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1 Introduction

1.1 Motivation

We begin our final unit entirely on computational complexity. This lecture will simply
consist of some early and motivating theorems, mostly before the development of NP-
completeness.

First we need a good computational model of a “hard” or “easy” computation. There is
a reason we have done everything so far with Turing machines. Turing machines make an
excellent model for complexity. Recall that a Turing machine performs a constant amount of
work in unit time. If more work is to be done, successive steps must be taken. This is exactly
what makes it an excellent model, because this is exactly how algorithms work in reality.
There did exist historically some functional, but Turing-complete models of computation,
and they do not have this property. For example, there exists a lambda calculi for string
copying. It can produce xx from x in a single step.1 This isn’t as good of a model, as to
copy an arbitrarily long string should take some number of steps as a function of the length
of the string. Intuitively, longer strings should take longer to copy. It is not clear here
what the “step” is in a functional model, but it certainly clear what a step is for a Turing
machine.

1.2 Turing Machine Variants

Does the variant and choice of Turing machine matter?. For now, we set aside the unrealiz-
able nondeterministic Turing machine (NTM) and only consider reasonable and realizable
models. Consider the language of palindromes PAL = {wwR | w ∈ Σ∗}. Here is an al-
gorithm to decide PAL on a single-tape deterministic Turing machine (DTM). Check the
first symbol, then the nth symbol, then the second symbol, and so on. The limitation of
this machine is that it is not random access. To read the last symbol starting from the first
takes a linear number of steps because the tape head has to loop over the entire input. To
decide PAL this way on a one tape DTM, this takes n+ (1) + (n− 2) + 1 + · · · = O(n2).

1It might look like λx[xx].
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We can give a better algorithm on a two-tape DTM as follows. Copy the input to
a second tape, reset one tape head. Loop both heads in opposite directions on the tape,
comparing symbols. These three routines each take linear time giving a O(n) time algorithm
on our two tape DTM.

Obviously, any stronger model must also take at least linear time, as to decide if wwR ∈
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PAL must look at all the symbols for correctness2. Can a single-tape DTM decide PAL in
O(n) or even o(n2) time? Surprisingly, no. any single tape deterministic Turing machine to
decide PAL must take Ω(n2) (and so Θ(n2)) steps. This is surprising! It means on a one
tape DTM, there is no way to do better for this language than the obvious way. There are
two proofs, a more classic combinatorial one, and one which uses Kolmogorov complexity.
Essentially, if a machine could decide PAL in o(n2) time, you could use this machine to
compress an incompressible string. I recommend this proof as your final project.

2 P

Let TIME(f(n)) := be the class of languages decidable by a Turing machine in f(n) steps.
Similarly define NTIME(f(n)), SPACE((f(n)),NSPACE(f(n)). Let

P =
∞⋃
k=0

TIME(nk)

Why is P a good definition of the class of intuitively efficient algorithms? We give some
arguments in favor

1. Most problems seem to have naive, trivial, brute-force solutions putting the problems
at least in EXP. If there exists a polynomial time algorithm, then either the problem
is trivial, ridiculous, or we have some deeper intuition about what the problem ac-
tually is (i.e. mathematical theory). An exponential time algorithm may be simple,
but a polynomial time algorithm usually requires a non-trivial understanding of the
structure of the problem itself. For example consider graph traversal. A bad way
would be to enumerate all paths and check them this way. A better way is to notice
how any sub-path of a path is itself a path. The shortest path from s to t cannot be
longer than the shortest path from s to t through some v. This recurrent structure is
what leads to efficient algorithms like DFS/BFS/Dijkstra’s and so on.

2. Polynomials are closed under operations which our intuition of “efficient” is also closed
under. If you have two algorithms A,B. If one or both is inefficient, then the com-
position, running both of them sequentially, should intuitively be inefficient. If both
are efficient, then running both sequentially should be efficient. If f(x), g(x) are poly-
nomials, then f(x) + g(x), f(x)g(x), f(g(x)) are also polynomials. A combination of
efficient algorithms should be efficient, and a combination of efficient and inefficient
algorithms should be inefficient. Polynomials preserve these closure properties.

3. Although there exist languages with O(n100) algorithms which require Ω(n99) steps,
we don’t have any practical examples of this. The highest polynomial run time you

2Most algorithms should take linear time. If an algorithm takes sublinear time, it doesn’t even have time
to look at the entire input, so it could only compute some toy language like a regular one. For example
checking if the first symbol is a one takes constant time. Binary search is sublinear, but this is only on the
random access model, not on a Turing machine. Still, binary search is efficient because it doesn’t have to
look at the entire input.
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would see in an algorithms course might be cubic time O(n3)3. The highest polynomial
run time I know is for the LLL algorithm. In O(n8) time, it finds a short orthonormal
basis of a lattice. Its poly-time, but practically infeasible. It would appear to stall
on reasonably small inputs. However, the achievement of the authors was that they
were able to bring the problem from far beyond P into P. Once you get a polytime
algorithm at all, it seems likely in practice that it can be improved. If you can be
afforded the mathematical theory to bring a problem into P at all, this knowledge can
likely be grown. There were several papers on “pruning” which make the algorithm
more efficient in a way thats hard to asymptotically measure. The engineers will
get a hold of the problem and make it practicality efficient, even optimizing the
constants. Although the vanilla algorithm may not appear to complete in reasonable
time on most inputs, the version of the algorithm which is included in most libraries,
it appears to halt instantly on all inputs you could test. This is one example, but
the case is evident for many other algorithms. If there is enough intuition to give
a polynomial time algorithm at all, its likely this intuition can be extended and the
problem can be made easier and easier. The languages which are solvable in Ω(n99)
are nonconstructive, useless. They aren’t real practical problems, and are designed
via diagonalization to have this property, and do nothing else.

4. All Turing machine variants appear to simulate each other with at most polynomial
overhead. What a word-RAM machine does is T steps takes a one-tape DTM T 4

steps. The word-RAM model is our best computer, and the one-tape DTM might be
our worst, yet the overhead is still only a polynomial. Although within P, they may
take different time for different languages, A definition of P is equivalent for all these
models. The extended Church-Turing Thesis says that not only are all these variants
as powerful as each other. The run-time of any one model to simulate another will
not have super polynomial overhead.

3 NP

Let

NP =

∞⋃
k=0

NTIME(nk)

The definition given in your algorithms course is that NP is the class of languages verifiable
in polynomial time. We now prove these definitions are equivalent.

Proof. Let NP be the class of languages decidable by a non-deterministic Turing machine
which halts in a polynomial number of steps. We say a language A ∈ NPv if there exists
a deterministic polynomial time verifier V for A. The verifier will take as input a word w
and a witness or certificate c and V (w, c) will accept or reject accordingly if w ∈ A.

Let A ∈ NPv, then there exists a polynomial time verifier V , which runs in O(nk) time
for some k. We will build a NTM to decide A as follows.

3Like chain matrix multiplication. Maybe Bellman-Ford on a dense graph. Most things appeared to be
linear or quadratic time.
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Algorithm 1 N on input w

Nondeterministically guess certificate c of max length nk

run V (w, c)
accept ⇐⇒ V accepts

Clearly, N runs in polynomial time. Since this is for all languages verifiable in polynomial
time, we see NPv ⊆ NP.

Let A ∈ NP, then there exists a polynomial time NTM to decide A. We show A is a
polynomial-time verifiable. Our witness c is just our nondeterministic choices. So, V is a

Algorithm 2 V on input ⟨w, c⟩
Simulate N deterministically on w
if faced with a nondeterministic choice then

Get the next bit of c
end if
if current branch of N ’s computation accepts then

accept
end if

deterministic polynonial-time verifier correctly for A, so NP ⊆ NPv.

Since we proved the containment both ways, we see that NP = NPv, and may drop the
subscript. From now on when we talk about NP, we can use either definition based on
convenience.

4 P ⊆ NP

We prove P ⊆ NP in both ways, using both definitions of NP.

1. First, note that by the generalization of nondeterminism, every deterministic polynomial-
time Turing machine is also a nondeterministic Turing machine, so P ⊆ NP

2. If A ∈ P, then there exists a polynomial time algorithm to decide A. We prove A
is also verifiable in polynomial time. The verifier will simply ignore the witness and
simulate the polytime decider for A. This implies P ⊆ NP.

5 More Classes

PSPACE =

∞⋃
k=0

SPACE(nk)

L = SPACE(log(n))

EXP =

∞⋃
k=0

TIME(2n
k
)
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We give some rough ideas about why the following chain holds.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆ NEXPSPACE

• L ⊆ NL follows from the generalization of non-determinism.

• NL ⊆ P follows from the fact there exists a polytime algorithm for an NL-complete
problem.

• P ⊆ NP as proved previously.

• NP ⊆ PSPACE, since SAT ∈ SPACE(n). Recall that ∀L ∈ NP, L ≤p SAT .

• Later we will prove that PSPACE = NPSPACE, but this containment as shown follows
obviously

Note that the hardest languages in PSPACE we think are decidable only in exponential
time, so we won’t discuss too much on the right half of this chain.

6 More Questions than Answers

We have absolutely no idea how to solve P
?
= NP. We do understand to some level how hard

the problem4 actually is. The problem itself is connected via a massive web of implications
to many more problems.

Consider the following two subchains.

1.
L ⊆ P ⊆ NP ⊆ PSPACE

We can prove L ⊊ PSPACE. Since these are the left and right sides, one of the
containments in this chain must be strict. Note that if you could prove P = PSPACE,
this would imply that P = NP, so if P = PSPACE is an open problem. If you could
prove that L = P and NP = PSPACE, then it must be the case that P ̸= NP. These
are open problems as well.

2.
P ⊆ NP ⊆ EXP

Note that NP ⊆ EXP since you can give a deterministic exponential time algorithm
to brute force all polynomial sized certificates. We can prove P ⊊ EXP, so again there
exists a strict containment in this chain. Proving NP = EXP would imply P ̸= NP, so
NP = EXP is also an open problem.

The history of complexity theory is a history of failure. Any problem which could be

reasonably asked may accidentally imply something about P
?
= NP and thus becomes as

hard as the problem itself. The failure to solve this one problem has shifted major directions

4Whenever I may refer in passing to “the problem”, I could only refer to the one problem, this problem.

P
?
= NP.
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in research over the past fifty years. Every new research direction, every new theorem, every
new foundation has been built with the motivation and direction to solve this one problem.
A massive effort has been undertaken in order to try and solve the problem with zero success.
We have built the shoulders of giants. Ironically, as we have understood the problem better,
we are farther away from solving the problem than we were when we began.

Besides these structural connections, there are many more ways which might resolve the
question. These include

• Proving existence or nonexistence of a one-way function

• Showing a super polynomial lower bound or a polynomial time algorithm for any
individual NP-complete problem. There are thousands.

• Giving a polytime algorithm to convert 3SAT instances into 2SAT ones.

• Proving that random number generators are indistinguishable from psuedorandom
ones.

• A proof that every property expressible by a second order existential statement is also
expressible in first order logic with a least fixed point operator

• There is no polynomially bounded propositional proof system.

And much much much more.
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