, namely

ai since f(ai) = bi.

( ⇐= ) Let A,B be any finite sets such that there exists a bijection f : A→ B.

We prove that |A| = |B|. Assume to the contrary that such a bijection exists

but |A| ̸= |B|. Since f is a function, each element of A maps to exactly one

element of B, so the maximum size of the image is then bounded by the domain

|f(A)| ≤ |A|. Then we have two cases

• Case 1: If |A| > |B| Then there are more elements in A to map than elements

in B to map to, so there must exist distinct ai ̸= aj with f(ai) = f(aj). This

implies f would not be injective.

• Case 2: If |A| < |B| then |f(A)| < |B|, implying that the image is a strict

subset of the co-domain. This implies that f would not be surjective.

In either case, we see either f is not injective or not surjective, contradicting

the fact that f must be bijective.

Monotonic Functions

Definition 0.0.32. A function f : R → R is monotonically increasing if

x ≤ y =⇒ f(x) ≤ f(y)

A function is said to be strictly monotonically increasing if

x < y =⇒ f(x) < f(y)

Think of a monotonically increasing function as one whos plot does not go

back down, it is always going up, or staying flat.

Theorem 49. Let f : N → N be defined as f(x) = x2. Then f is strictly

monotonically increasing.

Proof. Let x, y ∈ N with x < y. Then x2 < xy and xy < y2. So x2 < y2 as

desired.
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Theorem 50. log2(x) is strictly monotonically increasing. Let x, y ∈ R+ with

x < y. Then there is a constant c > 1 such that y = cx. Then

log2(y) = log2(cx) = log2(c) + log2(x) > log2(x)





Asymptotic Analysis

speech why we care about big o

Definition 0.0.33. Let f : N → R+ and g : N → R+ be two functions. We say

f(n) is O(g(n))

if there exists positive constants c, n0 ∈ N if for all n ≥ n0 that

f(n) ≤ cg(n)

speech moores law

Witness Proofs

Given two functions f, g, suppose you want to prove f is O(g)? The definition of

big O is existential, you only need to give two constants c, n0 (called witnesses).

How can you easily convince your reader that these are correct and valid

witnesses? The bad thing to do would be to choose c = 1000 and n0 =

1000. Functions can have all kinds of weird, interesting, and diverse properties.

A witness proof not only provides constants, but convinces the reader such

constants are correct.

Theorem 51.

(n+ 1)2 is O(n2)

Proof. Observe that (n+ 1)2 = n2 + 2n+ 1. We find witnesses for each term

n2 ≤ n2 ∀n ≥ 1

2n ≤ n2 ∀n ≥ 2

1 ≤ n2 ∀n ≥ 1

If we sum the inequalities, we see

n2 + 2n+ 1 = (n+ 1)2 ≤ 3n2 ∀n ≥ 2

Consider witnesses c = 3 and n0 = 2. Since for all n ≥ n0 we see that

(n+ 1)2 ≤ cn2, we conclude that (n+ 1)2 is O(n2)

Proof commentary

Theorem 52. Let f1, g1, f2, g2 be functions which are strictly monotonically

increasing. Futher suppose that that f1(n) is O(g1(n)) and f2(n) is O(g2(n)).

Then

(f1(n) · f2(n)) is O((g1(n) · g2(n)))
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Proof. Since f1(n) is O(g1(n)), there exists positive constants c1, n1 such that

for all n ≥ n1 that f1(n) ≤ c1g1(n). Since f2(n) is O(g2(n)), there exists

positive constants c2, n2 such that for all n ≥ n2 that f2(n) ≤ c2g2(n). If we

multiply these inequalities together, we see

f1(n)f2(n) ≤ c1g1(n)f2(n) ≤ c1g1(n)c2g2(n) = (c1c2)g1(n)g2(n)

Let c = c1·c2 and let n0 = max(n1, n2). Then ∀n ≥ n0, we see that f1(n)f2(n) ≤
cg1(n)g2(n). Therefore (f1(n) · f2(n)) is O((g1(n) · g2(n))).

Corollary 53. Notice we actually get the following corollaries as a consequence

of the previous theorem

• c is O(log n) for any constant c

•
√
n is O(n)

• n is O(n2)

• n2 is O(n3)

• nk is O(nk+1) for any constant k

Theorem 54.

log n is O(n)

Proof. Consider c = n0 = 1. We prove log2(n) ≤ n by induction on n. Our

base case is n = 1. log2(1) = 0 < 1. Now assume our induction hypothesis,

that log2(n) ≤ n. We prove log2(n + 1) ≤ n + 1. Since log2(n) is strictly

monotonically increasing, then

log2(n+ 1) < log2(2n) = log2(n) + log2(2) = log2(n) + 1

By the induction hypothesis, since log2(n) ≤ n, then log2(n) + 1 ≤ n + 1.

Together, these imply log2(n+ 1) <≤ n+ 1. Therefore, log n is O(n).

Corollary 55. Notice we actually get the following corollaries as a consequence

of the previous theorem

• log n is O(n)

• n log n is O(n2)

Theorem 56.

Computer scientists don’t write the base of logs because they are lazy, they

don’t write the base because it doesn’t matter.

Theorem 57. Let k, l ∈ R with k, l > 1. Then

logk n is O(logl n)

Proof. Recall the
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Contradiction

Theorem 58. For any positive real numbers k, l

log(n)k is o(nl)

Proof. Assume to the contrary that there is some constants c, n0 for all n ≥ n0

that log(n)k ≥ cnl. Then since cnl > nl−1 for large enough n, we get

log(n)k ≥ cnl (35)

log(n)k ≥ nl−1 (36)

k log log n ≥ (l − 1) log(n) (37)

k

l − 1
≥ log n

log log n
(38)

k

l − 1
≥ log n(log log n)−1 (39)

k

l − 1
≥ log n

(
log

1

log n

)
(40)

k

l − 1
≥ log

(
n+

1

log n

)
(41)

Contradiction, a strictly monotonically increasing function cannot be bounded

by a constant.

The an arbitrary small possible amount of a polynomial, even n0.00001 even-

tually will out grow an arbitrarily large about of a logarithm, even log(n)10000

Theorem 59. Let ϵ > 0 be a positive real number. Then 2(logn)1+ϵ

grows faster

than any polynomial and slower than every exponential.

Proof. aa

Counting arguments

You can over apply over counting and under counting arguments to asymptotic

relationships among monotonically increasing functions.

Theorem 60. 2n is O(n!)

Proof. We proceed by an overcounting argument

2n =

2 · 2 · 2 · 2 · ... · 2︸ ︷︷ ︸
n

≤

2 · 2 · 3 · 4 · ... · n =

2 · n!

So 2n ≤ 2n! and we conclude 2n is O(n!).

Theorem 61. n! is O(nn)

Proof. We proceed by an overcounting argument

n! =

1 · 2 · 3 · 4 · ... · n ≤
n · n · n · n · ... · n︸ ︷︷ ︸

n

=

= nn
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So n! ≤ nn and we conclude n! is O(n).

Recall several of our closed forms of summations of powers.

•

1 + 2 + 3 + ...+ n =

n∑
i=1

i =
n(n+ 1)

2
= Θ(n2)

•

1 + 4 + 9 + ...+ n =

n∑
i=1

i2 =
n(n+ 1)

2
= Θ(n3)

•

1 + 2 + 3 + ...+ n =

n∑
i=1

i3 =
n(n+ 1)

2
= Θ(n4)

The only three numbers are 0, 1, n, so given such a pattern, rather than try to

prove a sum of powers to 4, you should try sums of powers to some variable,

say t. What could
∑n

i=1 i
t be in terms of n and t? The closed form is called

Faulhaber’s formula:

n∑
i=1

it = 1t + 2t + ...+ nt =
1

t+ 1

t∑
j=0

(t+ 1)!

j!(t− j + 1)!
Bjn

t−j+1

where Bj is the jth Bernoulli number. Proving such a formula is extremely

difficult for us now. Even defining the Bernoulli numbers is beyond us. In such

cases, you need not give up. Where ever you need a theorem, you may not need

it in its totality, and should consider settling for proving something sufficient

still, but weaker.

Theorem 62.
n∑

i=1

it = Θ(nt+1)

Proof. We give overcounting and undercounting arguments.

n∑
i=1

it =

1t + 2t + ...+ nt ≤
nt + nt + ...+ nt︸ ︷︷ ︸

n

=

n(nt) = nt+1

Thus
∑n

i=1 i
t is O(nt+1). Next we do an undercounting argument

n∑
i=1

it =

1t + 2t + ...+ nt ≥
(n/2)t + (n/2 + 1)t + ...+ nt ≥
(n/2)t + (n/2 + 1)t + ...+ nt︸ ︷︷ ︸

n/2

=

(n/2)(n/2)t =

(n/2)t+1 =
1

2(t+1)
nt+1

Since 1
2(t+1) is a constant, we see that

∑n
i=1 i

t is Ω(nt+1), so we conclude∑n
i=1 i

t is Θ(nt+1)



Relations

Definition 0.0.34. A relation R is any subset of a cartesian product of sets

R ⊆ A×B

When (a, b) ∈ R, we mean “a relates to b”, and write aRb.

For example, consider the relation R ⊆ A × B with A = {0, 1, 2} and

B = {a, b} with R = {(0, a), (1, b), (2, b), (2, a)}. 43 43 picture here with arrows

Definition 0.0.35. We say “R is a relation over a set A” to mean R ⊆ A×A.

The following are some more examples of relations

• The relation “≤” over R denotes the set {(x, y) ∈ R× R | x ≤ y} 44 44 why not circular

• ∅

• The relation R over N with aRb if a = b + 1 denotes pairs of the form

(1, 0), (2, 1), (3, 2), ...

Recall the definition of when a relation is a function

Definition 0.0.36. We say a relation is a function if whenever ...

note that if A is a finite set of cardinality n, then the number of relations

over A is equal to the number of possible subsets of A × A, so there are 2n
2

possible relations.

Definition 0.0.37. For a relation R over A, we say that R is reflexive if

∀a ∈ A[aRa]

why we care

Definition 0.0.38. for a relation R over A, we say that R is symmetric if

∀a, b ∈ A[aRb =⇒ bRa]

commentary on symmetric

Definition 0.0.39. for a relation R over A, we say that R is transitive if

∀a, b, c ∈ A[aRb and bRc =⇒ aRc]

commentary on transitive

Definition 0.0.40. We say a relation is an equivalence relation if it is reflexive,

symmetric, and transitive.

Theorem 63. Let “=” be a relation over R of the axiomatically defined equality

of real numbers. Then “ = ” is an equivalence relation.
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Proof. We cannot prove it, as the fact that it is reflexive, symmetric, and

transitive are axioms. Convince yourself these are true.

• (reflexive) ∀x ∈ R(x = x)

• (symmetric) ∀x, y ∈ R(x = y =⇒ y = x)

• (transitive) ∀x, y, z ∈ R(x = y and y = z =⇒ x = z)

Theorem 64. Let “≤” be a relation over R of the axiomatically defined equality

of real numbers. Then “≤” is reflexive, not symmetric, and transitive.

Proof. • Let x ∈ R, then x ≤ x since x = x

• Consider x = 2 and y = 3. Notice that 2 ≤ 3 but 3 ̸≤ 2

• This is technically something so basic, it would be acceptable to assume it,

but let us try to prove it. Let x, y, z ∈ R with x ≤ y and y ≤ z. Since x ≤ y

there is ϵ1 ∈ R with ϵ1 ≥ 0 such that x+ ϵ1 = y. Since y ≤ z there is ϵ2 ∈ R
with ϵ2 ≥ 0 such that y + ϵ2 = z. Then

y + ϵ2 = z

(x+ ϵ1) + ϵ2 = z

x+ (ϵ1 + ϵ2) = z since ϵ1 + ϵ2 ≥ 0

x ≤ z

Theorem 65. <

Theorem 66. Let R be a relation over the set of all people such that aRb

if person a and person b have the same birthday. Then R is an equivalence

relation

Proof. • R is reflexive since everyone has the same birthday as themselves

• R is symmetric, if a has the same birthday as b, then b must have the same

birthday as a.

• R is transitive. If aRb and bRc, then all three must have the same birthday,

so aRc.

Theorem 67. The relation “|” over Z defined by a | b if ∃c[ac = b] is reflexive,

not symmetric, and transitive.

Proof. • (reflexive) Let a ∈ Z. Since a · 1 = a, then a | a

• (not symmetric) As a counter example, consider a = 2 and b = 6. Notice

that 2 | 6 but 6 ∤ 2

• (transitive) Let a, b, c ∈ Z and let a | b and b | c. Then there exists integers

d, e ∈ Z such that ad = b and be = c. Then

c = be = (ad)e = a(de)

Since de ∈ Z, we see that a | c.



relations 91

Theorem 68. Let the relation ∼ be a relation defined over Q such that a
b ∼ c

d

if a
b and c

d have the same reduced form. Then ∼ is an equivalence relation.

Proof. We prove ∼ is reflexive, symmetric, and transitive.

• (reflexive) Let a
b ∈ Q. a

b has the same reduced form as itself so certainly
a
b ∼ a

b

• (symmetric) Let a
b ,

c
d ∈ Q, and assume a

b ∼ c
d . Then we know that a

b has the

same reduced form as c
d , so certainly c

d has the same reduced form as a
b , so

we observe that c
d ∼ a

b .

• (transitive) Let a
b ,

c
d ,

e
f ∈ Q. If a

b has the same reduced form as c
d and c

d has

the same reduced form as e
f , then certainly a

b has the same reduced form as
e
f

Some of these proofs are so basic, they need not need proof. The previous

relation on Q is really what we use to denote the equality of rationals. Two

rationals are not equal if they look the same, but if they have the same reduced

form! An equivalence relation is a generalization of the notion of equality of

mathematical objects. There are many diverse mathematical objects, and each

of these has a notion of when two objects are equal.Two functions are equal

if they map all the same elements to the same elements. Two matricies are

equal if their elements component wise. Two sets are equal if they contain the

same elements. This “sameness” of the elements is really defined up to equality

of those elements. Each mathematical object has a slightly different notion of

what equality means. Every notion of equality is an equivalence relation. Every

equivalence relation can be thought of as a kind of equality,

Theorem 69. Consider the relation ≡ over the set of all well formed proposi-

tions where Φ1 ≡ Φ2 when Φ1 and Φ2 have the same truth table45. Then ≡ is 45 equality of propositions is defined up to the
equivalence of their truth tablesan equivalence relation

Proof. We prove ≡ is reflexive, symmetric, and transitive.

• (reflexive) Every proposition has the same truth table as itself, so every

propositions truth table is equal to itself, thus Φ1 ≡ Φ1

• (symmetric) Let Φ1,Φ2 be propositions with Φ1 ≡ Φ2. Then they have the

same truth table, so certainly Φ2 ≡ Φ1

• (transitive) Let Φ1,Φ2,Φ3 be propositions with Φ1 ≡ Φ2 and Φ2 ≡ Φ3. Then

Φ1,Φ2,Φ3 all have the same truth table so Φ1 ≡ Φ3.

Theorem 70. |x− y| < 1 over R

Proof. content...

Theorem 71. |x− y| < 1 over N

Proof. content...

Theorem 72. linear recurrence like a + 3b is even

Proof. content...
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Theorem 73. Let Ω be any universe of discourse and consider a relation ∼
over P(Ω) with A ∼ B if and only if there exists a bijection f : A→ B. Then

∼ is an equivalence relation.

Proof. We prove ∼ is reflexive, symmetric, and transitive.

• (reflexive) For any set A ∈ P(Ω), there always exists a bijection f : A→ A

with f as the identity function, ∀a ∈ A(f(a) = a). Then A ∼ A

• (symmetric). For any sets A,B ∈ PS(Ω), let A ∼ B. Then there exists a

bijection f : A→ B. We previously proved the inverse of a bijection is also

a bijection, so there exist a bijection f−1 : B → A, so B ∼ A.

• Let A,B,C ∈ P(Ω) and let A ∼ B and B ∼ C. Then there exists bijections

f : A → B and g : B → C. We previously proved that the composition

of bijections is a bijection so g ◦ f : A → C is a bijection from A to C, so

A ∼ C.

our most important one

Theorem 74. Let the relation (mod n) be defined over Z denoted by a ≡ b

(mod n)46 if n | (a− b). Then modular equivalence is an equivalence relation 46 Sometimes, also denoted as a ≡n b

Proof. We prove a ≡ b (mod n) is an equivalence relation

• Since n · 0 = 0, we know n | 0 for any integer n, so n | (a − a) and a ≡ a

(mod n).

• Since

Equivalence Classes

Definition 0.0.41. equivalence classes

examples

Theorem 75. Let R be an equivalence relation on A. Then the equivalence

classes form a partition of the set A.

Proof. We need to prove the equivalence classes cover the set A, and are all

pairwise disjoint.

examples



Modular Arithmetic

Definition 0.0.42. base representation as a sum of powers

Theorem 76. Let n, b ∈ N and b ≥ 2. Then n can be uniquely represented in

base b.

Proof. We first prove the basis representation exists, then we show its is unique

We proceed by induction on n. Our base case is n = 0 and we see that 0 can

be written in base b as “0”. Now suppose our induction hypthesis, that k can

be written in base b. We prove k + 1 can be written in base b. Since k can be

written in base b, there exists d0, ..., dl ∈ {0, ..., b− 1} such that

k = dlb
l + ...+ d1b+ d0

Consider

k + 1 = dlb
l + ...+ d1b+ d0 + 1

Let i be the smallest number such that di is the first digit of k such that

di < b− 1. Then let d′i = di + 1 and di − 1 = ... = d0 = 0. Then

k + 1 = (dlb
l + ...+ dib

i + ...+ d1b+ d0) + 1

= dlb
l + ...+ (di + 1)bi + 0 · bi−1 + ...+ 0 · b+ 0

= dlb
l + ...+ d′ib

i + ...+ d′1 · b+ d0

which is a basis representation of k + 1, thus by induction we have proven all

n ∈ N has a representation in base b.

Now we prove uniqueness. Suppose n has two representations

n = dlb
l + ...+ d2b

2 + d1b+ d0

n = d′lb
l + ...+ d′2b

2 + d′1b+ d′0

Without loss of generality, we may assume these representations have the same

length (for if they don’t, add leading zeroes to the shorter one). We prove these

representations are the same, and that 0 ≤ i ≤ l that di = d′i. Since these two

representations are for the same number, they are equal. What happens if we

take both equations mod b?

dlb
l + ...+ d2b

2 + d1b+ d0 = d′lb
l + ...+ d′2b

2 + d′1b+ d′0

b(dlb
l−1 + ...+ d2b+ d1) + d0 = b(d′lb

l−1 + ...+ d′2b+ d′1) + d′0

d0 ≡ d′0 (mod b)
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Since d0, d
′
0 ∈ {0, ..., b− 1}, not only are they congruent mod b, they are equal.

Thus d0 = d′0.

b(dlb
l−1 + ...+ d2b+ d1) + d0 = b(d′lb

l−1 + ...+ d′2b+ d′1) + d′0

b(dlb
l−1 + ...+ d2b+ d1) = b(d′lb

l−1 + ...+ d′2b+ d′1)

dlb
l−1 + ...+ d2b+ d1 = d′lb

l−1 + ...+ d′2b+ d′1

Were we to mod by b now we would observe d1 = d1. We repeat this argument

l− 1 additional times and see that for all 0 ≤ i ≤ l that di = d′i, and thus, every

numbers representation is unique.



Cardinalities of Sets

Recall the main motivation of the class. We wish to understand the corre-

spondence between infinite objects and their finite descriptions. Previously,

we have studied the finite objects quite well. Let us now undertake a rigorous

understanding of the infinite.

A quote often misattributed to Aristotle is that “The whole is greater than

any part”. Ancient Greek philosophy is often too vague to argue with. It

certainly appears true. We may formalize this notion with sets.

Definition 0.0.43 (Aristotelian Property). If A ⊊ B then |A| ⪇ |B|

Despite this, Galileo discovered what he called a paradox. The squares of

numbers could be put into correspondence with the numbers.

1 2 3 4 5 ... n ...

1 4 9 16 25 ... n2 ...

The squares are part of the numbers, yet by putting them in a 1-1 correspondence,

it was apparent that there are as many squares as there are numbers. A strict

part could be equal to the whole. Was this a counter-example to the Aristotelian

property? The Aristotelian property is generalized from the intuition about

finite sets. Galileo here, assumes that a “whole” could be an infinite set.47 The 47 Both Aristotle and Galileo did not know what
a set was.Aristotelian property is not true for infinite sets. But can a set even be infinite?

Today, without hesitation, we may consider sets to contain infinitely many

elements, but this was not always the case historically. Infinity used to be

just a figure of speech, or perhaps a useful abstraction, not a real thing. It

was understood that you could not discuss N as a set, only as the outcome

of a iterative, never ending process. The natural numbers are constructed by

induction.

• 0 ∈ N

• ∀n ∈ N =⇒ S(n) ∈ N

Because this process is ceaseless, it does not make sense to discuss |N|, much like

it doesn’t make sense to discuss f(x) = 1/x evaluated at x = 0. The sequence

0,1,2,... could be discussed, but not the set {0, 1, 2, ...} The infinite could only

be discussed in terms of limits??, and never addressed directly. Georg Cantor

disagreed. In the late 19th century, he undertook a serious attempt to formalize

and understand the infinite, generalizing ideas from finite sets to infinite ones.

Generalizing our Intuition

We denote the cardinality of the set S as |S|. If S is finite then |S| is just

the size, the number of elements. But what is the cardinality of the natural
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numbers |N|? Certainly for all finite sets F , it is true that |F | < |N|. When

we talk about the cardinality of infinite sets, we want to preserve our intuition

as much as possible. If A is a subset of B then A ⊊ B =⇒ |A| ≤ |B|. We

have observed for infinite sets that we do not have the Aristotelian property:

A ⊊ B ⇏ |A| ⪇ |B| when A,B are infinite.

Definition 0.0.44. We say a set S is countable if |S| ≤ |N|. All finite sets

are countable. We say a set is countably infinite if |S| = |N|.

How can we show that a set has the same cardinality as natural numbers?

Definition 0.0.45 (Injection). Recall f : A → B is one to one (injective) if

f(a) = f(b) =⇒ a = b.

Definition 0.0.46 (Surjection). Recall f : A→ B is onto (surjective) if ∀y ∃x
such that f(x) = y. There do not exist any unmapped elements in the co-domain.

Definition 0.0.47 (Bijection). A function is said to be bijective if it is both

injective and surjective.

See how both 3 and 4 map to the same element? That makes this function

not injective. See how A is unmapped? That makes this function also not

surjective. Bijections gives us a natural “same size-ness” because if there is a

bijection between two sets, the elements seem to pair up nicely, meaning they

should intuitively have the same size.

Definition 0.0.48. We say a set S is countably infinite if ∃ f : N → S which

is a bijection. Recall the inverse of a bijection is also a bijection so equivalently

if ∃ g : S → N which is bijective.

To prove that a set is countably infinite, you need only to put it in corre-

spondence with the naturals, like Galileo did.

Examples of Countably Infinite Sets

Those “other naturals”

Other groups may not consider zero to be a natural. Lets prove it doesn’t really

matter, |N| = |N\{0}|. Recall that N = {0, 1, 2, 3, ...} and N\{0} = {1, 2, 3, ...}.
To prove these sets have the same cardinality, we give an obvious bijection.

Namely f : N → N \ {0} by f(n) = n+ 1. The elements pair up obviously like

0 → 1, 1 → 2 and so on, so our function is certainly bijective. This shows that

if you add or remove a constant amount of elements from a countably infinite

set, its still countably infinite.

Theorem 77. The function f : N → N \ {0} defined by f(n) = n + 1 is a

bijection

Proof. We first prove f is injective. Let f(n) = f(m). We prove n = m

f(n) = f(m)

n+ 1 = m+ 1

n = m

Now we prove f is surjective. Let r ∈ N \ {0}. We prove there exists N ∈ N
such that f(n) = r. Consider n = r− 1. Since r > 0, we know r− 1 ∈ N. Then

f(n) = f(r − 1) = (r − 1) + 1 = r

Since we have proven f is injective and surjective, it is bijective.
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The Evens

What is the cardinality of the even numbers? Define 2N = {0, 2, 4, 8, ...}. Our

bijection is again obviously f(n) = 2n. This shows that “half” of a countably

infinite set is still countably infinite.

The Integers

Recall Z = {−2,−1, 0, 1, 2, ...}. When you are asked to give a bijection, it is

equivalent to showing that you can order the elements of a set in some way.

Intuitively, if you can “count” them. A bad idea is to first order the elements

like 0,1,2,... because then we will never reach the negative numbers. Since -1

never appears in this ordering, the map is not surjective. A better idea is to

dovetail the negative and positive integers in the following way.

If you were to actually work out what this bijection would be like functionally,

you would get

f(n) =

−n
2 n is even

n+1
2 n is odd

You should convince yourself it is a bijection. Since every number appears

atleast once in the ordering, it is surjective. Since each number appears no

more than once, it is injective, so it must be bijective.

The integers feel like “twice as many” of the naturals so this can show that if

you “double” a countably infinite set, it remains countably infinite. A countably

infinite set also need not be well-ordered, it need not have a least element.

The Rationals

We define the rational numbers48 as Q = { a
b | a, b ∈ N; a, b ̸= 0}. They do not 48 The rationals can actually contain negatives

and zero but suppose that we are only in consid-
eration of the positive non-zero rationals

contain repetitions, so 1
1 ,

2
2 are not distinct. Rational numbers have some very

different properties than the previous examples. For example for the natural

numbers, there is only a finite number of naturals between any two naturals,

but this isn’t true for the rationals.

• ∃x ∈ N where 0 < x < 1 ? no

• ∃x ∈ Q where a
b < x < c

d ? yes

The naturals appear in discrete steps, but between any two rationals, there

exists an infinite amount of rationals. Why? The average of any two rationals

is a rational, so the midpoint between any two, you will find a rational49. 49 If you wanted to work it out, the rational

between a
b
, c
d
is a

b
+ ( c

d
− a

b
)/2. You could

simplify that with arithmetic it into numera-

tor/denominator form.

Recursively applying this idea will give you an infinite amount between any

two! The mathematically correct term for this is “dense”. Could there be more

rationals than naturals? It feels like there is a lot more of them. It turns out

even despite this, the rationals are still only countably infinite, that |N| = |Q|.
This bijection is a little less obvious. Put all the representations of rationals

into a table with columns and rows ordered by numerators and denominators.

This table contains duplicates since 1/1 and 2/2 are the same rational. A bad

idea would be to try to go left to right row by row. You would never reach the

second row. The idea is then to compose the anti-diagonals ignoring duplicates!
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This certainly is a bijection. Its surjective since every element is hit somewhere

in this criss-crossing, since every element is on some anti-diagonal. Its injective

as every element only can appear once in this ordering since we define it to

ignore duplicates.

Here’s another solution. Consider the function f(a/b) = 2a3b. This function

is bijective to some set S = {2i3j | i, j ∈ N≥1}. Notice that |Q| = |S|. Also

notice that since S ⊆ N then |S| ≤ |N|. So by transitivity |Q| = |S| ≤ |N| =⇒
|Q| ≤ |N|. We also know that |N| ≤ |Q| by the injection f(a) = a

1 so combined

we see that |Q| = |N|. We could have also just observed that since |Q| ≤ |N|,
we know Q is countable, as subsets of countable sets are countable. Observing

that Q is infinite is enough to show it must be countably infinite.

Cartesian Products

The rationals are really just like, pairs of numbers. If we are tasked with finding

a bijection f : N × N → N, we can immediately apply the same argument

with the table and anti-diagonals. This is enough to prove that the cartesian

product of two countable sets is countable. We can also immediately induct

this argument to get that finitely many cartesian products of countable sets

is countable. Notice that N× N× N = (N× N)× N. We know that N× N is

countable. It remains countable if we perform one more cartesian product, and

so on.

Hillbert’s Hotel

Suppose we have an infinitely tall hotel of countably infinite rooms. Each room

already has a guest, so the hotel is full.

• A single new guest arrives. Although every room already has a guest, the

hotel staff aren’t worried. They make each old guest move from room n into

the next room, room n+ 1. Now room zero is empty for the new guest.

• Suppose an infinitely long bus arrives with a countably infinite number of

new guests. Even though the hotel seemingly has no space, the new guests

can still be accommodated. Tell each old guest to move from room n to room

2n, then each of the new guests to move into the now empty odd-numbered

rooms.

• What if a countably infinite number of infinitely long busses arrive, each with

countably infinite number of guests? I claim they can still be accommodated,

and I leave it to you as an exercise to figure out how.

Cantor’s Theorem

It would seem that you can play with infinity in most ways and remain countably

infinite. If we were to say that |N| = ∞, then it would seem that ∞+3, 3 ·∞,∞3

all equal to ∞. These are all polynomially related. Could it be the case that

2∞ = ∞? It turns out, no. Lets denote |N| = ℵ0 and 2ℵ0 = ℵ1. We will show

these are two very different infinites. We do not use ∞, as we need a way to
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distinguish between the kinds of infinite. We represent these as cardinals, ℵ0,ℵ1,

and so on. These are not numbers, they are cardinals. Cantor’s theorem tells

us that there is no bijection between any set, and its power set50. 50 Recall that a power set is the set of all subsets

of a set

Theorem 78 (Cantor). If A is any set and P(A) is the set containing all

subsets of A then

|A| ⪇ |P(A)|

Note that its obviously true for finite sets. if A = {x, y} then P(A) =

{∅, {x}, {y}, {x, y}} and |P(A)| = 2|A|.

Diagonalization

Diagonalization is an extremely important proof technique. Perhaps one of the

most important in history. We will prove Cantor’s theorem several times to

emphasize diagonalization. First we prove Cantor’s theorem for the special case

of the naturals.

Theorem 79.

|N| ⪇ |P(N)|

Proof. Assume to the contrary that there does exist a bijection f : N → P(N).
Then there exists a way to totally order the subsets of N like S0, S1, S2, ...

where every possible subset of the naturals appear in this ordering exactly once.

Consider the set D defined such that for all i ∈ N

i ∈ D ⇐⇒ i ̸∈ Si (42)

i ̸∈ D ⇐⇒ i ∈ Si (43)

We go to the ith set in the ordering, see if it contains the ith number, and if it

does, we define it not to be in D, and if it doesn’t, we define D to include it.

Notice that D is a set of numbers, so D ⊆ N, or that D ∈ P(N). Then there

exists a spot for it in line in our total ordering. There exists a number j such

that D = Sj . Two sets are equal if they contain the same elements, so we know

that

j ∈ D ⇐⇒ j ∈ Sj

But by the definition of how we defined D, we know that

j ∈ D ⇐⇒ j ̸∈ Sj

Combining these, we see

j ∈ Sj ⇐⇒ j ̸∈ Sj

A contradiction.

Let us remark on the proof. It is important that you understand that the

proof is not circular. A circular proof is one which assumes its conclusion

as a premise, so it demonstrates nothing. Nothing circular is going on here,

but something else definitely is; self reference. The set D is defined against

the ordering of subsets S0, S1... and for a different ordering, there must be a

different D. To further illustrate the mechanics of this proof technique, lets do

it again. We will prove Cantor’s theorem for the countably infinite case using

diagonalization.
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Theorem 80. Let A be any countably infinite set. Then

|A| ⪇ |P(A)|

Proof. First we define the characterisitic sequence of a subset. Assume that A

is countably infinite. Then its elements may be ordered like a0, a1, ... If S ⊆ A,

to S we associate the infinitely long binary sequence χ ∈ Σ∞ such that

χ[i] =

1 ai ∈ S

0 ai ̸∈ S

For example

• if S = {0, 3, 4} then χ = 10011000000...

• if S = 2N then χ = 10101010...

• if S = N then χ = 11111...

• if S = ∅ then χ = 00000...

Notice immediately that to each subset, corresponds a unique characteristic

sequence. There is a bijection between the set of infinitely long binary sequences,

and the subsets of a countably infinite set. The infinite sequence of bits exactly

characterizes which elements are and aren’t in a subset. What is a subset if

not just a selection of the elements? It is important to remember that these

sequences are infinitely long.

Let us proceed with the proof. Assume to the contrary that there exists some

bijection f : A → P(A) with A countably infinite. The elements of P(A) are

exactly the subsets of A. So then there exists an ordering of the elements of P(A)

like S0, S1, S2, ...., where every element is in this ordering. Let χ0, χ1, χ2, ... be

the characteristic sequences of S0, S1, S2, ... ordered in the same way. We define

“the diagonal” D to be the infinite binary sequence with digits defined as

D[i] = 1− χi[i] = χi[i]

We take our ordering of characteristic sequences, find the ith one, find its ith

digit, and then set the ith digit of D to be the exact opposite of that. D certainly

is an infinite binary sequence, so it must be the characteristic sequence of some

subset. Since f is bijective, D exists somewhere in our ordering χ0, χ1, χ2, ....

There exists a number j such that D = χj What is the jth bit of D? D[j]?

Well, since D = χj then D[j] = χj [j]. But recall how we originally defined D,

where D[j] = 1− χj [j]. Together, these imply that

χj [j] = χj [j]

A digit cannot be zero and one simultaneously! Therefore, we see that we have

reached a contradiction, and |P(A)| is not countable.

Why is it called diagonalization? Well suppose you listed χ0, χ1, ... into a

table with each χi as a row:

χ0 0 1 1 0 1 1 0 ...

χ1 0 1 0 0 0 0 0 ...

χ2 0 0 0 0 1 1 1 ...

χ3 0 0 1 1 0 0 1 ...

χ4 0 1 0 1 1 0 1 ...

χ5 0 0 1 1 1 0 0 ...

... ...
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Then D = 101001... is the opposite of the diagonal of the table. Since D is

different than any row of the table, it exists no where in the table. For each

row, it is defined to be different in atleast one place, namely the diagonal (i, i)

but maybe more. Could it be χ3? No because χ3[3] = 1 and D[3] = 0. Could it

be χ4? no, and so on. We assumed to the contrary that these sequences were

countable and that we can order them, but no matter how we order them, we

can always construct an element not in the ordering. So there can never exist a

bijection f : A→ P(A).

This is where the term diagonalization comes from. The element you are

constructing is the negation of the diagonal of this implicit table. The diagonal

entries are at coordinate (i, i) and the elements of D are defined considering

if i ∈ Si or not. It is important that you understand that the diagonalization

technique does have this nice visualization, but the technique goes far beyond

this. When doing a proof by diagonalization, do not draw a table and define

its elements. The table is completely implicit. This is important. See the first

proof we did of diagonalization, in the proof by contradiction, the absurdity we

derived was completely based on logic, and made no reference to a table. You

will apply diagonalization to things which cannot be nicely visualized as a table.

Let us now prove Cantor’s theorem in the general case, so it may apply even

when A is uncountable.

Theorem 81 (Cantor’s Theorem). If A is any set, then

|A| ⪇ |P(A)|

Proof. Assume to the contrary that there is a bijection between A and P(A)

Consider the subset of A such that the bijection f doesn’t map x to a set

containing x.

D = {x ∈ A | x ̸∈ f(x)}

Since D ⊆ A, we know D ∈ P(A). Since f is a bijection, it is also surjective, so

there must exist some j such that D = f(j). Is j ∈ D? Two sets are equal if

they have the same elements

j ∈ D ⇐⇒ j ∈ f(j)

But by definition of D, we have that

j ∈ D ⇐⇒ j ̸∈ f(j)

contradiction.

For any set A, there always exists an injection f : A → P(A), namely

f(x) = {x}. We proved there cannot exist a bijection, but if there is always an

injection, that means there is never a surjection. If every map from a set to

its powerset is not surjective, so there is an element of the codomain always

goes unmapped for every map. If cardinality is supposed to be an extension

of the intuition about size, P(A) is “bigger” than A, even when A is infinite.

There are atleast two infinities! In fact, we can remark that there are atleast a

countably infinite number of infinities.

|N| ⪇ |P(N)| ⪇ |P(P(N))| ⪇ |P(P(P(N)))| ⪇ ...
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Uncountability

We have now shown that P(A) is not countably infinite when A is countably

infinite, it is something greater. We call these sets uncountable. Intuitively,

a countably infinite set is one in which you can “count”. It feels infinite in a

discrete sense. At some element, you can choose a next one. Conversely, an

uncountable set is literally “uncountable”. Imagine a stream of water. What are

the units? What is the “next” water?51. It feels infinite in a continuous sense. 51 If you recall that water is atoms then tech-

nically water is discrete and countable but the
intuition is there even if the science isn’t

By a similar diagonalization argument, you can prove the real interval (0, 1]

is uncountable, by diagonalizing over the decimal expansions beginning with

zero52. Given that (0, 1] is uncountable, you can prove that R≥0 is uncountable 52 recall that 0.9 = 1. There are a few proofs

of this. One is that 1 − 0.999... = 0.0000... and

another is to notice that 0.999... = 0.333... +
0.333...+ 0.333... = 3(0.333...) = 3 1

3
= 1

by the bijection f(r) = 1/r − 1. Essentially you can stretch the unit sized

interval over the entire real positive line.

How to Prove Countability

Union of Two Countable Sets

Let A,B be countably infinite. Then there exists bijections f : A → N,
g : B → N. We give a bijection for A ∪B as

h(x) =

2f(x) if x ∈ A

2g(x) + 1 if x ∈ B

We leave it to you as an exercise to show its bijective, reducing to the bijectivity

of f, g.

Countable Union of Countable Sets

A countable union of countable sets is countable. Most unions you have ever

seen have been countable. They index over N with i = 0, 1, 2, 3, ... but the index

set of a union need not be countable in general. Consider⋃
x∈R

{x} = R

Here we index over R, an uncountable set. Each element is a singleton containing

just x, it is finite and therefore countable. But our union is over R, uncountable.
We have an uncountable union of countable sets, yet, it is uncountable.

Lets prove that a countable union of countable sets is countable. Let A be

countable and each Si be countable. Consider the map

f : A× N →
⋃
i∈A

Si

Such that f((i, j)) maps to the j’th element of Si. Note that this map is

surjective so |A × N| ≥ | ∪i∈A Si| and since A × N is countable, so is our

countable union.

Three solutions

Let’s do a problem. Let N∗
≥1 be the set of finite sequences of natural numbers

greater than one. It may contain things like [1, 11, 1] or [23, 100, 18] and so on.

We give three solutions to showing this set is countably infinite.
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• LetAi = sequences which sum to i, for exampleA3 would contain [1, 1, 1], [3], [2, 1]

and so on. Since each sequence sums to something, The Ai’s partition N∗
≥1

N∗
≥1 =

∞⋃
i=1

Ai

Notice that each Ai is finite, so countable. Then N∗
≥1 is a countable union of

countable sets, so its countable.

• consider the map: F ([x1, x2, x3, ..., xk]) = 2x13x25x3 ...pxk

k or more generally

F ([x1, ..., xk]) =

k∏
i=1

pxi
i

where pi is the i’th prime. By the fundamental theorem of arithmetic, every

number has a unique prime factorization, and this immediately gives us that

our map is injective. Suppose two sequences exist a, b with F (a) = F (b).

Then they are divisible by exactly the same power of two, so then they

share the same first element, x1. Repeating this argument we see that

a = b. Therefore, we have an injection F : N∗
≥1 → N which implies that it is

countable.

• There is a injection hiding in us all along. What is the difference between

the two sequences [1, 1] and [2, 3, 4]? Is it the length? Is it the number of

elements? I put these on the board, you immediately know that the sequences

are different. You didn’t check the lengths or the elements, so how you did

you know? The answer is that the two sequences are different because they

look different! Define our injection f(a) = “a”. That is, it is the string

casting function. Now its certainly true that “[1, 1]” ̸= “[2, 3, 4]”. We observe

that f(N∗
≥1

) ⊆ Σ∗ and subsets of countable sets are countable. Why is Σ∗

countable? It is the countable union of countable sets. Recall

Σ∗ =

∞⋃
i=0

Σi

This last point leads us to a powerful theorem called the Typewriter principle:

Theorem 82. If some set S has elements a ∈ S where every element can be

uniquely described by a string. Then S is countable.

Proof. If every element of S can uniquely be described by a string, then

f : S → Σ∗ is injective. The image f(S) is a set of strings, so f(S) ⊆ Σ∗ and

f is certainly bijective to f(S) so we see that S is bijective to a subset of a

countable set, and is therefore, countable.

This is not sufficient to show uncountability. Showing some elements of a set

have some infinite encoding isn’t enough, since you must also show that there

does not exist a unique finite encoding. This turns out to be as hard as finding

a bijection. Please only use it to show countability. Also take naturals of the

contrapositive. If a set is uncountable, its elements may not all be able to be

uniquely described by strings.

We now have an entire toolbox to show a set is countable. Let C be any

countable set, and we want to show S is countable. We can do any of the

following
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• Give a bijection f : C → S

• Give a bijection f : S → C

• Give an injection f : S → C

• Give a surjection f : C → S

• Give an ordering of every element where no element appears twice

• Show that S is a subset of some countable set, since

S ⊆ C =⇒ |S| ≤ |C| =⇒ |S| ≤ ℵ0

• Show that S is representable as a countable union of countable sets

• Arrange the elements of S into a grid and compose the anti-diagonals, or

some other pattern to implicitly give a bijection

• Show it is the closed under operations we know do not change the cardinality

of the set, for example S = ({C × C} ∪ {0, 1})k.

• Show that its elements can be uniquely represented as finite length strings

and apply the typewriter principle.

Common known countable sets include N,Z,Σ∗,N∗, and so on. Every lan-

guage is also countable, as it is a subset of a countable set.

How to prove Uncountability

Let U be some known uncountable set. We give several ways to show a set S is

uncountable.

• Diagonalization

• Find a bijection f : S → U

• Show that S contains some uncountable subset. Since if U ⊆ S is uncountable

then |U | ≤ |S| =⇒ ℵ1 ≤ |S|

• Find an injection f : U → S

• Apply Cantor’s theorem, show that it is the powerset P(A) of some infinite

A

We do have far fewer ways to show a set is uncountable than to show a set is

countable. Which tool you use depends on ease of use. Common uncountable

sets include P(Σ∗),P(N),R,C, and others.



Disivibility of Integers

In number theory, we usually don’t like division as an operation. The integers

Z are closed under addition,multiplication, and subtraction, but not division.

10, 7 ∈ Z but 10
7 ̸∈ Z. Rather than speak of division as a some fractional piece,

we speak of division as a whole and a remainder. To a number theorist, you

divide a number into a pair of numbers, a part and a remainder. For example

30

7
=

4 · 7 + 2

7
= 4 +

2

7

Rather than discuss 30
7 as a piece of something, we would rather say that 30

divided by 7 is the pair of numbers (4, 2). Lets prove such a pair always uniquely

exists.53 53 Why do we care about such a form? Well if

n = dq + r then

n

d
=

dq + r

d
= q +

r

d

We refer to d as the divisor, q as the quotient,
and r as the remainder. Note that this theorem
is often called “the division algorithm”, but its

not an algorithm.

Theorem 83 (The Division Theorem). Let n, d be positive numbers. Then

there exists unique positive numbers q, r such that n = qd+ r and 0 ≤ r < d

Proof. Let

S = {n− dx | x ∈ Z and b− ax ≥ 0}

First observe that S is not empty. Choose x = 0 and observe that n ∈ S. Next,

observe that S only contains natural numbers. By closure, it only contains

integers, and it is conditioned on containing non-negative integers. Therefore,

S ⊆ N. By the Well-Ordering Principle, every non-empty subset of the natural

numbers contains a least element. Let this least element be r. Since r ∈ S,

there exists q ∈ Z such that r = n− dq, or that n = qd+ r. Now we need to

prove that 0 ≤ r < d. We know that since S ⊆ N, and r ∈ S that r ∈ N, so
r ≥ 0.

We only need to show that r < d. Assume to the contrary that r ≥ d. Then

there is some integer t ≥ 0 such that r = d+ t, where t balances the inequality

to become an equality. Then t = r − d. By assumption that r ≥ d, and that d

is positive, we observe that t < r. But then

t = r − d = n− dq − d = n− d(q + 1)

Since q + 1 ∈ Z and t ≥ 0, this implies that t ∈ S, but if t < r, this contradicts

definition of r as the least element of S.

We have proven existence. Now we prove uniqueness. Suppose that for

positive numbers n, d there exists distinct pairs (q, r) and (q′, r′) such that

n = dq + r and n = dq′ + r′. We prove q = q′ and r = r′. Without loss of

generality, suppose r′ ≥ r. Since these are two divisor forms of n, they are

equal.
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n = dq + r = dq′ + r′ (44)

dq − dq′ = r′ − r (45)

d(q − q′) = r′ − r (46)

(47)

Then d | (r′ − r), but since d > (r′ − r) it must be that r′ − r = 0, or r = r′.

Then

d(q − q′) = r′ − r (48)

d(q − q′) = 0 (49)

q − q′ = 0 (50)

q = q′ (51)

Thus, q = q′ and r = r′ and we see our pair (q, r) is unique.

Greatest Common Divisor

Definition 0.0.49. Let a, b be two integers both not zero. We define the greatest

common divisor of a, b as a number d ≥ 1 such that d | a and d | b. We denote

the greatest common divisor of a, b as gcd(a, b)

gcd(a, b) computes the greatest common divisor of a, b. For example,

gcd(105, 30) = gcd(3 · 5 · 7, 2 · 3 · 5) = 3 · 5 = 15. You can analogously think of

gcd like a set intersection. What number is greatest to divide into both a, b? If

a = 22 and b = 23, then their greatest common divisor must be 22.

The following is an easy divide and conquer algorithm discovered long ago

by Euclid to calculate gcd of any two numbers.

function gcd(a, b)

if b = 0

return a

else

return gcd(b, a mod b)

We can prove correctness by proving that gcd(a, b) = gcd(a, a− b). Repeatedly

subtracting b from a will give you a (mod b). We will show these two numbers

to be equal by proving that they divide each other. If two numbers divide each

other, they must be equal, as a number is greater than or equal to any of its

factors.

Figure 10: You should think of the execution of
the euclidean algorithm as a swapping of pairs
for a smaller pair of numbers with the same gcd.

Theorem 84.

gcd(a, b) = gcd(b, a− b)

Proof. Let d = gcd(a, b). If d | a, and d | b, then there exists integers k, l such

that a = dk and b = dl. So, a− b = dk− dl = d(k− l). Since a− b is an integer,

then d | (a− b). So, d | gcd(b, a− b).

Let gcd(b, a− b) = d′. If d′ | b, d′ | (a− b), then there exists integers s, t such

that d′s = b and d′t = a− b. Then a = (a− b) + b = d′t+ d′s = d′(t+ s). Since

t+ s is an integer, then d′|a. Since d′|a and d′|b, then d′| gcd(a, b). Since d, d′

divide each other and are nonzero, it can only be the case that d = d′.
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To write the execution of the algorithm, put the larger number on the left

hand side, and represent it in division form a = bq + r. Then repeatedly chain

down.

gcd(25, 11) =

25 = 2 · 11 + 3

11 = 3 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

When the last remainder is zero, then you have your greatest common divisor.

Extended Euclidean Algorithm

Theorem 85 (Bezout’s). For any numbers a, b there exists integers s, t such

that

gcd(a, b) = as+ bt

proof by WOP
54 54 kuttaka

Bezout’s theorem is incredibly important. We will be able to show you how to

calculate s, t given a, b, gcd(a, b). The calculation simply takes the execution of

the euclidean algorithm, and uses it to find s, t. As we computed the euclidean

algorithm, we went through a sequence of pairs

(25, 11) → (11, 3) → (3, 2) → (2, 1) → (1, 0)

We will work backwards through the pairs, until we are left with a linear

combination of the first pair. For example, we will replace 3 with a linear

combination of 25 and 11. The way we will do this, is by taking the steps of the

euclidean algorithm and substituting them back into each other back up until

the first one. First, take your equations, and rewrite them with the remainder

on one side

gcd(25, 11) =

25 = 2 · 11 + 3 3 = (1)25 + (−2)11

11 = 3 · 3 + 2 2 = (1)11 + (−3)3

3 = 1 · 2 + 1 1 = (1)3 + (−1)2

2 = 2 · 1 + 0 0 = (1)2 + (−2)1

Our pairs are (1,0), (2,1), (3,2), (11,3) and (25,11). Let us compute s, t such

that 25s+ 11t = 1 working backwards First, write the gcd(a, b) = 1 as a linear

combination of the first pair, (1,0)

1 = 1 + 0

Next, we want to go from pair (1,0) to pair (2,1) so we will use the last

equation of 0 = ... and substitute this in.

1 = 1 + 0 = (52)

1 + [(1)2 + (−2)1] = (53)

(1)2 + (−1)1 (54)
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Note how we have written the linear combination of (1,0) as a linear combi-

nation of (2,1). Let us substitute out the 1 for a linear combination of 3 and 2.

Since we leave the 2 unchanged, we will have a linear combination of 3 and 2.

1 = (1)2 + (−1)1 =

(1)2 + (−1)[(1)3 + (−1)2] =

(−1)3 + (2)2

Now we replace the 2 with the linear combination of 11 and 3.

1 = (−1)3 + (2)2 =

(−1)3 + (2)[(1)11 + (−3)3] =

(2)11 + (−7)3

Replace 3 with a linear combination of 25 and 11 and we will be complete

(2)11 + (−7)3 =

(2)11 + (−7)[(1)25 + (−2)11] =

(−7)25 + (16)11

So we may conclude that

1 = 25(−7) + 11(16)

For a, b = 25, 11 our values of s, t = −7, 16. These are not guaranteed to

be unique or minimal, and you may find other numbers which work, but the

extended Eucldean algorithm is guaranteed to give you a pair of numbers s, t

to satisfy Bezout’s theorem.

Least Common Multiple

Definition 0.0.50. Let a, b be numbers, both not zero. Then the least common

multiple of a, b is the least number l such that a | l and b | l.

• lcm(24, 10) = 120

• lcm(2a, 2b) = 2max(a,b)

• lcm(p, q) = pq if p, q are primes.

One way to compute the lcm is to write out two lists of multiples, and find

the first one to appear in both. Suppose we wanted to compute lcm(6, 15).

6, 12, 18, 24,30, ... (55)

15,30, ... (56)

LCM and GCD share a kind of duality. Multiplies are bigger than their

numbers, and the LCM is the least multiple. Divisors are smaller than their

numbers, and the GCD is the greatest divisor. The LCM is analogous to a set

union, and the GCD is analogous to a set intersection. We can take advantage

of this duality for an efficient way to compute the LCM of two numbers.
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Theorem 86. For any numbers a, b ≥ 1 it is true that

gcd(a, b)lcm(a, b) = ab

Proof. By the fundamental theorem of arithmetic, a, b have unique prime

factorizations. Without loss of generality, suppose that a has pk as its largest

prime divisor and b has pl as its largest prime divisor with k ≥ l. Suppose the

factorizations are

a = 2a13a2 ...pak

k =

k∏
i=1

pai
i

b = 2b13b2 ...pbll =

l∏
i=1

pbii

Since gcd(a, b) | a and gcd(a, b) | b we know that

gcd(a, b) = 2min(a1,b1)3min(a2,b2) · ... · pmin(ak,bk)
k =

k∏
i=1

p
min(ai,bi)
i

Similarly, the least common multiple must be large enough to accomodate all

the prime divisors of both a, b so

lcm(a, b) = 2max(a1,b1)3max(a2,b2) · ... · pmax(ak,bk)
k =

k∏
i=1

p
max(ai,bi)
i

Since k ≥ l, the values for bi with i > l may be zero. Then

gcd(a, b) · lcm(a, b) =( k∏
i=1

p
min(ai,bi)
i

)
·
( k∏

i=1

p
max(ai,bi)
i

)
=

( k∏
i=1

p
min(ai,bi)+max(ai,bi)
i

)
For any two numbers, x, y it is true that max(x, y) + min(x, y) = x+ y. One

will be the min, the other must be the max. So

( k∏
i=1

p
min(ai,bi)+max(ai,bi)
i

)
=
( k∏

i=1

pai+bi
i

)
=

( k∏
i=1

pai
i p

bi
i

)
=

( k∏
i=1

pai
i

)
·
( k∏

i=1

pbii

)
= ab

Corollary 87.

lcm(a, b) =
ab

gcd(a, b)

This gives us a useful way to compute the least common multiple of two

numbers. Simply compute their product, use the euclidean algorithm and

perform an integer division.





Group Theory

Definition 0.0.51. A group is a set and operation (G, ·) with the following

four properties

• identity ∃e ∈ G∀a ∈ Gae = ea = a

• associativity ∀a, b, c ∈ Ga(bc) = (ab)c

• closure ∀a, b ∈ Gab ∈ G

• inverses ∀a ∈ G∃a−1 ∈ Gaa−1 = a−1a = e

why groups

Theorem 88. a−1 exists mod n if and only if gcd(a, n) = 1

Proof. ( =⇒ ) Suppose that a−1 exists mod n. By the definition of the

inverse aa−1 ≡ 1 (mod n), so n | aa−1 − 1. Thus, there exists a c such that

nc = aa−1 − 1, or that nc+ aa−1 = 1. By Bezout’s theorem, we know that the

least positive linear combination of a, n is the gcd, so we may conclude that

gcd(a, n) ≤ 1, but since 1 divides all integers 1 ≥ gcd(a, b). We may then only

conclude that gcd(a, n) = 1

( ⇐= ) Let gcd(a, n) = 1. By Bezout’s theorem, there exists integers s, t

such that as+ nt = 1. If we mod by n, we observe that as ≡ 1 mod n. Since

Bezout’s asserts this s exists, then the inverse of a is s so the inverse exists.

actually a way to calculate the inverse

Corollary 89. (Zn \ {0}, · (mod n)) is a group if and only if n is prime.

Proof. we prove the contrapositive for the reverse implication. Suppose that n

is composite. Then there exists a number a such that a < n but a | n. Then
gcd(a, n) ̸= 1 and a−1 does not exist.

Just because certain elements don’t have inverses with respect to certain

moduli doesn’t mean we don’t study group theory with respect to these moduli.

We just throw out all the elements without inverses.

Definition 0.0.52. ZZp





The Chinese Remainder Theorem

Theorem 90. Let n1, n2, ..., nk be pairwise relatively prime, that is i ̸= j =⇒
gcd(ni, nj) = 1. Let r1, ..., rk be numbers. Then the system of equations

x ≡ r1 (mod n1)

x ≡ r2 (mod n2)

. . .

x ≡ r1 (mod nk)

has a unique solution x (mod n1 · ... · nk)

Proof. We first prove existence, then we prove uniqueness

Suppose there are two distinct solutions, we prove they are equal. Suppose

there is x, x′ that are solutions to the same system of equations

x ≡ r1 (mod n1)

x ≡ r2 (mod n2)

. . .

x ≡ rk (mod nk)

x′ ≡ r1 (mod n1)

x′ ≡ r2 (mod n2)

. . .

x′ ≡ rk (mod nk)

For all i, since x ≡ ri (mod ni) and x
′ ≡ ri (mod ni), by transitivity, we see

that x ≡ x′ (mod ni). Thus

x ≡ x′ (mod n1)

x ≡ x′ (mod n2)

. . .

x ≡ x′ (mod nk)

Calculation

Suppose you would actually like to calculate a solution to a system of linear

congruences. There are two ways
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Tabulation

Since our proof of the Chinese remainder theorem was constructive, Lets just

apply the construction. Let N = n1 · ... · nk, let Ni = N/ni, and let N ′
i = N−1

i

(mod n)i. We compute x =
∑k

i=1NiN
′
iri. Consider the following problem55 55 This is an original problem from the Sunzi

Suanjing, 400AD: “There are certain things

whose number is unknown. If we count them by
threes, we have two left over; by fives, we have

three left over; and by sevens, two are left over.
How many things are there?”

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

ni ri Ni N ′
i NiN

′
iri

3 2 35 2 140

5 3 21 1 63

7 2 15 1 30

Then x ≡ 140 + 63 + 30 ≡ 233 ≡ 23 (mod 105). So we see that that 23 is

the unique solution56 to the system of linear congruences. 56 Sunzi also included the solution: “Multiply the

number of units left over when counting in threes
by 70, add to the product of the number of units
left over when counting in fives by 21, and then

add the product of the number of units left over
when counting in sevens by 15. If the answer is
106 or more then subtract multiples of 105”. As

you can see, some information is left as exercise
to the reader.

Gaussian Elimination

Let us do the same problem and ensure we get the same answer.

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

First we check the moduli are all pairwise relatively prime. Since they are

all prime, this follows. Thus, we know a solution exists. We will compute

a solution x (mod 105). We take equation with the largest modulus, rewrite

it, and substitute it in to the one above it. Chaining these together, we will
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eventually compute our solution.

x ≡ 2 (mod 7)

x = 7k + 2 for some k

x ≡ 3 (mod 5)

7k + 2 ≡ 3 (mod 5)

2k ≡ 1 (mod 5)

k ≡ 2−1 (mod 5)

k ≡ 3 (mod 5)

k = 5l + 3 for some l

x = 7(5l + 3) + 2

x = (5 · 7)l + 23

x ≡ 2 (mod 3)

(5 · 7)l + 23 ≡ 2 (mod 3)

2l + 2 ≡ 2 (mod 3)

2l ≡ 0 (mod 3)

l ≡ 0 (mod 3)

l = 3r + 0 for some r

x = (5 · 7)(3r) + 23

x = (3 · 5 · 7)r + 23

x ≡ 23 (mod 105)

Both methods work equally well, the second method is slightly easier, the

first method is more mechanical. The only difficulty in the first method is you

have to compute k inverses. For the second method, this isn’t always necessary.





Fermat and Euler

Lemma 91. If gcd(a, n) = 1 and gcd(b, n) = 1 then gcd(ab, n) = 1.

Proof. Since a, b are relatively prime to n then a−1, b−1 exist (mod n). Observe

that ab(b−1a−1) ≡ 1 (mod n), so the inverse of ab exists, and is (b−1a−1), We

know an inverse of ab exists if and only if it is relatively prime so we conclude

that gcd(ab, n) = 1.

Theorem 92. If gcd(m,n) = 1 then φ(mn) = φ(m)φ(n)

Proof. Let m,n be relatively prime. We prove there exists a bijection

f : (Z/mnZ)× → (Z/mZ)× × (Z/nZ)×

Let c ∈ (Z/mnZ)× and consider the function f(c) = (a, b) where a ≡ c

(mod m) and b ≡ c (mod n). By our lemma, since gcd(c,mn) = 1 we know

gcd(c,m) = 1 and gcd(c, n) = 1. So (a, b) is in the co-domain we say it is in.

Next we prove that f is a bijection.

We first prove surjectivity. Let (a, b) ∈ (Z/mZ)× × (Z/nZ)×. We prove

there exists a c ∈ (Z/mnZ)× such that f(c) = (a, b). By the chinese remainder

theorem, we know if c ≡ a (mod m) and c ≡ b (mod n), then there exists a

solution c (mod mn). We apply the chinese remainder theorem to find this c.

The surjectivity of this function follows from the existence part of the CRT.

Next, we prove injectivity. Let f(c) = f(c′). We prove c ≡ c′ (mod mn).

f(c) = f(c′)

(c (mod m), c (mod n)) = (c′ (mod m), c′ (mod n))

c ≡ c′ mod m

c ≡ c′ mod n

By the chinese remainder theorem, we know that if x ≡ r1 (mod m) and x ≡ r2

(mod n) and if m,n are relatively prime, then there exists a unique solution x

(mod mn). Ifc c ≡ c′ mod m and c ≡ c′ mod n then c = c′ (mod mn). The

injectivity of this function follows from the uniquess part of the CRT.

We have now proven that f is a bijection. By a previous theorem, this implies

that the domain and co-domain have the same cardinality, thus

|(Z/mnZ)×| = |(Z/mZ)× × (Z/nZ)×|
|(Z/mnZ)×| = |(Z/mZ)×| · |(Z/nZ)×|

φ(mn) = φ(m)φ(n)
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Theorem 93. Let p be a prime and k ≥ 1. Then φ(pk) = pk − 1(p− 1)

Proof. Consider the numbers in sequence

1, 2, 3, ..., pk

What numbers appear in this sequence which are not relatively prime to pk?

Notice that gcd(m, pk) ̸= 1 ⇐⇒ m ∈ p, 2p, 3p, ..., pk−1p. There are exactly

pk−1 multiples of p, so there are pk − pk−1 = pk−1(p− 1) numbers between 1, pk

which are relatively prime to pk.

We now have enough to give a formula for φ(n).

Theorem 94. Let p be a prime number which divides n. Then

φ(n) = n
∏
p | n

(
1− 1

p

)
Proof. By the fundamental theorem of arithmetic, n can be uniquely written

as a product of prime powers n = pa1
1 · ... · pak

k =
∏k

i=1 p
ai
i . Without loss of

generality, suppose the powers ai ≥ 1, so n is only written as a product of the

powers which divide it non trivially.

φ(n) =

φ

(
k∏

i=1

pai
i

)
=

k∏
i=1

φ(pai
i ) =

k∏
i=1

pai−1
i (pi − 1) =

k∏
i=1

pai
i

(
1− 1

pi

)
=(

k∏
i=‘1

pai
i

)(
k∏

i=1

(
1− 1

pi

))
=

n
∏
p | n

(
1− 1

p

)

some sample computations go here

Modular Exponentiation

We have dealt with equality, addition, multiplication, in modular arithmetic.

Now we deal with exponentiation. Given something of the form ab (mod n),

you can always simplify the base, since

ab ≡ a · a · ... · a︸ ︷︷ ︸
b

≡ (a (mod n))b

For example, 12100 (mod 11) ≡ 1100 ≡ 1 (mod 11).

repeated squaring

We can always simplify the base this easily. Simplifying in the exponent

requires a little more subtlety. We first need to prove a small and useful lemma.
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Theorem 95 (Fermat’s Little Theorem). If 1 ≤ a < p and p is a prime number

then

ap−1 ≡ 1 (mod p)

Proof. Consider the function f(i) = ai (mod p). We prove that f is a bijection

from (Z/pZ)× to a(Z/pZ)× = {a (mod p), 2a (mod p), ..., (p− 1)a (mod p)}.
We first prove f is injective. Let f(i) = f(j). We prove i ≡ j (mod p).

f(i) = f(j)

ai ≡ aj (mod p)

Since gcd(a, n) = 1, we know a−1 exists, thus

ai ≡ aj (mod p)

a−1(ai) ≡ a−1(aj) (mod p)

i ≡ j (mod p)

Next we prove f is surjective. Let y ∈ {a, 2a, 3a, ..., (p− 1)a} all (mod p).

We prove there exists a x such that f(x) = y. Consider x ≡ a−1y. Then

f(x) = f(a−1y) ≡ a(a−1y) ≡ y (mod p)

We know that two finite sets have the same cardinality if and only if there is a

bijection between them, thus |{1, 2, ..., p−1}| = |{a (mod p), 2a (mod p), ..., p−
1 (mod p)}| = p − 1. The function (mod p) will return values 0 to p. If we

prove that 0 ̸∈ a(Z/pZ)×, then the remaining p−1 elements are exactly the p−1

elements, of a(Z/pZ)×, which happen to exactly be the elements of (Z/pZ)×.
So if 0 ̸∈ a(Z/pZ)× then (Z/pZ)× = a(Z/pZ)×.

Assume to the contrary 0 ∈ a(Z/pZ)×. Then there exists an i ∈ (Z/pZ)×

such that ai ≡ 0 (mod p). Then

ai ≡ 0 (mod p) (57)

a−1(ai) ≡ a−1(0) (mod p) (58)

i ≡ 0 (mod p) (59)

Contradiction, as 0 ̸∈ (Z/pZ)×.
Now that we have proven (Z/pZ)× = a(Z/pZ)×, we may prove Fermat’s little

theorem. Note that if two sets are equal, then the product of their elements are

equal.

1 · 2 · 3 · ... · p− 1 ≡ (a)(2a)(3a)...((p− 1)a) (mod p) (60)

(p− 1)! ≡ ap−1(p− 1)! (mod p) (61)

Since gcd((p− 1)!, p) =, then ((p− 1)!)−1 exists, so

(p− 1)! ≡ ap−1(p− 1)! (mod p) (62)

1 ≡ ap−1 (mod p) (63)

We wish to extend Fermat’s little theorem for the case that the modulus is

not prime. Where did p− 1 actually come from here? It was the cardinality of

the group |(Z/pZ)×| = φ(p) = p− 1. We also made good use of the fact that

a−1 exists. With these conditions, we may generalize to proof Euler’s theorem.
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Theorem 96 (Euler’s Theorem). Let n ≥ 2 and 1 ≤ a < n and gcd(a, n) = 1.

Then

aφ(n) ≡ 1 (mod n)

Proof. Let n ≥ 2 and let 1 ≤ a < n with gcd(a, n) = 1. Let (Z/nZ)× =

{k1, k2, ..., kφ(n)}. Consider the function f : (Z/nZ)× → a(Z/nZ)× by f(ki) =

aki (mod n). We prove that f is a bijection and that zero is not an element of

the image of f .

To prove injectivity, let f(ki) = f(kj). We prove ki ≡ kj (mod n).

f(ki) ≡ f(kj) (mod n)

aki ≡ akj (mod n)

Since gcd(a, n) = 1 then a−1 exists in (Z/nZ)× so

aki ≡ akj (mod n)

a−1(aki) ≡ a−1(akj) (mod n)

ki ≡ kj (mod n)

Next we prove it is surjective. For y ∈ a(Z/nZ)×, we prove there exists

x ∈ (Z/nZ)× such that f(x) = y. Consider x ≡ a−1y. Then

f(x) ≡ f(a−1y) ≡ a(a−1y) ≡ y (mod n)

Finally, we prove that zero is not an element of a(Z/nZ)×. Suppose to the

contrary that it was. Then there would exist ki ∈ (Z/nZ)× such that 0 ≡ aki

(mod n).

aki ≡ 0 (mod n) (64)

a−1(aki) ≡ a−1(0) (mod n) (65)

ki ≡ 0 (mod n) (66)

Contradiction, as 0 ̸∈ (Z/nZ)×.
We can deduce that since |(Z/nZ)×| = |a(Z/nZ)×| = φ(n), and their least

element is 1, they must containt the same elements, and therefore, be equal.

Thus (Z/nZ)× = a(Z/nZ)×. If two sets are equal, then the products of their

elements are equal.

φ(n)∏
i=1

ki ≡
φ(n)∏
i=1

aki (mod n) (67)

φ(n)∏
i=1

ki ≡ aφ(n)

φ(n)∏
i=1

ki (mod n) (68)

(69)

Since
∏φ(n)

i=1 ki is a product of elements all relatively prime to n, then
∏φ(n)

i=1 ki

is relatively prime to n and its inverse exists (mod n). We multiply both sides

by this inverse to conclude

aφ(n) ≡ 1 (mod n)
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Corollary 97. If a is relatively prime to n and k = qφ(n) + r then ak ≡ ar

(mod n)

Proof. By Euler’s theorem

ak ≡ aqφ(n)+r ≡ (aφ(n))dar ≡ 1dar ≡ ar (mod n)

observe that since r < n this simplifies the exponent for us.

These theorems are pretty powerful, lets do an example. We will compute

33
33

(mod 100)

This exponent is quite complex. Lets apply Euler’s theorem to the exponent,

solve a subproblem, and plug it back in.

33
3

(mod φ(100))

We see a similar problem, and repeat

33 (mod φ(φ(100)))

With the factorization of 100 = 2252, we get φ(100) = 40 = 2351, so φ(φ(n)) =

16. Then

33 ≡ 27 ≡ 11 (mod 16)

Lets substitute this back in to get

33
3

≡ 327 ≡ 311 ≡ 34·2+3 ≡ (34)233 ≡ (812)(33)(12)(27) ≡ 27 (mod 40)

We now substitute this all the way back into the original

33
33

≡ 33
27

≡ 327 (mod 100)

We could to try to divide out the exponent so that we may mod out by something

close to 100, but there are no easy candidates. For example

327 ≡ (35)532 ≡ (243)532 ≡ (43)532

You can’t simply that any further without some complex work. Instead, we bring

in a second powerful tool: the chinese remainder theorem. The factorization of

100 = 2252. We compute 327 (mod 4) and 327 (mod 25) and then recombine

back up.

327 ≡ (32)133 ≡ (9)133 ≡ (1)133 ≡ 3 (mod 4)

327 ≡ (33)9 ≡ (27)9 ≡ 29 ≡ 512 ≡ 12 (mod 25)

Now we can apply a chinese remainder theorem algorithm to compute a unique

solution (mod 100), which must be then equivalent to 327 (mod 100). Lets
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use Gaussian elimination.

x ≡ 3 (mod 4)

x ≡ 12 (mod 25)

x = 25k + 12 for some k

25k + 12 ≡ 3 (mod 4)

1 · k + 0 ≡ 3 (mod 4)

k ≡ 3 (mod 4)

k = 4l + 3 for some l

x = 25(4l + 3) + 12

x = 100l + 87

x ≡ 87 (mod 100)

Thus 33
33 ≡ 87 (mod 100).



Pigeonhole Principle

Theorem 98. If you have n pigeons and k holes, then there exists a hole with

≥ 2 pigeons.

The Pigeonhole Principle is an extremely simple and atomic theorem, but as

we will see, it has great power.57 To demonstrate the diversity in which you 57 Every theorem in your arsenal is a spell. You

may compose and combine spells together to

prove powerful theorems. If a spell is of the
form p =⇒ q, you should think of p like

a mana cost, the conditions you need to set
up first to apply the spell, and then q is the

outcome. The pigeonhole principle is among

the most unique theorems you can every apply.
The conditions and costs it needs are very weak.

You simply need to have some pigeons and
holes to put them in, and ensure there are more
pigeons than holes. Often you can construct the

pigeons and holes yourself, and always ensure
you have more pigeons then holes. The cost to
apply the spell is minimal, but the outcome

is great. The pigeonhole principle conjures, or
wills into existence an object with a specific
property. Although this seems powerful, you

know nothing else about the summoned object
other than it exists. You don’t know where it is,
how to find it, or anything else. The pigeonhole

principle is inherently nonconstructive. Nothing
is really conjured, or created or summoned.
The pigeonhole principle proves that the object

always had to exist, and only this existence
is asserted. Although it is nonconstructive, in
certain cases, you may combine it with other

theorems to make it constructive.

may apply it, we do several examples.

Theorem 99. Every run on sentence of 27 words or more must contain two

words which begin with the same letter.

Proof. There are 26 letters, and any for any collection of 27 words, by the

pigeonhole principle, there must exist two words that begin with the same

letter.

Notice it doesn’t really matter that the 27 words form a run on sentence. It

only matters that there are more pigeons than holes. Implicit in the definition

of the pigeonhole principle is that every pigeon must be placed in a hole. No

one waits in line or doesn’t get place. Also implicit is that no pigeon can be in

two holes at once.

The pigeonhole principle is also nonconstructive. You know nothing about

the hole. Suppose you have n red and n blue socks, and you pull socks out

of your sock bucket one at a time, blindly. If you pull just three socks, since

there are only two colors, then by the pigeonhole principle you must have pulled

out a pair of socks. You don’t know what color it is though. Suppose you

specifically wanted to pull out a red pair of socks. You must pull out n + 2

socks to guarantee you eventually get your red pair, since its possible58 that 58 but we concede, unlikely
you would pull all n blue socks first.

Theorem 100. Let A,B be finite sets with |A| > |B|. Then there do not exist

any injections f : A→ B.

Proof. Let f : A→ B be any such function. Since f is a function, everything

in the domain is mapped to exactly one element in the co-domain. By the

pigeonhole principle, since |A| > |B|, there exists distinct ai, aj ∈ A such that

they map to the same element. So ai ̸= aj but f(ai) = f(aj). This implies that

f cannot be injective.

Theorem 101. For each length n, some file of length n which zipped does not

get smaller.

Proof. Suppose there exists a perfect compression algorithm f : A→ B with

f(x) = x.zip Suppose that f takes on input files of size n and outputs files that

are strictly smaller than size n. There are 2n files of size n, so |A| = 2n. How

many possible files are there of size < n? 1 file of size 0, 2 files of size 1, and 4 files
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of size 2. Continuing in this way, we see |B| = 1+2+4+8+ ...+2n−1 = 2n− 1.

Since |A| > |B| by the pigeonhole principle, two files of size n when compressed

must map to the same zipped file. Contradiction, as either f is not a correct

compression algorithm, or must make one of those files not smaller.

Theorem 102 (Posa’s Problem). 59 Let S ⊆ {1, 2, ..., 2n}. If |S| ≥ n+ 1 then 59 “When I returned from the United States in

the summer of 1959,” recalled Erdos, “I was
told that there is a little boy whose mother is

a mathematician and who knows all there is to

be known in high school. I was very interested
and next day I had lunch with him... While we

had lunch and [Louis] Pósa was eating his soup,

I told him the following problem. Prove that if
you have n + 1 integers less than or equal to 2n

there are always two of them which are relatively
prime. I discovered this simple result some years

ago but it took me about ten minutes until I

found the very simple proof.” As an example,
choose n to be 5. Then the conjecture is that if

you take any six integers from the set 1, 2, 3, 4,

5, 6, 7, 8, 9, and 10, you can’t avoid choosing two
that are relatively prime (meaning, remember,

that they have no common divisor greater than
1). The conjecture would fail if you were allowed
to choose just five of these integers: there are

five even numbers in this set, namely, 2, 4, 6, 8,
and 10, all of which obviously share the divisor
2. Louis Pósa finished his soup and announced,

“The two are neighbors.” In other words, the two
are consecutive. ”If you have n + 1 integers less
than or equal to 2n,” said Erdos, “two of them

are consecutive and therefore they are relatively
prime.”

there exists a, b ∈ S such that gcd(a, b) = 1.

Proof. First observe that consecutive numbers are relatively prime. If k ≥ 1

then

gcd(k, k + 1) = gcd(k + 1, (k + 1)− k) = gcd(k + 1, 1) = 1

Suppose we partition {1, 2, ..., 2n} into two element sets

{1, 2}, {3, 4}, {5, 6}, ..., {2n− 1, 2n}

There are n such sets. If |S| ≥ n + 1 then by the pigeonhole principle, both

elements of some two element set must be in S, and these are consecutive.

Theorem 103. Let S ⊆ {1, 2, ..., 2n}. If |S| ≥ n+ 1 then there exists a, b ∈ S

such that a | b

Proof. Let S = {a1, ..., an+1}. Notice that every number may be written as

a power of two times an odd number, so there exists b1, ..., bn+1 and odd

o1, ..., on+1 with ai = 2bioi. Since each ai ≤ 2n, we know each oi ≤ 2n − 1.

There are n+ 1 odd components o1, ..., on+1, but the set {1, 3, ..., 2n− 1} has

size n. By the pigeonhole principle, there exists distinct i, j such that oi = oj .

Consider ai, aj , the numbers corresponding to these equal odd components.

Recall ai = 2aioi and aj = 2ajoj2
ajoi. We have two cases.

• If ai = aj then certainly ai | aj .

• If ai ̸= aj , then one must be greater than the other. Without loss of generality,

suppose ai > aj . Since they have the same odd component, the power of two

of ai must be greater than the power of two of aj . So bi > bj . Thus 2
bj | 2bi .

Since oi is odd then 2bjoi | 2bioi =⇒ 2bjoj | 2bioi =⇒ aj | ai.

In either case, we see S must contain two numbers such that one divides the

other.

Theorem 104. for all n ≥ 2, there exists a multiple of n which is written in

base ten only using 1’s followed by 0’s.

Proof. Consider the sequence of numbers in base ten

1, 11, 111, ..., 1...1︸︷︷︸
n+1

where 1...1︸︷︷︸
k

is a number in base 10 written as k 1s. Suppose we take these n+ 1

numbers and mod them all by n. By the pigeonhole principle, two of these

numbers must be congruent mod n. There exists distinct i, j such that

1...1︸︷︷︸
i

≡ 1...1︸︷︷︸
j

(mod n)
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Without loss of generality, suppose i > j. Then

1...1︸︷︷︸
i

≡ 1...1︸︷︷︸
j

(mod n)

1...1︸︷︷︸
i

− 1...1︸︷︷︸
j

≡ 0 (mod n)

1...1︸︷︷︸
i−j

0...0︸︷︷︸
j

≡ 0 (mod n)

Thus 1...1︸︷︷︸
i−j

0...0︸︷︷︸
j

is a multiple of n written in base ten as 1’s followed by 0’s.

Theorem 105. Let a1, a2, ..., an be any n numbers. Then there exists a subse-

quence ak, ak+1, ..., ak+l such that ak + ak+1 + ...+ ak+l sums to a multiple of

n.

Proof. Consider the following numbers s1, ..., sn where

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

sn = a1 + a2 + a3 + ...+ an

Suppose we take these n numbers and mod them all by n. We have two cases

• If there is an si such that si ≡ 0 (mod n) then a1 + ...+ ai is a subsequence

which sums to a multiple of n.

• If there is not an si such that si ≡ 0 (mod n), then modding s1, ..., sn each

by n must map them into the n− 1 equivalence classes [1], ..., [n− 1]. By the

pigeonhole principle, there is distinct i, j such that si, sj fall into the same

equivalence class. Therefore si ≡ sj (mod n). Without loss of generality,

suppose i > j.

si ≡ sj (mod n)

si − sj ≡ 0 (mod n)

(a1 + ai)− (a1 + ...+ aj) ≡ 0 (mod n)

aj+1 + ...+ ai ≡ 0 (mod n)

Thus, aj+1 + ...+ ai is a subsequence of a1, ..., an which sums to a multiple

of n.

rubix cube

Theorem 106. If G is a finite group, then for all a ∈ G there exists a number

k > 1 such that ak = e.

Proof. Let G be a finite group of n elements. Consider the sequence

a, a2, a3, ..., an+1

By closure, these are all in G. Since there are n+ 1 such products but only n

elements in G, then by the pigeonhole principle we know there is distinct i, j

such that ai = aj . Without loss of generality, suppose i > j. Then ai−j = e.
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Theorem 107. For any way to place five points in a 2× 2 square, there must

exist two points whose distance apart is less than or equal to
√
2.

Proof. Divide the 2 × 2 square into four 1 × 1 squares sections. Since there

are five points and four sections, by the pigeonhole principle, there must exist

two points in the same section. Within the section, the farthest these points

could be apart is the hypotenuse. By the pythagorean theorem, we know the

hypotenuse length is
√
12 + 12 =

√
2. Thus the distance of these two points is

≤
√
2.

Notice how we had to construct the pigeonholes ourselves. They were not

served to us. A skilled construction can get a stronger theorem.

Theorem 108. For any way to place 101 points in a 6 × 8 rectangle, there

must exist two points whose distance apart is less than or equal to 1.

Proof. We give three constructions and improve each. First, consider that we

divide the 6× 8 rectangle into 48 1× 1 squares. By the pigeonhole principle,

we know that there must exist some square with atleast two points, which are

of maximum distanct ≤
√
2 ≈ 1.4 apart.

Next, consider that we divide the 6× 8 rectangle into 96 0.5× 1 rectangles.

By the pigeonhole principle, we know that there must exist some rectangle

with atleast two points, which are of maximum distanct ≤
√
(0.5)2 + 12 ≈ 1.11

apart.

Finally, consider that we divide the 6×8 rectangle into 100 0.6×0.8 rectangles.

By the pigeonhole principle, we know that there must exist some rectangle

with atleast two points, which are of maximum distanct ≤
√
(0.6)2 + (0.8)2 = 1

apart.

Theorem 109. Suppose you colored every point of the cartesian plane R2 either

red of blue. Then for each distance d > 0, there exists a pair of points exactly d

apart which are the same color.

crazy

Proof. Form an equilateral triangle anywhere of sidelengths d. Consider the

coloring of the endpoints of the triangle. There are three points and two colors.

By the pigeonhole principle, there exists two points of the same color. These

points are also exactly d apart.

Observe how the pigeonhole principle was used.

Theorem 110. If you have n pigeons and k holes, then there exists a hole with

⌈n
k ⌉ pigeons.

Proof. Assume to the contrary you have n pigeons placed into holes S1, ...Sk

and each hole has |Si| < ⌈n
k ⌉ pigeons in it. Then |Si| ≤ ⌈n

k ⌉ − 1 < n
k , so each

hole must have strictly less than n
k pigeons in it. But

n = |S1 ∪ ... ∪ Sk| = |S1|+ ...+ |Sk| <
n

k
+ ...+

n

k
= k

n

k
= n

which would imply n < n, contradiction.

The idea is if no pigeonhole was above ⌈n
k ⌉, then there was never n pigeons

to begin with.
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Theorem 111. As of writing, three people in class made the same exam grade.

Proof. There are 263 students in class, and 101 possible exam grades. By the

generalized pigeonhole principle, ⌈ 263
101⌉ = 3 people must have made the same

score.

commentary on distribution.

Theorem 112. No matter how five points are placed on a sphere, there exists

a way to draw a great circle60 such that 3 points lie on one side. 60 A great circle is like the equator, any line

which separates a sphere into two equally sized
hemispheres.Proof. Draw a great circle anywhere. This will partition the sphere into two

separate hemispheres. Since there are five points but two hemispheres, by

the generalized pigeonhole principle, ⌈ 5
2⌉ = 3 points must lie on the same

hemisphere.

By choosing a great circle carefully, and taking advantage of the geometry of

the sphere, we can actually strengthen this.

Theorem 113. No matter how five points are placed on a sphere, there exists

a way to draw a great circle such that 4 points lie on one side.

Proof. content...

Theorem 114. six mutual friends or six mutual enemies

61 61 Suppose aliens invade the earth and threaten
to obliterate it in a year’s time unless human

beings can find the Ramsey number for red five
and blue five. We could marshal the world’s best
minds and fastest computers, and within a year

we could probably calculate the value. If the
aliens demanded the Ramsey number for red six
and blue six, however, we would have no choice
but to launch a preemptive attack.

Erdos/Szekeres Theorem
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